
Audio Toolbox™
Reference

R2022b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Audio Toolbox™ Reference Guide
© COPYRIGHT 2016–2022 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
March 2016 Online only New for Version 1.0 (Release 2016a)
September 2016 Online only Revised for Version 1.1 (Release 2016b)
March 2017 Online only Revised for Version 1.2 (Release 2017a)
September 2017 Online only Revised for Version 1.3 (Release 2017b)
March 2018 Online only Revised for Version 1.4 (Release 2018a)
September 2018 Online only Revised for Version 1.5 (Release 2018b)
March 2019 Online only Revised for Version 2.0 (Release 2019a)
September 2019 Online only Revised for Version 2.1 (Release 2019b)
March 2020 Online only Revised for Version 2.2 (Release 2020a)
September 2020 Online only Revised for Version 2.3 (Release 2020b)
March 2021 Online only Revised for Version 3.0 (Release 2021a)
September 2021 Online only Revised for Version 3.1 (Release 2021b)
March 2022 Online only Revised for Version 3.2 (Release 2022a)
September 2022 Online only Revised for Version 3.3 (Release 2022b)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Apps
1

Functions
2

System Objects
3

Classes
4

Blocks
5

iii

Contents

Apps

1

Audio Labeler
(To be removed) Define and visualize ground-truth labels

Note Audio Labeler will be removed in a future release. Use Signal Labeler instead. For more
information, see “Compatibility Considerations”.

Description
The Audio Labeler app enables you to label ground-truth data at both the region level and file level.

Using the app, you can:

• Create label definitions for consistent and fast labeling.
• Visualize the time-domain waveform during playback.
• Interactively specify labels at the file level and region level. You can specify regions by drawing

directly on the time-domain waveform.
• Record new audio to add to your dataset.
• Apply automatic labeling of detected speech regions.
• Apply automatic word labeling using third-party speech-to-text transcription services. See

“Speech-to-Text Transcription” for more information.

The app exports data as a labeledSignalSet object. You can use labeledSignalSet to train a
network, classifier, or analyze data and report statistics.

• For advanced sublabeling and custom automated labeling functions, see “Import and Play Audio
File Data in Signal Labeler”.

• Audio playback and recording are not supported in MATLAB Online.

1 Apps

1-2

https://www.mathworks.com/products/matlab-online.html

Open the Audio Labeler App
• MATLAB toolstrip: On the Apps tab, under Signal Processing and Communications, click the

app icon.
• MATLAB command prompt: Enter audioLabeler.

Examples

Create Keyword Spotting Mask Using Audio Labeler

In this example, you create a logical mask for an audio signal where ones correspond to the utterance
"yes" and zeros correspond to the absence of the utterance "yes". To create the mask, you use the
IBM™ speech-to-text API through the Audio Labeler app.

This example requires that you install the “Speech-to-Text Transcription” functionality.

Listen to the audio file that you want to label and then visualize it in the time domain.

[audioIn,fs] = audioread("KeywordSpeech-16-16-mono-34secs.flac");

sound(audioIn,fs)

t = (0:numel(audioIn)-1)/fs;
plot(t,audioIn)
xlabel('Time (s)')
ylabel('Amplitude')

 Audio Labeler

1-3

Open the Audio Labeler app and load the KeywordSpeech-16-16-mono-34secs.flac file into
the Data Browser.

1 Apps

1-4

Under Automation, click Speech to Text. On the Speech to Text tab, select your preferred speech-
to-text API. This example uses the IBM speech-to-text API. Select Segment Words so that the text
labels are divided into individual words instead of sentences. Click Run to interface with the speech-
to-text API and create a new region of interest (ROI) label. The ROI label contains words detected and
labeled by IBM's speech-to-text API.

 Audio Labeler

1-5

Close the Speech to Text tab and then export the labeled signal set to the workspace.

1 Apps

1-6

The labels are exported to the workspace as labeledSignalSet object with a time stamp. Set the
variable labeledSet to the time-stamped labeledSignalSet object.

labeledSet = myLabeledSet;

Inspect the SpeechContent label.

speechContent = labeledSet.Labels.SpeechContent{1}

speechContent=52×2 table
 ROILimits Value
 ____________ _________

 0.87 1.31 "first"
 1.31 1.41 "you"
 1.41 1.63 "said"
 1.63 2.22 "yes"
 2.25 2.52 "then"
 2.52 3.03 "no"
 3.09 3.22 "and"
 3.22 3.32 "you"
 3.32 3.52 "said"
 3.52 3.94 "yes"
 3.94 4.16 "then"
 4.16 4.66 "no"
 4.83 5.39 "yes"
 5.42 5.57 "the"

 Audio Labeler

1-7

 5.57 6.07 "no"
 6.15 6.56 "driving"
 ⋮

The speech-to-text API returns the limits of the ROI labels in seconds. Use the SpeechContent table
to create a logical vector.

keywordLabels = speechContent(speechContent.Value == "yes",:);
keywordROILimitsInSamples = round(keywordLabels.ROILimits*fs);

mask = zeros(size(audioIn),"logical");
for i = 1:size(keywordROILimitsInSamples)
 mask(keywordROILimitsInSamples(i,1):keywordROILimitsInSamples(i,2)) = true;
end

Plot the speech signal and the keyword spotting mask.

plot(t,audioIn, ...
 t,mask)
xlabel('Time (s)')
ylabel('Amplitude')
legend('Audio','Keyword Spotting Mask','Location','southeast')

1 Apps

1-8

Programmatic Use
audioLabeler opens the app, enabling you to label ground-truth data about audio.

Version History
Introduced in R2018b

Audio Labeler will be removed
Warns starting in R2022a

The Audio Labeler app will be removed in a future release. Use Signal Labeler instead.

The Signal Labeler app:

• Replaces file-level labels with attribute labels to define full-signal characteristics.
• Uses different line colors for channels of an audio file by default.
• Does not expose label tags of label definitions. You cannot interactively see, add, or edit label tags

for label definitions.
• Provides two new workflows when running autolabeling algorithms:

• Label and inspect plotted audio files.
• Label all audio files or a subset of audio files without inspection.

• Does not automatically create label definitions when running automation algorithms. To automate
the detection of speech content, you must first add logical region-of-interest (ROI) label
definitions. To perform speech-to-text transcription, you must first add string ROI label definitions.

• Requires automation algorithms be run on one channel at a time. For multichannel audio files, you
can choose which channel to use as input.

• Does not provide audio recording.

See Also
Apps
Signal Labeler

Objects
signalLabelDefinition | labeledSignalSet | audioDatastore | audioDeviceReader |
audioDeviceWriter

 Audio Labeler

1-9

Impulse Response Measurer
Measure impulse response of audio system

Description
The Impulse Response Measurer app enables you to acquire, analyze, and export impulse response
and frequency response measurements through a user interface.

Using this app, you can:

• Acquire impulse responses from one or more input channels to create filters and generate models
for offline simulations.

• Determine whether audio devices (loudspeakers, for example) meet time and frequency
specifications.

• Optimize audio systems, such as automotive-acoustic systems, to match goal specifications.
• Acquire accurate impulse response measurements for use in acoustic reporting.

1 Apps

1-10

Open the Impulse Response Measurer App
MATLAB Toolstrip: On the Apps tab, under Signal Processing and Communications, click the app
icon.

MATLAB Command prompt: Enter impulseResponseMeasurer.

Examples

Verify Input/Output Configuration

For large systems with multiple audio devices and multiple input and output channels, tracking how
reported devices and channels correspond to physical devices can be difficult. The Impulse
Response Measurer provides a level monitor so that you can verify your audio I/O configuration.

To open the level monitor, click Level Monitor, .

Choose player and recorder channels in the Device section of the toolstrip. Choose the test signal
and the test audio level in the level monitor. Verify that the level reported by the recorder reacts

 Impulse Response Measurer

1-11

appropriately to level changes output by the player. Once you are satisfied that your system is
configured correctly, close the level monitor and begin the impulse response capture.

• “Measure and Manage Impulse Responses”

Parameters
Method — Select excitation signal as MLS or swept sine wave
MLS (default) | Exponential Swept Sine

Select the excitation signal algorithm used to generate an impulse response measurement:

• MLS –– The maximum length sequence (MLS) technique is based on the excitation of the acoustical
space by a periodic pseudorandom signal. The impulse response is obtained by circular cross-
correlation between the measured output and the test tone. For more details, see [2].

• Exponential Swept Sine –– The swept sine measurement technique uses an exponential time-
growing frequency sweep as an output signal. The output signal is recorded, and deconvolution is
used to recover the impulse response from the swept sine tone. For more details, see [1]. The
swept sine technique enables you to modify additional Advanced Settings to control the
excitation signal. The advanced settings apply per run:

• Sweep start frequency
• Sweep stop frequency
• Sweep duration
• End silence duration

The value of the End silence duration is read-only and depends on the Sweep duration and
Duration per Run (s): End silence duration = Duration per Run − Sweep duration

The maximum total duration of both the sweep signal and the end silence is 60 seconds.

Version History
Introduced in R2018a

Automatic latency compensation

Use a loopback cable to measure the audio device latency that delays the measured impulse
response. You can optionally remove this latency from the captured measurements. Set Latency
Compensation to Loopback Measurement to enable this feature.

Exponential swept sine supports longer duration
Behavior changed in R2022b

When the Method is Exponential Swept Sine, the Duration per Run (s) must be less than 60
seconds. Previously, it had to be less than 15 seconds.

1 Apps

1-12

References
[1] Farina, Angelo. "Advancements in Impulse Response Measurements by Sine Sweeps." Presented

at the Audio Engineering Society 122nd Convention, Vienna, Austria, 2007.

[2] Guy-Bart, Stan, Jean-Jacques Embrachts, and Dominique Archambeau. "Comparison of Different
Impulse Response Measurement Techniques." Journal of Audio Engineering Society. Vol. 50,
Issue 4, 2002, pp. 246–262.

[3] Armelloni, Enrico, Christian Giottoli, and Angelo Farina. "Implementation of Real-Time Partitioned
Convolution on a DSP Board." Application of Signal Processing to Audio and Acoustics, 2003
IEEE Workshop, pp. 71–74. IEEE, 2003.

See Also
audioPlayerRecorder | splMeter | reverberator

Topics
“Measure and Manage Impulse Responses”

 Impulse Response Measurer

1-13

Audio Test Bench
Debug, test, and tune audio plugin

Description
The Audio Test Bench provides a graphical interface through which you can develop, debug, test,
and tune your audio plugin in real time. You can interact with properties of your audio plugin using
associated parameter graphical widgets. See audioPluginParameter for more information.

Using the Audio Test Bench, you can:

• Debug your audio plugin.
• Simulate your audio plugin as generated in a digital audio workstation (DAW).
• Visualize your processing with time-domain and frequency-domain scopes.
• Interactively synchronize MIDI controls to plugin properties.
• Run validation checks and generate audio plugin binaries.

Open the Audio Test Bench App
• MATLAB Toolstrip: On the Apps tab, under Signal Processing and Communications, click the

app icon.
• MATLAB command prompt: Enter audioTestBench.

1 Apps

1-14

Examples

Open Audio Test Bench

Open the Audio Test Bench for an audio plugin class.

audioTestBench(audiopluginexample.VarSlopeBandpassFilter)

• “Develop, Analyze, and Debug Plugins In Audio Test Bench”

Programmatic Use
audioTestBench(aClass) opens the Audio Test Bench for an instance of aClass. Valid classes
include:

• An audio plugin class that derives from audioPlugin, the base class for audio plugins.
• A compatible Audio Toolbox System object™.

audioTestBench(aObject) opens the Audio Test Bench for aObject. Valid objects include:

• An instance of an audio plugin class, where the class derives from audioPlugin, the base class
for audio plugins.

 Audio Test Bench

1-15

• An instance of a compatible Audio Toolbox System object.
• A hosted plugin object, as returned by the loadAudioPlugin function.

audioTestBench(pluginPath) opens the Audio Test Bench for pluginPath, where
pluginPath is the location of an external plugin. Use the full path to specify the audio plugin you
want to host. If the plugin is located in the current folder, specify it by its name.

audioTestBench("-close") closes the Audio Test Bench.

Tips
• The Audio Test Bench provides persistent input and output settings across sessions.

Version History
Introduced in R2016a

Choose from multiple plugin formats and specify coder configuration when generating
audio plugin binaries

The Audio Test Bench has the same functionality as generateAudioPlugin and
audioPluginConfig for generating audio plugin binaries. You can choose from multiple plugin
binary formats, and you can specify the coder configuration for deep learning and code replacement
libraries.

Time Scope and Spectrum Analyzer can not be in the same window
Behavior changed in R2022b

Due to a change in interfaces for Time Scope and Spectrum Analyzer, you can only open each
scope in its own separate window.

See Also
Functions
validateAudioPlugin | generateAudioPlugin | audioPluginInterface |
audioPluginParameter

Classes
audioPlugin | audioPluginSource

Topics
“Develop, Analyze, and Debug Plugins In Audio Test Bench”
“What Are DAWs, Audio Plugins, and MIDI Controllers?”
“Design an Audio Plugin”
“Audio Plugins in MATLAB”
“Audio Plugin Example Gallery”

1 Apps

1-16

Extract Audio Features
Streamline audio feature extraction in the Live Editor

Description
The Extract Audio Features task enables you to configure an optimized feature extraction pipeline
by selecting features and parameters graphically. You can reuse the output from Extract Audio
Features to apply feature extraction to entire data sets. The task automatically generates MATLAB
code for your live script.

Using this task, you can:

• Extract features of audio signals common to machine learning and deep learning workflows.
• Create a feature extraction object for use with large data sets.
• Visualize extracted audio features.

To learn more about interactive tasks in live scripts, see “Add Interactive Tasks to a Live Script”.

 Extract Audio Features

1-17

1 Apps

1-18

Open the Task
• On the Live Editor tab, select Task > Extract Audio Features.
• In a code block in the script, type a relevant keyword, such as extract, audio, or feature.

Select Extract Audio Features from the suggested command completions.

Tips
The Extract Audio Features task provides a graphical user interface to configure an
audioFeatureExtractor object. For details on the configuration parameters, see
audioFeatureExtractor.

Version History
Introduced in R2020a

Visualize Audio Signal and Extracted Features

Select Plot features and Plot audio under the Display results section to visualize the extracted
features and input audio signal, respectively.

See Also
audioDataAugmenter | audioFeatureExtractor | audioDatastore

 Extract Audio Features

1-19

Functions

2

speech2text
Transcribe speech signal to text

Syntax
transcript = speech2text(clientObj,audioIn,fs)
transcript = speech2text(___ ,HTTPTimeout=timeout)

Description
transcript = speech2text(clientObj,audioIn,fs) transcribes speech in the input audio
signal to text using a wav2vec 2.0 pretrained deep learning model or a third-party speech service.

Note To use speech2text with the third-party speech services, you must download the extended
Audio Toolbox functionality from File Exchange. The File Exchange submission includes a tutorial to
get started with the third-party services.

Using wav2vec 2.0 requires Deep Learning Toolbox™ and installing the pretrained model.

transcript = speech2text(___ ,HTTPTimeout=timeout) specifies the time in seconds to wait
for the initial server connection to the third-party speech service.

Examples

Download wav2vec 2.0 Network

Download and install the pretrained wav2vec 2.0 model for speech-to-text transcription.

Type speechClient("wav2vec2.0") into the command line. If the pretrained model for wav2vec
2.0 is not installed, the function provides a download link. To install the model, click the link to
download the file and unzip it to a location on the MATLAB path.

Alternatively, execute the following commands to download the wav2vec 2.0 model, unzip it to your
temporary directory, and then add it to your MATLAB path.

downloadFile = matlab.internal.examples.downloadSupportFile("audio","wav2vec2/wav2vec2-base-960.zip");
wav2vecLocation = fullfile(tempdir,"wav2vec");
unzip(downloadFile,wav2vecLocation)
addpath(wav2vecLocation)

Check that the installation is successful by typing speechClient("wav2vec2.0") into the
command line. If the model is installed, then the function returns a Wav2VecSpeechClient object.

speechClient("wav2vec2.0")

ans =
 Wav2VecSpeechClient with properties:

2 Functions

2-2

https://www.mathworks.com/matlabcentral/fileexchange/65266-speech2text

 Segmentation: 'word'
 TimeStamps: 0

Perform Speech-to-Text Transcription

Read in an audio file containing speech and listen to it.

[y,fs] = audioread("speech_dft.wav");
soundsc(y,fs)

Create a speechClient object that uses the wav2vec 2.0 pretrained network. This requires
installing the pretrained network. If the network is not installed, the function provides a link with
instructions to download and install the pretrained model.

transcriber = speechClient("wav2vec2.0");

Use speech2text to obtain a transcription of the audio signal.

transcript = speech2text(transcriber,y,fs)

transcript=12×2 table
 Transcript Confidence
 ___________ __________

 "the" 0.97605
 "discreet" 0.91927
 "fourier" 0.84546
 "transform" 0.89922
 "of" 0.66676
 "a" 0.50026
 "real" 0.88796
 "valued" 0.89913
 "signal" 0.8041
 "is" 0.53891
 "conjugate" 0.98438
 "symmetric" 0.89333

Input Arguments
clientObj — Client object
speechClient object

Client object, specified as an object returned by speechClient. The object is an interface to a
pretrained wav2vec 2.0 model or to a third-party speech service.

Using speech2text with wav2vec 2.0 requires Deep Learning Toolbox and installing the pretrained
wav2vec 2.0 model. If the model is not installed, calling speechClient with "wav2vec2.0"
provides a link to download and install the model.

To use any of the third-party speech services, you must download the extended Audio Toolbox
functionality from File Exchange. The File Exchange submission includes a tutorial to get started with
the third-party services.

 speech2text

2-3

https://www.mathworks.com/matlabcentral/fileexchange/65266-speech2text

Example: speechClient("wav2vec2.0")

audioIn — Audio input
column vector

Audio input signal, specified as a column vector (single channel).
Data Types: single | double

fs — Sample rate (Hz)
positive scalar

Sample rate in Hz, specified as a positive scalar.
Data Types: single | double

timeout — Time to wait for server connection in seconds
10 (default) | positive scalar

Time to wait for initial server connection in seconds, specified as a positive scalar.

This argument is enabled only when the clientObj is one of the third-party speech services.

Output Arguments
transcript — Speech transcript
table | string

Speech transcript of the input audio signal, returned as a table with a column containing the
transcript and another column containing the associated confidence metrics.

If the clientObj interfaces with the wav2vec 2.0 pretrained model and you set the object
Segmentation property to "none" when creating it with speechClient, speech2text returns the
transcript as a string.

Note The returned table can have additional columns depending on the properties specified when
creating the clientObj with speechClient.

Data Types: table | string

Version History
Introduced in R2022b

References
[1] Baevski, Alexei, Henry Zhou, Abdelrahman Mohamed, and Michael Auli. “Wav2vec 2.0: A

Framework for Self-Supervised Learning of Speech Representations,” 2020. https://doi.org/
10.48550/ARXIV.2006.11477.

2 Functions

2-4

See Also
speechClient | Signal Labeler

 speech2text

2-5

yamnetPreprocess
Preprocess audio for YAMNet classification

Syntax
features = yamnetPreprocess(audioIn,fs)
features = yamnetPreprocess(audioIn,fs,'OverlapPercentage',OP)

Description
features = yamnetPreprocess(audioIn,fs) generates mel spectrograms from audioIn that
can be fed to the YAMNet pretrained network.

features = yamnetPreprocess(audioIn,fs,'OverlapPercentage',OP) specifies the
overlap percentage between consecutive audio frames.

For example, features = yamnetPreprocess(audioIn,fs,'OverlapPercentage',75)
applies a 75% overlap between consecutive frames used to generate the spectrograms.

Examples

Download YAMNet

Download and unzip the Audio Toolbox™ model for YAMNet.

Type yamnet at the Command Window. If the Audio Toolbox model for YAMNet is not installed, then
the function provides a link to the location of the network weights. To download the model, click the
link. Unzip the file to a location on the MATLAB path.

Alternatively, execute the following commands to download and unzip the YAMNet model to your
temporary directory.

downloadFolder = fullfile(tempdir,'YAMNetDownload');
loc = websave(downloadFolder,'https://ssd.mathworks.com/supportfiles/audio/yamnet.zip');
YAMNetLocation = tempdir;
unzip(loc,YAMNetLocation)
addpath(fullfile(YAMNetLocation,'yamnet'))

Check that the installation is successful by typing yamnet at the Command Window. If the network is
installed, then the function returns a SeriesNetwork (Deep Learning Toolbox) object.

yamnet

ans =
 SeriesNetwork with properties:

 Layers: [86×1 nnet.cnn.layer.Layer]
 InputNames: {'input_1'}
 OutputNames: {'Sound'}

2 Functions

2-6

Load Pretrained YAMNet

Load a pretrained YAMNet convolutional neural network and examine the layers and classes.

Use yamnet to load the pretrained YAMNet network. The output net is a SeriesNetwork (Deep
Learning Toolbox) object.

net = yamnet

net =
 SeriesNetwork with properties:

 Layers: [86×1 nnet.cnn.layer.Layer]
 InputNames: {'input_1'}
 OutputNames: {'Sound'}

View the network architecture using the Layers property. The network has 86 layers. There are 28
layers with learnable weights: 27 convolutional layers, and 1 fully connected layer.

net.Layers

ans =
 86x1 Layer array with layers:

 1 'input_1' Image Input 96×64×1 images
 2 'conv2d' Convolution 32 3×3×1 convolutions with stride [2 2] and padding 'same'
 3 'b' Batch Normalization Batch normalization with 32 channels
 4 'activation' ReLU ReLU
 5 'depthwise_conv2d' Grouped Convolution 32 groups of 1 3×3×1 convolutions with stride [1 1] and padding 'same'
 6 'L11' Batch Normalization Batch normalization with 32 channels
 7 'activation_1' ReLU ReLU
 8 'conv2d_1' Convolution 64 1×1×32 convolutions with stride [1 1] and padding 'same'
 9 'L12' Batch Normalization Batch normalization with 64 channels
 10 'activation_2' ReLU ReLU
 11 'depthwise_conv2d_1' Grouped Convolution 64 groups of 1 3×3×1 convolutions with stride [2 2] and padding 'same'
 12 'L21' Batch Normalization Batch normalization with 64 channels
 13 'activation_3' ReLU ReLU
 14 'conv2d_2' Convolution 128 1×1×64 convolutions with stride [1 1] and padding 'same'
 15 'L22' Batch Normalization Batch normalization with 128 channels
 16 'activation_4' ReLU ReLU
 17 'depthwise_conv2d_2' Grouped Convolution 128 groups of 1 3×3×1 convolutions with stride [1 1] and padding 'same'
 18 'L31' Batch Normalization Batch normalization with 128 channels
 19 'activation_5' ReLU ReLU
 20 'conv2d_3' Convolution 128 1×1×128 convolutions with stride [1 1] and padding 'same'
 21 'L32' Batch Normalization Batch normalization with 128 channels
 22 'activation_6' ReLU ReLU
 23 'depthwise_conv2d_3' Grouped Convolution 128 groups of 1 3×3×1 convolutions with stride [2 2] and padding 'same'
 24 'L41' Batch Normalization Batch normalization with 128 channels
 25 'activation_7' ReLU ReLU
 26 'conv2d_4' Convolution 256 1×1×128 convolutions with stride [1 1] and padding 'same'
 27 'L42' Batch Normalization Batch normalization with 256 channels
 28 'activation_8' ReLU ReLU
 29 'depthwise_conv2d_4' Grouped Convolution 256 groups of 1 3×3×1 convolutions with stride [1 1] and padding 'same'
 30 'L51' Batch Normalization Batch normalization with 256 channels

 yamnetPreprocess

2-7

 31 'activation_9' ReLU ReLU
 32 'conv2d_5' Convolution 256 1×1×256 convolutions with stride [1 1] and padding 'same'
 33 'L52' Batch Normalization Batch normalization with 256 channels
 34 'activation_10' ReLU ReLU
 35 'depthwise_conv2d_5' Grouped Convolution 256 groups of 1 3×3×1 convolutions with stride [2 2] and padding 'same'
 36 'L61' Batch Normalization Batch normalization with 256 channels
 37 'activation_11' ReLU ReLU
 38 'conv2d_6' Convolution 512 1×1×256 convolutions with stride [1 1] and padding 'same'
 39 'L62' Batch Normalization Batch normalization with 512 channels
 40 'activation_12' ReLU ReLU
 41 'depthwise_conv2d_6' Grouped Convolution 512 groups of 1 3×3×1 convolutions with stride [1 1] and padding 'same'
 42 'L71' Batch Normalization Batch normalization with 512 channels
 43 'activation_13' ReLU ReLU
 44 'conv2d_7' Convolution 512 1×1×512 convolutions with stride [1 1] and padding 'same'
 45 'L72' Batch Normalization Batch normalization with 512 channels
 46 'activation_14' ReLU ReLU
 47 'depthwise_conv2d_7' Grouped Convolution 512 groups of 1 3×3×1 convolutions with stride [1 1] and padding 'same'
 48 'L81' Batch Normalization Batch normalization with 512 channels
 49 'activation_15' ReLU ReLU
 50 'conv2d_8' Convolution 512 1×1×512 convolutions with stride [1 1] and padding 'same'
 51 'L82' Batch Normalization Batch normalization with 512 channels
 52 'activation_16' ReLU ReLU
 53 'depthwise_conv2d_8' Grouped Convolution 512 groups of 1 3×3×1 convolutions with stride [1 1] and padding 'same'
 54 'L91' Batch Normalization Batch normalization with 512 channels
 55 'activation_17' ReLU ReLU
 56 'conv2d_9' Convolution 512 1×1×512 convolutions with stride [1 1] and padding 'same'
 57 'L92' Batch Normalization Batch normalization with 512 channels
 58 'activation_18' ReLU ReLU
 59 'depthwise_conv2d_9' Grouped Convolution 512 groups of 1 3×3×1 convolutions with stride [1 1] and padding 'same'
 60 'L101' Batch Normalization Batch normalization with 512 channels
 61 'activation_19' ReLU ReLU
 62 'conv2d_10' Convolution 512 1×1×512 convolutions with stride [1 1] and padding 'same'
 63 'L102' Batch Normalization Batch normalization with 512 channels
 64 'activation_20' ReLU ReLU
 65 'depthwise_conv2d_10' Grouped Convolution 512 groups of 1 3×3×1 convolutions with stride [1 1] and padding 'same'
 66 'L111' Batch Normalization Batch normalization with 512 channels
 67 'activation_21' ReLU ReLU
 68 'conv2d_11' Convolution 512 1×1×512 convolutions with stride [1 1] and padding 'same'
 69 'L112' Batch Normalization Batch normalization with 512 channels
 70 'activation_22' ReLU ReLU
 71 'depthwise_conv2d_11' Grouped Convolution 512 groups of 1 3×3×1 convolutions with stride [2 2] and padding 'same'
 72 'L121' Batch Normalization Batch normalization with 512 channels
 73 'activation_23' ReLU ReLU
 74 'conv2d_12' Convolution 1024 1×1×512 convolutions with stride [1 1] and padding 'same'
 75 'L122' Batch Normalization Batch normalization with 1024 channels
 76 'activation_24' ReLU ReLU
 77 'depthwise_conv2d_12' Grouped Convolution 1024 groups of 1 3×3×1 convolutions with stride [1 1] and padding 'same'
 78 'L131' Batch Normalization Batch normalization with 1024 channels
 79 'activation_25' ReLU ReLU
 80 'conv2d_13' Convolution 1024 1×1×1024 convolutions with stride [1 1] and padding 'same'
 81 'L132' Batch Normalization Batch normalization with 1024 channels
 82 'activation_26' ReLU ReLU
 83 'global_average_pooling2d' Global Average Pooling Global average pooling
 84 'dense' Fully Connected 521 fully connected layer
 85 'softmax' Softmax softmax
 86 'Sound' Classification Output crossentropyex with 'Speech' and 520 other classes

2 Functions

2-8

To view the names of the classes learned by the network, you can view the Classes property of the
classification output layer (the final layer). View the first 10 classes by specifying the first 10
elements.

net.Layers(end).Classes(1:10)

ans = 10×1 categorical
 Speech
 Child speech, kid speaking
 Conversation
 Narration, monologue
 Babbling
 Speech synthesizer
 Shout
 Bellow
 Whoop
 Yell

Use analyzeNetwork (Deep Learning Toolbox) to visually explore the network.

analyzeNetwork(net)

YAMNet was released with a corresponding sound class ontology, which you can explore using the
yamnetGraph object.

ygraph = yamnetGraph;
p = plot(ygraph);
layout(p,'layered')

 yamnetPreprocess

2-9

The ontology graph plots all 521 possible sound classes. Plot a subgraph of the sounds related to
respiratory sounds.

allRespiratorySounds = dfsearch(ygraph,"Respiratory sounds");
ygraphSpeech = subgraph(ygraph,allRespiratorySounds);
plot(ygraphSpeech)

2 Functions

2-10

Preprocess Audio and Classify Sounds with YAMNet

Read in an audio signal.

[audioIn,fs] = audioread('SpeechDFT-16-8-mono-5secs.wav');

Plot and listen to the audio signal.

T = 1/fs;
t = 0:T:(length(audioIn)*T) - T;
plot(t,audioIn);
grid on
xlabel('Time (t)')
ylabel('Ampltiude')

 yamnetPreprocess

2-11

soundsc(audioIn,fs)

Use yamnetPreprocess to extract mel spectrograms from the audio signal. Visualize an arbitrary
spectrogram from the array.

melSpectYam = yamnetPreprocess(audioIn,fs);

arbSpect = melSpectYam(:,:,1,randi(size(melSpectYam,4)));
surf(arbSpect,'EdgeColor','none')
view([90,-90])
axis([1 size(arbSpect,1) 1 size(arbSpect,2)])
xlabel('Mel Band')
ylabel('Frame')
title('Mel Spectrogram for YAMNet')
axis tight

2 Functions

2-12

Create a YAMNet neural network (This requires Deep Learning Toolbox). Call classify with your
YAMNet network and the preprocessed mel spectrogram images.

net = yamnet;
classes = classify(net,melSpectYam);

Classify the audio signal as the most frequently occurring sound.

mySound = mode(classes)

mySound = categorical
 Speech

Input Arguments
audioIn — Input signal
column vector | matrix

Input signal, specified as a column vector or matrix. If you specify a matrix, yamnetPreprocess
treats the columns of the matrix as individual audio channels.
Data Types: single | double

fs — Sample rate (Hz)
positive scalar

 yamnetPreprocess

2-13

Sample rate of the input signal in Hz, specified as a positive scalar.
Data Types: single | double

OP — Overlap percentage between consecutive mel spectrograms
50 (default) | scalar in the range [0,100)

Percentage overlap between consecutive mel spectrograms, specified as a scalar in the range [0,100).
Data Types: single | double

Output Arguments
features — Mel spectrograms that can be fed to YAMNet pretrained network
96-by-64-by-1-by-K array

Mel spectrograms generated from audioIn, returned as a 96-by-64-by-1-by-K array, where:

• 96 –– Represents the number of 25 ms frames in each mel spectrogram
• 64 –– Represents the number of mel bands spanning 125 Hz to 7.5 kHz
• K –– Represents the number of mel spectrograms and depends on the length of audioIn, the

number of channels in audioIn, as well as OverlapPercentage

Note Each 96-by-64-by-1 patch represents a single mel spectrogram image. For multichannel
inputs, mel spectrograms are stacked along the fourth dimension.

Data Types: single

Version History
Introduced in R2021a

References
[1] Gemmeke, Jort F., et al. “Audio Set: An Ontology and Human-Labeled Dataset for Audio Events.”

2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
IEEE, 2017, pp. 776–80. DOI.org (Crossref), doi:10.1109/ICASSP.2017.7952261.

[2] Hershey, Shawn, et al. “CNN Architectures for Large-Scale Audio Classification.” 2017 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2017,
pp. 131–35. DOI.org (Crossref), doi:10.1109/ICASSP.2017.7952132.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

2 Functions

2-14

See Also
Apps
Signal Labeler

Blocks
Sound Classifier | VGGish Embeddings | VGGish Preprocess | VGGish | YAMNet | YAMNet Preprocess

Functions
classifySound | vggish | vggishEmbeddings | vggishPreprocess | yamnet | yamnetGraph

 yamnetPreprocess

2-15

vggishPreprocess
Preprocess audio for VGGish feature extraction

Syntax
features = vggishPreprocess(audioIn,fs)
features = vggishPreprocess(audioIn,fs,'OverlapPercentage',OP)

Description
features = vggishPreprocess(audioIn,fs) generates mel spectrograms from audioIn that
can be fed to the VGGish pretrained network.

features = vggishPreprocess(audioIn,fs,'OverlapPercentage',OP) specifies the
overlap percentage between consecutive audio frames.

For example, vggishPreprocess(audioIn,fs,'OverlapPercentage',75) applies a 75%
overlap between consecutive frames used to generate the spectrograms.

Examples

Download VGGish Network

Download and unzip the Audio Toolbox™ model for VGGish.

Type vggish at the Command Window. If the Audio Toolbox model for VGGish is not installed, then
the function provides a link to the location of the network weights. To download the model, click the
link. Unzip the file to a location on the MATLAB path.

Alternatively, execute these commands to download and unzip the VGGish model to your temporary
directory.

downloadFolder = fullfile(tempdir,'VGGishDownload');
loc = websave(downloadFolder,'https://ssd.mathworks.com/supportfiles/audio/vggish.zip');
VGGishLocation = tempdir;
unzip(loc,VGGishLocation)
addpath(fullfile(VGGishLocation,'vggish'))

Check that the installation is successful by typing vggish at the Command Window. If the network is
installed, then the function returns a SeriesNetwork (Deep Learning Toolbox) object.

vggish

ans =
 SeriesNetwork with properties:

 Layers: [24×1 nnet.cnn.layer.Layer]
 InputNames: {'InputBatch'}
 OutputNames: {'regressionoutput'}

2 Functions

2-16

Load Pretrained VGGish Network

Load a pretrained VGGish convolutional neural network and examine the layers and classes.

Use vggish to load the pretrained VGGish network. The output net is a SeriesNetwork (Deep
Learning Toolbox) object.

net = vggish

net =
 SeriesNetwork with properties:

 Layers: [24×1 nnet.cnn.layer.Layer]
 InputNames: {'InputBatch'}
 OutputNames: {'regressionoutput'}

View the network architecture using the Layers property. The network has 24 layers. There are nine
layers with learnable weights, of which six are convolutional layers and three are fully connected
layers.

net.Layers

ans =
 24×1 Layer array with layers:

 1 'InputBatch' Image Input 96×64×1 images
 2 'conv1' Convolution 64 3×3×1 convolutions with stride [1 1] and padding 'same'
 3 'relu' ReLU ReLU
 4 'pool1' Max Pooling 2×2 max pooling with stride [2 2] and padding 'same'
 5 'conv2' Convolution 128 3×3×64 convolutions with stride [1 1] and padding 'same'
 6 'relu2' ReLU ReLU
 7 'pool2' Max Pooling 2×2 max pooling with stride [2 2] and padding 'same'
 8 'conv3_1' Convolution 256 3×3×128 convolutions with stride [1 1] and padding 'same'
 9 'relu3_1' ReLU ReLU
 10 'conv3_2' Convolution 256 3×3×256 convolutions with stride [1 1] and padding 'same'
 11 'relu3_2' ReLU ReLU
 12 'pool3' Max Pooling 2×2 max pooling with stride [2 2] and padding 'same'
 13 'conv4_1' Convolution 512 3×3×256 convolutions with stride [1 1] and padding 'same'
 14 'relu4_1' ReLU ReLU
 15 'conv4_2' Convolution 512 3×3×512 convolutions with stride [1 1] and padding 'same'
 16 'relu4_2' ReLU ReLU
 17 'pool4' Max Pooling 2×2 max pooling with stride [2 2] and padding 'same'
 18 'fc1_1' Fully Connected 4096 fully connected layer
 19 'relu5_1' ReLU ReLU
 20 'fc1_2' Fully Connected 4096 fully connected layer
 21 'relu5_2' ReLU ReLU
 22 'fc2' Fully Connected 128 fully connected layer
 23 'EmbeddingBatch' ReLU ReLU
 24 'regressionoutput' Regression Output mean-squared-error

Use analyzeNetwork (Deep Learning Toolbox) to visually explore the network.

analyzeNetwork(net)

 vggishPreprocess

2-17

Extract Audio Embeddings with VGGish

Read in an audio signal.

[audioIn,fs] = audioread('SpeechDFT-16-8-mono-5secs.wav');

Plot and listen to the audio signal.

T = 1/fs;
t = 0:T:(length(audioIn)*T) - T;
plot(t,audioIn);
grid on
xlabel('Time (t)')
ylabel('Ampltiude')

2 Functions

2-18

soundsc(audioIn,fs)

Use vggishPreprocess to extract mel spectrograms from the audio signal.

melSpectVgg = vggishPreprocess(audioIn,fs);

Create a VGGish network (This requires Deep Learning Toolbox). Call predict to use your VGGish
network for audio feature embedding extraction from the preprocessed mel spectrogram images. The
feature embeddings are returned as a numFrames-by-128 matrix, where numFrames is the number of
individual spectrograms, and 128 is the number of elements in each feature vector.

net = vggish;
embeddings = predict(net,melSpectVgg);
[numFrames,numFeatures] = size(embeddings)

numFrames = 9

numFeatures = 128

Visualize the VGGish feature embeddings.

surf(embeddings,'EdgeColor','none')
view([90,-90])
axis([1 numFeatures 1 numFrames])
xlabel('Feature')
ylabel('Frame')
title('VGGish Audio Feature Embeddings')

 vggishPreprocess

2-19

Input Arguments
audioIn — Input signal
column vector | matrix

Input signal, specified as a column vector or matrix. If you specify a matrix, vggishPreprocess
treats the columns of the matrix as individual audio channels.
Data Types: single | double

fs — Sample rate (Hz)
positive scalar

Sample rate of the input signal in Hz, specified as a positive scalar.
Data Types: single | double

OP — Overlap percentage between consecutive mel spectrograms
50 (default) | scalar in the range [0,100)

Percentage overlap between consecutive mel spectrograms, specified as a scalar in the range [0,100).
Data Types: single | double

2 Functions

2-20

Output Arguments
features — Mel spectrograms that can be fed to the VGGish pretrained network
96-by-64-by-1-by-K array

Mel spectrograms generated from audioIn, returned as a 96-by-64-by-1-by-K array, where:

• 96 –– Represents the number of 25 ms frames in each mel spectrogram.
• 64 –– Represents the number of mel bands spanning 125 Hz to 7.5 kHz.
• K –– Represents the number of mel spectrograms and depends on the length of audioIn, the

number of channels in audioIn, as well as OverlapPercentage.

Note Each 96-by-64-by-1 patch represents a single mel spectrogram image. For multichannel
inputs, mel spectrograms are stacked along the 4th dimension.

Data Types: single

Version History
Introduced in R2021a

References
[1] Gemmeke, Jort F., et al. “Audio Set: An Ontology and Human-Labeled Dataset for Audio Events.”

2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
IEEE, 2017, pp. 776–80. DOI.org (Crossref),doi:10.1109/ICASSP.2017.7952261.

[2] Hershey, Shawn, et al. “CNN Architectures for Large-Scale Audio Classification.” 2017 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2017,
pp. 131–35. DOI.org (Crossref), doi:10.1109/ICASSP.2017.7952132.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
Apps
Signal Labeler

Blocks
Sound Classifier | VGGish Embeddings | VGGish Preprocess | VGGish | YAMNet | YAMNet Preprocess

 vggishPreprocess

2-21

Functions
classifySound | vggish | vggishEmbeddings | yamnet | yamnetGraph | yamnetPreprocess

2 Functions

2-22

pitchnn
Estimate pitch with deep learning neural network

Syntax
f0 = pitchnn(audioIn,fs)
f0 = pitchnn(audioIn,fs,Name,Value)

[f0,loc] = pitchnn(___)
[f0,loc,activations] = pitchnn(___)

pitchnn(___)

Description
f0 = pitchnn(audioIn,fs) returns estimates of the fundamental frequency over time for
audioIn with sample rate fs. Columns of the input are treated as individual channels.

f0 = pitchnn(audioIn,fs,Name,Value) specifies options using one or more Name,Value
arguments. For example, f0 = pitchnn(audioIn,fs,'ConfidenceThreshold',0.5) sets the
confidence threshold for each value of f0 to 0.5.

[f0,loc] = pitchnn(___) returns the time values, loc, associated with each fundamental
frequency estimate.

[f0,loc,activations] = pitchnn(___) returns the activations of a crepe pretrained
network.

pitchnn(___) with no output arguments plots the estimated fundamental frequency over time.

Examples

Download CREPE Network

Download and unzip the Audio Toolbox™ model for CREPE.

Type crepe at the Command Window. If the Audio Toolbox model for CREPE is not installed, then the
function provides a link to the location of the network weights. To download the model, click the link
and unzip the file to a location on the MATLAB path.

Alternatively, execute these commands to download and unzip the CREPE model to your temporary
directory.

downloadFolder = fullfile(tempdir,'crepeDownload');
loc = websave(downloadFolder,'https://ssd.mathworks.com/supportfiles/audio/crepe.zip');
crepeLocation = tempdir;
unzip(loc,crepeLocation)
addpath(fullfile(crepeLocation,'crepe'))

 pitchnn

2-23

Check that the installation is successful by typing crepe at the Command Window. If the network is
installed, then the function returns a DAGNetwork (Deep Learning Toolbox) object.

crepe

ans =
 DAGNetwork with properties:

 Layers: [34×1 nnet.cnn.layer.Layer]
 Connections: [33×2 table]
 InputNames: {'input'}
 OutputNames: {'pitch'}

Pitch Estimation with pitchnn

The CREPE network requires you to preprocess your audio signals to generate buffered, overlapped,
and normalized audio frames that can be used as input to the network. This example demonstrates
the pitchnn function performing all of these steps for you.

Read in an audio signal for pitch estimation. Visualize and listen to the audio. There are nine vocal
utterances in the audio clip.

[audioIn,fs] = audioread('SingingAMajor-16-mono-18secs.ogg');
soundsc(audioIn,fs)
T = 1/fs;
t = 0:T:(length(audioIn)*T) - T;
plot(t,audioIn);
grid on
axis tight
xlabel('Time (s)')
ylabel('Ampltiude')
title('Singing in A Major')

2 Functions

2-24

Use the pitchnn function to produce the pitch estimate using a CREPE network with
ModelCapacity set to tiny and ConfidenceThreshold disabled. Calling pitchnn with no output
arguments plots the pitch estimation over time. If you call pitchnn before downloading the model,
an error is printed to the Command Window with a download link.

pitchnn(audioIn,fs,'ModelCapacity','tiny','ConfidenceThreshold',0)

 pitchnn

2-25

With confidence thresholding disabled, pitchnn provides a pitch estimate for every frame. Increase
the ConfidenceThreshold to 0.8.

pitchnn(audioIn,fs,'ModelCapacity','tiny','ConfidenceThreshold',0.8)

2 Functions

2-26

Call pitchnn with ModelCapacity set to full. There are nine primary pitch estimation groupings,
each group corresponding with one of the nine vocal utterances.

pitchnn(audioIn,fs,'ModelCapacity','full','ConfidenceThreshold',0.8)

 pitchnn

2-27

Call spectrogram and compare the frequency content of the signal with the pitch estimates from
pitchnn. Use a frame size of 250 samples and an overlap of 225 samples or 90%. Use 4096 DFT
points for the transform.

spectrogram(audioIn,250,225,4096,fs,'yaxis')

2 Functions

2-28

Input Arguments
audioIn — Input signal
column vector | matrix

Input signal, specified as a column vector or matrix. If you specify a matrix, pitchnn treats the
columns of the matrix as individual audio channels.
Data Types: single | double

fs — Sample rate (Hz)
positive scalar

Sample rate of the input signal in Hz, specified as a positive scalar.
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

 pitchnn

2-29

Example: pitchnn(audioIn,fs,'OverlapPercentage',50) sets the percent overlap between
consecutive audio frames to 50.

OverlapPercentage — Overlap percentage between consecutive audio frames
85 (default) | nonnegative scalar in the range [0,100)

Percentage overlap between consecutive audio frames, specified as a scalar in the range [0,100).
Data Types: single | double

ConfidenceThreshold — Confidence threshold
0.5 (default) | nonnegative scalar in the range [0,1)

Confidence threshold for each value of f0, specified as a scalar in the range [0,1).

To disable threshold, set this argument to 0.

Note If the maximum value of the corresponding activations vector is less than
'ConfidenceThreshold', f0 is NaN.

Data Types: single | double

ModelCapacity — Model Capacity
'full' (default) | 'tiny' | 'small' | 'medium' | 'large'

Model capacity, specified as 'tiny', 'small', 'medium', 'large', or 'full'.

Tip 'ModelCapacity' controls the complexity of the underlying deep learning neural network. The
higher the model capacity, the greater the number of nodes and layers in the model.

Data Types: string | char

Output Arguments
f0 — Estimated fundamental frequency
N-by-C array

Estimated fundamental frequency in Hertz, returned as an N-by-C array, where N is the number of
fundamental frequency estimates and C is the number of channels in audioIn.
Data Types: single

loc — Time values
1-by-N vector

Time values associated with each f0 estimate, returned as a 1-by-N vector, where N is the number of
fundamental frequency estimates. The time values correspond to the most recent samples used to
compute the estimates.
Data Types: single | double

activations — CREPE network activations
N-by-360-by-C matrix

2 Functions

2-30

Activations from the CREPE network, returned as an N-by-360-by-C matrix, where N is the number of
generated frames from the network and C is the number of channels in audioIn.
Data Types: single | double

Version History
Introduced in R2021a

References
[1] Kim, Jong Wook, Justin Salamon, Peter Li, and Juan Pablo Bello. “Crepe: A Convolutional

Representation for Pitch Estimation.” In 2018 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 161–65. Calgary, AB: IEEE, 2018. https://doi.org/
10.1109/ICASSP.2018.8461329.

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
crepe | crepePostprocess | crepePreprocess

 pitchnn

2-31

crepePostprocess
Postprocess output of CREPE deep learning network

Syntax
f0 = crepePostprocess(activations)
f0 = crepePostprocess(activations,'ConfidenceThreshold',TH)

Description
f0 = crepePostprocess(activations) converts the output of a crepe pretrained network to
pitch estimates in Hz.

f0 = crepePostprocess(activations,'ConfidenceThreshold',TH) specifies the confidence
threshold as a nonnegative scalar value less than 1.

For example, f0 = crepePostprocess(actiations,'ConfidenceThreshold',0.75) specifies
a confidence threshold of 0.75.

Examples

Download CREPE Network

Download and unzip the Audio Toolbox™ model for CREPE.

Type crepe at the Command Window. If the Audio Toolbox model for CREPE is not installed, then the
function provides a link to the location of the network weights. To download the model, click the link
and unzip the file to a location on the MATLAB path.

Alternatively, execute these commands to download and unzip the CREPE model to your temporary
directory.

downloadFolder = fullfile(tempdir,'crepeDownload');
loc = websave(downloadFolder,'https://ssd.mathworks.com/supportfiles/audio/crepe.zip');
crepeLocation = tempdir;
unzip(loc,crepeLocation)
addpath(fullfile(crepeLocation,'crepe'))

Check that the installation is successful by typing crepe at the Command Window. If the network is
installed, then the function returns a DAGNetwork (Deep Learning Toolbox) object.

crepe

ans =
 DAGNetwork with properties:

 Layers: [34×1 nnet.cnn.layer.Layer]
 Connections: [33×2 table]
 InputNames: {'input'}
 OutputNames: {'pitch'}

2 Functions

2-32

Load Pretrained CREPE Network

Load a pretrained CREPE convolutional neural network and examine the layers and classes.

Use crepe to load the pretrained CREPE network. The output net is a DAGNetwork (Deep Learning
Toolbox) object.

net = crepe

net =
 DAGNetwork with properties:

 Layers: [34×1 nnet.cnn.layer.Layer]
 Connections: [33×2 table]
 InputNames: {'input'}
 OutputNames: {'pitch'}

View the network architecture using the Layers property. The network has 34 layers. There are 13
layers with learnable weights, of which six are convolutional layers, six are batch normalization
layers, and one is a fully connected layer.

net.Layers

ans =
 34×1 Layer array with layers:

 1 'input' Image Input 1024×1×1 images
 2 'conv1' Convolution 1024 512×1×1 convolutions with stride [4 1] and padding 'same'
 3 'conv1_relu' ReLU ReLU
 4 'conv1-BN' Batch Normalization Batch normalization with 1024 channels
 5 'conv1-maxpool' Max Pooling 2×1 max pooling with stride [2 1] and padding [0 0 0 0]
 6 'conv1-dropout' Dropout 25% dropout
 7 'conv2' Convolution 128 64×1×1024 convolutions with stride [1 1] and padding 'same'
 8 'conv2_relu' ReLU ReLU
 9 'conv2-BN' Batch Normalization Batch normalization with 128 channels
 10 'conv2-maxpool' Max Pooling 2×1 max pooling with stride [2 1] and padding [0 0 0 0]
 11 'conv2-dropout' Dropout 25% dropout
 12 'conv3' Convolution 128 64×1×128 convolutions with stride [1 1] and padding 'same'
 13 'conv3_relu' ReLU ReLU
 14 'conv3-BN' Batch Normalization Batch normalization with 128 channels
 15 'conv3-maxpool' Max Pooling 2×1 max pooling with stride [2 1] and padding [0 0 0 0]
 16 'conv3-dropout' Dropout 25% dropout
 17 'conv4' Convolution 128 64×1×128 convolutions with stride [1 1] and padding 'same'
 18 'conv4_relu' ReLU ReLU
 19 'conv4-BN' Batch Normalization Batch normalization with 128 channels
 20 'conv4-maxpool' Max Pooling 2×1 max pooling with stride [2 1] and padding [0 0 0 0]
 21 'conv4-dropout' Dropout 25% dropout
 22 'conv5' Convolution 256 64×1×128 convolutions with stride [1 1] and padding 'same'
 23 'conv5_relu' ReLU ReLU
 24 'conv5-BN' Batch Normalization Batch normalization with 256 channels
 25 'conv5-maxpool' Max Pooling 2×1 max pooling with stride [2 1] and padding [0 0 0 0]
 26 'conv5-dropout' Dropout 25% dropout
 27 'conv6' Convolution 512 64×1×256 convolutions with stride [1 1] and padding 'same'
 28 'conv6_relu' ReLU ReLU

 crepePostprocess

2-33

 29 'conv6-BN' Batch Normalization Batch normalization with 512 channels
 30 'conv6-maxpool' Max Pooling 2×1 max pooling with stride [2 1] and padding [0 0 0 0]
 31 'conv6-dropout' Dropout 25% dropout
 32 'classifier' Fully Connected 360 fully connected layer
 33 'classifier_sigmoid' Sigmoid sigmoid
 34 'pitch' Regression Output mean-squared-error

Use analyzeNetwork (Deep Learning Toolbox) to visually explore the network.

analyzeNetwork(net)

Estimate Pitch Using CREPE Network

The CREPE network requires you to preprocess your audio signals to generate buffered, overlapped,
and normalized audio frames that can be used as input to the network. This example walks through
audio preprocessing using crepePreprocess and audio postprocessing with pitch estimation using
crepePostprocess. The pitchnn function performs these steps for you.

Read in an audio signal for pitch estimation. Visualize and listen to the audio. There are nine vocal
utterances in the audio clip.

[audioIn,fs] = audioread('SingingAMajor-16-mono-18secs.ogg');
soundsc(audioIn,fs)

2 Functions

2-34

T = 1/fs;
t = 0:T:(length(audioIn)*T) - T;
plot(t,audioIn);
grid on
axis tight
xlabel('Time (s)')
ylabel('Ampltiude')
title('Singing in A Major')

Use crepePreprocess to partition the audio into frames of 1024 samples with an 85% overlap
between consecutive mel spectrograms. Place the frames along the fourth dimension.

[frames,loc] = crepePreprocess(audioIn,fs);

Create a CREPE network with ModelCapacity set to tiny. If you call crepe before downloading
the model, an error is printed to the Command Window with a download link.

netTiny = crepe('ModelCapacity','tiny');

Predict the network activations.

activationsTiny = predict(netTiny,frames);

Use crepePostprocess to produce the fundamental frequency pitch estimation in Hz. Disable
confidence thresholding by setting ConfidenceThreshold to 0.

f0Tiny = crepePostprocess(activationsTiny,'ConfidenceThreshold',0);

 crepePostprocess

2-35

Visualize the pitch estimation over time.

plot(loc,f0Tiny)
grid on
axis tight
xlabel('Time (s)')
ylabel('Pitch Estimation (Hz)')
title('CREPE Network Frequency Estimate - Thresholding Disabled')

With confidence thresholding disabled, crepePostprocess provides a pitch estimate for every
frame. Increase the ConfidenceThreshold to 0.8.

f0Tiny = crepePostprocess(activationsTiny,'ConfidenceThreshold',0.8);

Visualize the pitch estimation over time.

plot(loc,f0Tiny,'LineWidth',3)
grid on
axis tight
xlabel('Time (s)')
ylabel('Pitch Estimation (Hz)')
title('CREPE Network Frequency Estimate - Thresholding Enabled')

2 Functions

2-36

Create a new CREPE network with ModelCapacity set to full.

netFull = crepe('ModelCapacity','full');

Predict the network activations.

activationsFull = predict(netFull,frames);
f0Full = crepePostprocess(activationsFull,'ConfidenceThreshold',0.8);

Visualize the pitch estimation. There are nine primary pitch estimation groupings, each group
corresponding with one of the nine vocal utterances.

plot(loc,f0Full,'LineWidth',3)
grid on
xlabel('Time (s)')
ylabel('Pitch Estimation (Hz)')
title('CREPE Network Frequency Estimate - Full')

 crepePostprocess

2-37

Find the time elements corresponding to the last vocal utterance.

roundedLocVec = round(loc,2);
lastUtteranceBegin = find(roundedLocVec == 16);
lastUtteranceEnd = find(roundedLocVec == 18);

For simplicity, take the most frequently occurring pitch estimate within the utterance group as the
fundamental frequency estimate for that timespan. Generate a pure tone with a frequency matching
the pitch estimate for the last vocal utterance.

lastUtteranceEstimation = mode(f0Full(lastUtteranceBegin:lastUtteranceEnd))

lastUtteranceEstimation = single
 217.2709

The value for lastUtteranceEstimate of 217.3 Hz. corresponds to the note A3. Overlay the
synthesized tone on the last vocal utterance to audibly compare the two.

lastVocalUtterance = audioIn(fs*16:fs*18);
newTime = 0:T:2;
compareTone = cos(2*pi*lastUtteranceEstimation*newTime).';

soundsc(lastVocalUtterance + compareTone,fs);

Call spectrogram to more closely inspect the frequency content of the singing. Use a frame size of
250 samples and an overlap of 225 samples or 90%. Use 4096 DFT points for the transform. The
spectrogram reveals that the vocal recording is actually a set of complex harmonic tones composed
of multiple frequencies.

2 Functions

2-38

spectrogram(audioIn,250,225,4096,fs,'yaxis')

Input Arguments
activations — CREPE network output
N-by-360 matrix

Audio frames generated from a crepe pretrained network, specified as an N-by-360 matrix, where N
is the number of generated frames.
Data Types: single | double

TH — Confidence threshold
0.5 (default) | nonnegative scalar in the range [0,1)

Confidence threshold for each value of f0, specified as the comma-separated pair consisting of
'ConfidenceThreshold' and a scalar in the range [0,1).

To disable thresholding, set TH to 0.

Note If the maximum value of the corresponding activations vector is less than TH, f0 is NaN.

Data Types: single | double

 crepePostprocess

2-39

Output Arguments
f0 — Estimated fundamental frequency
N-by-1 vector

Estimated fundamental frequency in Hertz, returned as an N-by-1 vector, where N is the number of
generated frames.
Data Types: single

Version History
Introduced in R2021a

References
[1] Kim, Jong Wook, Justin Salamon, Peter Li, and Juan Pablo Bello. “Crepe: A Convolutional

Representation for Pitch Estimation.” In 2018 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 161–65. Calgary, AB: IEEE, 2018. https://doi.org/
10.1109/ICASSP.2018.8461329.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
crepe | pitchnn | crepePreprocess

2 Functions

2-40

crepePreprocess
Preprocess audio for CREPE deep learning network

Syntax
frames = crepePreprocess(audioIn,fs)
frames = crepePreprocess(audioIn,fs,'OverlapPercentage',OP)

[frames,loc] = crepePreprocess(___)

Description
frames = crepePreprocess(audioIn,fs) generates frames from audioIn that can be fed to
the CREPE pretrained deep learning network.

frames = crepePreprocess(audioIn,fs,'OverlapPercentage',OP) specifies the overlap
percentage between consecutive audio frames.

For example, frames = crepePreprocess(audioIn,fs,'OverlapPercentage',75) applies a
75% overlap between consecutive frames used to generate the processed frames.

[frames,loc] = crepePreprocess(___) returns the time values, loc, associated with each
frame.

Examples

Download CREPE Network

Download and unzip the Audio Toolbox™ model for CREPE.

Type crepe at the Command Window. If the Audio Toolbox model for CREPE is not installed, then the
function provides a link to the location of the network weights. To download the model, click the link
and unzip the file to a location on the MATLAB path.

Alternatively, execute these commands to download and unzip the CREPE model to your temporary
directory.

downloadFolder = fullfile(tempdir,'crepeDownload');
loc = websave(downloadFolder,'https://ssd.mathworks.com/supportfiles/audio/crepe.zip');
crepeLocation = tempdir;
unzip(loc,crepeLocation)
addpath(fullfile(crepeLocation,'crepe'))

Check that the installation is successful by typing crepe at the Command Window. If the network is
installed, then the function returns a DAGNetwork (Deep Learning Toolbox) object.

crepe

ans =
 DAGNetwork with properties:

 crepePreprocess

2-41

 Layers: [34×1 nnet.cnn.layer.Layer]
 Connections: [33×2 table]
 InputNames: {'input'}
 OutputNames: {'pitch'}

Load Pretrained CREPE Network

Load a pretrained CREPE convolutional neural network and examine the layers and classes.

Use crepe to load the pretrained CREPE network. The output net is a DAGNetwork (Deep Learning
Toolbox) object.

net = crepe

net =
 DAGNetwork with properties:

 Layers: [34×1 nnet.cnn.layer.Layer]
 Connections: [33×2 table]
 InputNames: {'input'}
 OutputNames: {'pitch'}

View the network architecture using the Layers property. The network has 34 layers. There are 13
layers with learnable weights, of which six are convolutional layers, six are batch normalization
layers, and one is a fully connected layer.

net.Layers

ans =
 34×1 Layer array with layers:

 1 'input' Image Input 1024×1×1 images
 2 'conv1' Convolution 1024 512×1×1 convolutions with stride [4 1] and padding 'same'
 3 'conv1_relu' ReLU ReLU
 4 'conv1-BN' Batch Normalization Batch normalization with 1024 channels
 5 'conv1-maxpool' Max Pooling 2×1 max pooling with stride [2 1] and padding [0 0 0 0]
 6 'conv1-dropout' Dropout 25% dropout
 7 'conv2' Convolution 128 64×1×1024 convolutions with stride [1 1] and padding 'same'
 8 'conv2_relu' ReLU ReLU
 9 'conv2-BN' Batch Normalization Batch normalization with 128 channels
 10 'conv2-maxpool' Max Pooling 2×1 max pooling with stride [2 1] and padding [0 0 0 0]
 11 'conv2-dropout' Dropout 25% dropout
 12 'conv3' Convolution 128 64×1×128 convolutions with stride [1 1] and padding 'same'
 13 'conv3_relu' ReLU ReLU
 14 'conv3-BN' Batch Normalization Batch normalization with 128 channels
 15 'conv3-maxpool' Max Pooling 2×1 max pooling with stride [2 1] and padding [0 0 0 0]
 16 'conv3-dropout' Dropout 25% dropout
 17 'conv4' Convolution 128 64×1×128 convolutions with stride [1 1] and padding 'same'
 18 'conv4_relu' ReLU ReLU
 19 'conv4-BN' Batch Normalization Batch normalization with 128 channels
 20 'conv4-maxpool' Max Pooling 2×1 max pooling with stride [2 1] and padding [0 0 0 0]
 21 'conv4-dropout' Dropout 25% dropout

2 Functions

2-42

 22 'conv5' Convolution 256 64×1×128 convolutions with stride [1 1] and padding 'same'
 23 'conv5_relu' ReLU ReLU
 24 'conv5-BN' Batch Normalization Batch normalization with 256 channels
 25 'conv5-maxpool' Max Pooling 2×1 max pooling with stride [2 1] and padding [0 0 0 0]
 26 'conv5-dropout' Dropout 25% dropout
 27 'conv6' Convolution 512 64×1×256 convolutions with stride [1 1] and padding 'same'
 28 'conv6_relu' ReLU ReLU
 29 'conv6-BN' Batch Normalization Batch normalization with 512 channels
 30 'conv6-maxpool' Max Pooling 2×1 max pooling with stride [2 1] and padding [0 0 0 0]
 31 'conv6-dropout' Dropout 25% dropout
 32 'classifier' Fully Connected 360 fully connected layer
 33 'classifier_sigmoid' Sigmoid sigmoid
 34 'pitch' Regression Output mean-squared-error

Use analyzeNetwork (Deep Learning Toolbox) to visually explore the network.

analyzeNetwork(net)

Estimate Pitch Using CREPE Network

The CREPE network requires you to preprocess your audio signals to generate buffered, overlapped,
and normalized audio frames that can be used as input to the network. This example walks through

 crepePreprocess

2-43

audio preprocessing using crepePreprocess and audio postprocessing with pitch estimation using
crepePostprocess. The pitchnn function performs these steps for you.

Read in an audio signal for pitch estimation. Visualize and listen to the audio. There are nine vocal
utterances in the audio clip.

[audioIn,fs] = audioread('SingingAMajor-16-mono-18secs.ogg');
soundsc(audioIn,fs)
T = 1/fs;
t = 0:T:(length(audioIn)*T) - T;
plot(t,audioIn);
grid on
axis tight
xlabel('Time (s)')
ylabel('Ampltiude')
title('Singing in A Major')

Use crepePreprocess to partition the audio into frames of 1024 samples with an 85% overlap
between consecutive mel spectrograms. Place the frames along the fourth dimension.

[frames,loc] = crepePreprocess(audioIn,fs);

Create a CREPE network with ModelCapacity set to tiny. If you call crepe before downloading
the model, an error is printed to the Command Window with a download link.

netTiny = crepe('ModelCapacity','tiny');

Predict the network activations.

2 Functions

2-44

activationsTiny = predict(netTiny,frames);

Use crepePostprocess to produce the fundamental frequency pitch estimation in Hz. Disable
confidence thresholding by setting ConfidenceThreshold to 0.

f0Tiny = crepePostprocess(activationsTiny,'ConfidenceThreshold',0);

Visualize the pitch estimation over time.

plot(loc,f0Tiny)
grid on
axis tight
xlabel('Time (s)')
ylabel('Pitch Estimation (Hz)')
title('CREPE Network Frequency Estimate - Thresholding Disabled')

With confidence thresholding disabled, crepePostprocess provides a pitch estimate for every
frame. Increase the ConfidenceThreshold to 0.8.

f0Tiny = crepePostprocess(activationsTiny,'ConfidenceThreshold',0.8);

Visualize the pitch estimation over time.

plot(loc,f0Tiny,'LineWidth',3)
grid on
axis tight
xlabel('Time (s)')

 crepePreprocess

2-45

ylabel('Pitch Estimation (Hz)')
title('CREPE Network Frequency Estimate - Thresholding Enabled')

Create a new CREPE network with ModelCapacity set to full.

netFull = crepe('ModelCapacity','full');

Predict the network activations.

activationsFull = predict(netFull,frames);
f0Full = crepePostprocess(activationsFull,'ConfidenceThreshold',0.8);

Visualize the pitch estimation. There are nine primary pitch estimation groupings, each group
corresponding with one of the nine vocal utterances.

plot(loc,f0Full,'LineWidth',3)
grid on
xlabel('Time (s)')
ylabel('Pitch Estimation (Hz)')
title('CREPE Network Frequency Estimate - Full')

2 Functions

2-46

Find the time elements corresponding to the last vocal utterance.

roundedLocVec = round(loc,2);
lastUtteranceBegin = find(roundedLocVec == 16);
lastUtteranceEnd = find(roundedLocVec == 18);

For simplicity, take the most frequently occurring pitch estimate within the utterance group as the
fundamental frequency estimate for that timespan. Generate a pure tone with a frequency matching
the pitch estimate for the last vocal utterance.

lastUtteranceEstimation = mode(f0Full(lastUtteranceBegin:lastUtteranceEnd))

lastUtteranceEstimation = single
 217.2709

The value for lastUtteranceEstimate of 217.3 Hz. corresponds to the note A3. Overlay the
synthesized tone on the last vocal utterance to audibly compare the two.

lastVocalUtterance = audioIn(fs*16:fs*18);
newTime = 0:T:2;
compareTone = cos(2*pi*lastUtteranceEstimation*newTime).';

soundsc(lastVocalUtterance + compareTone,fs);

Call spectrogram to more closely inspect the frequency content of the singing. Use a frame size of
250 samples and an overlap of 225 samples or 90%. Use 4096 DFT points for the transform. The
spectrogram reveals that the vocal recording is actually a set of complex harmonic tones composed
of multiple frequencies.

 crepePreprocess

2-47

spectrogram(audioIn,250,225,4096,fs,'yaxis')

Input Arguments
audioIn — Input signal
column vector | matrix

Input signal, specified as a column vector or matrix. If you specify a matrix, crepePreprocess
treats the columns of the matrix as individual audio channels.
Data Types: single | double

fs — Sample rate (Hz)
positive scalar

Sample rate of the input signal in Hz, specified as a positive scalar.
Data Types: single | double

OP — Overlap percentage between consecutive audio frames
85 (default) | nonnegative scalar in the range [0,100)

Percentage overlap between consecutive audio frames, specified as the comma-separated pair
consisting of 'OverlapPercentage' and a scalar in the range [0,100).
Data Types: single | double

2 Functions

2-48

Output Arguments
frames — Audio frames that can be fed to CREPE pretrained network
1024-by-1-by-1-by-N array

Processed audio frames, returned as a 1024-by-1-by-1-by-N array, where N is the number of
generated frames.

Note For multichannel inputs, generated frames are stacked along the 4th dimension according to
channel. For example, if audioIn is a stereo signal, the number of generated frames for each
channel is actually N/2. The first N/2 frames correspond to channel 1 and the subsequent N/2
frames correspond to channel 2.

Data Types: single | double

loc — Time values
1-by-N vector

Time values associated with each frame, returned as a 1-by-N vector, where N is the number of
generated frames. The time values correspond to the most recent samples used to compute the
frames.
Data Types: single | double

Version History
Introduced in R2021a

References
[1] Kim, Jong Wook, Justin Salamon, Peter Li, and Juan Pablo Bello. “Crepe: A Convolutional

Representation for Pitch Estimation.” In 2018 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 161–65. Calgary, AB: IEEE, 2018. https://doi.org/
10.1109/ICASSP.2018.8461329.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
crepe | pitchnn | crepePostprocess

 crepePreprocess

2-49

crepe
CREPE neural network

Syntax
net = crepe
net = crepe('ModelCapacity',CAP)

Description
net = crepe returns a pretrained CREPE model.

This function requires both Audio Toolbox and Deep Learning Toolbox.

net = crepe('ModelCapacity',CAP) specifies the model capacity.

For example, net = crepe('ModelCapacity','small') specifies the model capacity as small.

Examples

Download CREPE Network

Download and unzip the Audio Toolbox™ model for CREPE.

Type crepe at the Command Window. If the Audio Toolbox model for CREPE is not installed, then the
function provides a link to the location of the network weights. To download the model, click the link
and unzip the file to a location on the MATLAB path.

Alternatively, execute these commands to download and unzip the CREPE model to your temporary
directory.

downloadFolder = fullfile(tempdir,'crepeDownload');
loc = websave(downloadFolder,'https://ssd.mathworks.com/supportfiles/audio/crepe.zip');
crepeLocation = tempdir;
unzip(loc,crepeLocation)
addpath(fullfile(crepeLocation,'crepe'))

Check that the installation is successful by typing crepe at the Command Window. If the network is
installed, then the function returns a DAGNetwork (Deep Learning Toolbox) object.

crepe

ans =
 DAGNetwork with properties:

 Layers: [34×1 nnet.cnn.layer.Layer]
 Connections: [33×2 table]
 InputNames: {'input'}
 OutputNames: {'pitch'}

2 Functions

2-50

Load Pretrained CREPE Network

Load a pretrained CREPE convolutional neural network and examine the layers and classes.

Use crepe to load the pretrained CREPE network. The output net is a DAGNetwork (Deep Learning
Toolbox) object.

net = crepe

net =
 DAGNetwork with properties:

 Layers: [34×1 nnet.cnn.layer.Layer]
 Connections: [33×2 table]
 InputNames: {'input'}
 OutputNames: {'pitch'}

View the network architecture using the Layers property. The network has 34 layers. There are 13
layers with learnable weights, of which six are convolutional layers, six are batch normalization
layers, and one is a fully connected layer.

net.Layers

ans =
 34×1 Layer array with layers:

 1 'input' Image Input 1024×1×1 images
 2 'conv1' Convolution 1024 512×1×1 convolutions with stride [4 1] and padding 'same'
 3 'conv1_relu' ReLU ReLU
 4 'conv1-BN' Batch Normalization Batch normalization with 1024 channels
 5 'conv1-maxpool' Max Pooling 2×1 max pooling with stride [2 1] and padding [0 0 0 0]
 6 'conv1-dropout' Dropout 25% dropout
 7 'conv2' Convolution 128 64×1×1024 convolutions with stride [1 1] and padding 'same'
 8 'conv2_relu' ReLU ReLU
 9 'conv2-BN' Batch Normalization Batch normalization with 128 channels
 10 'conv2-maxpool' Max Pooling 2×1 max pooling with stride [2 1] and padding [0 0 0 0]
 11 'conv2-dropout' Dropout 25% dropout
 12 'conv3' Convolution 128 64×1×128 convolutions with stride [1 1] and padding 'same'
 13 'conv3_relu' ReLU ReLU
 14 'conv3-BN' Batch Normalization Batch normalization with 128 channels
 15 'conv3-maxpool' Max Pooling 2×1 max pooling with stride [2 1] and padding [0 0 0 0]
 16 'conv3-dropout' Dropout 25% dropout
 17 'conv4' Convolution 128 64×1×128 convolutions with stride [1 1] and padding 'same'
 18 'conv4_relu' ReLU ReLU
 19 'conv4-BN' Batch Normalization Batch normalization with 128 channels
 20 'conv4-maxpool' Max Pooling 2×1 max pooling with stride [2 1] and padding [0 0 0 0]
 21 'conv4-dropout' Dropout 25% dropout
 22 'conv5' Convolution 256 64×1×128 convolutions with stride [1 1] and padding 'same'
 23 'conv5_relu' ReLU ReLU
 24 'conv5-BN' Batch Normalization Batch normalization with 256 channels
 25 'conv5-maxpool' Max Pooling 2×1 max pooling with stride [2 1] and padding [0 0 0 0]
 26 'conv5-dropout' Dropout 25% dropout
 27 'conv6' Convolution 512 64×1×256 convolutions with stride [1 1] and padding 'same'
 28 'conv6_relu' ReLU ReLU
 29 'conv6-BN' Batch Normalization Batch normalization with 512 channels

 crepe

2-51

 30 'conv6-maxpool' Max Pooling 2×1 max pooling with stride [2 1] and padding [0 0 0 0]
 31 'conv6-dropout' Dropout 25% dropout
 32 'classifier' Fully Connected 360 fully connected layer
 33 'classifier_sigmoid' Sigmoid sigmoid
 34 'pitch' Regression Output mean-squared-error

Use analyzeNetwork (Deep Learning Toolbox) to visually explore the network.

analyzeNetwork(net)

Estimate Pitch Using CREPE Network

The CREPE network requires you to preprocess your audio signals to generate buffered, overlapped,
and normalized audio frames that can be used as input to the network. This example walks through
audio preprocessing using crepePreprocess and audio postprocessing with pitch estimation using
crepePostprocess. The pitchnn function performs these steps for you.

Read in an audio signal for pitch estimation. Visualize and listen to the audio. There are nine vocal
utterances in the audio clip.

[audioIn,fs] = audioread('SingingAMajor-16-mono-18secs.ogg');
soundsc(audioIn,fs)

2 Functions

2-52

T = 1/fs;
t = 0:T:(length(audioIn)*T) - T;
plot(t,audioIn);
grid on
axis tight
xlabel('Time (s)')
ylabel('Ampltiude')
title('Singing in A Major')

Use crepePreprocess to partition the audio into frames of 1024 samples with an 85% overlap
between consecutive mel spectrograms. Place the frames along the fourth dimension.

[frames,loc] = crepePreprocess(audioIn,fs);

Create a CREPE network with ModelCapacity set to tiny. If you call crepe before downloading
the model, an error is printed to the Command Window with a download link.

netTiny = crepe('ModelCapacity','tiny');

Predict the network activations.

activationsTiny = predict(netTiny,frames);

Use crepePostprocess to produce the fundamental frequency pitch estimation in Hz. Disable
confidence thresholding by setting ConfidenceThreshold to 0.

f0Tiny = crepePostprocess(activationsTiny,'ConfidenceThreshold',0);

 crepe

2-53

Visualize the pitch estimation over time.

plot(loc,f0Tiny)
grid on
axis tight
xlabel('Time (s)')
ylabel('Pitch Estimation (Hz)')
title('CREPE Network Frequency Estimate - Thresholding Disabled')

With confidence thresholding disabled, crepePostprocess provides a pitch estimate for every
frame. Increase the ConfidenceThreshold to 0.8.

f0Tiny = crepePostprocess(activationsTiny,'ConfidenceThreshold',0.8);

Visualize the pitch estimation over time.

plot(loc,f0Tiny,'LineWidth',3)
grid on
axis tight
xlabel('Time (s)')
ylabel('Pitch Estimation (Hz)')
title('CREPE Network Frequency Estimate - Thresholding Enabled')

2 Functions

2-54

Create a new CREPE network with ModelCapacity set to full.

netFull = crepe('ModelCapacity','full');

Predict the network activations.

activationsFull = predict(netFull,frames);
f0Full = crepePostprocess(activationsFull,'ConfidenceThreshold',0.8);

Visualize the pitch estimation. There are nine primary pitch estimation groupings, each group
corresponding with one of the nine vocal utterances.

plot(loc,f0Full,'LineWidth',3)
grid on
xlabel('Time (s)')
ylabel('Pitch Estimation (Hz)')
title('CREPE Network Frequency Estimate - Full')

 crepe

2-55

Find the time elements corresponding to the last vocal utterance.

roundedLocVec = round(loc,2);
lastUtteranceBegin = find(roundedLocVec == 16);
lastUtteranceEnd = find(roundedLocVec == 18);

For simplicity, take the most frequently occurring pitch estimate within the utterance group as the
fundamental frequency estimate for that timespan. Generate a pure tone with a frequency matching
the pitch estimate for the last vocal utterance.

lastUtteranceEstimation = mode(f0Full(lastUtteranceBegin:lastUtteranceEnd))

lastUtteranceEstimation = single
 217.2709

The value for lastUtteranceEstimate of 217.3 Hz. corresponds to the note A3. Overlay the
synthesized tone on the last vocal utterance to audibly compare the two.

lastVocalUtterance = audioIn(fs*16:fs*18);
newTime = 0:T:2;
compareTone = cos(2*pi*lastUtteranceEstimation*newTime).';

soundsc(lastVocalUtterance + compareTone,fs);

Call spectrogram to more closely inspect the frequency content of the singing. Use a frame size of
250 samples and an overlap of 225 samples or 90%. Use 4096 DFT points for the transform. The
spectrogram reveals that the vocal recording is actually a set of complex harmonic tones composed
of multiple frequencies.

2 Functions

2-56

spectrogram(audioIn,250,225,4096,fs,'yaxis')

Input Arguments
CAP — Model Capacity
'full' (default) | 'tiny' | 'small' | 'medium' | 'large'

Model capacity, specified as the comma-separated pair consisting of 'ModelCapacity' and 'tiny',
'small', 'medium', 'large', or 'full'.

Tip 'ModelCapacity' controls the complexity of the underlying deep learning neural network. The
higher the model capacity, the greater the number of nodes and layers in the model. Selecting the
right model capacity for your data will help prevent under or overfitting.

Data Types: string | char

Output Arguments
net — Pretrained CREPE neural network
DAGNetwork object

Pretrained CREPE neural network, returned as a DAGNetwork object.

 crepe

2-57

Version History
Introduced in R2021a

References
[1] Kim, Jong Wook, Justin Salamon, Peter Li, and Juan Pablo Bello. “Crepe: A Convolutional

Representation for Pitch Estimation.” In 2018 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 161–65. Calgary, AB: IEEE, 2018. https://doi.org/
10.1109/ICASSP.2018.8461329.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Only the activations and predict object functions are supported.
• To create a SeriesNetwork object for code generation, see “Load Pretrained Networks for Code

Generation” (MATLAB Coder).

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• Only the activations, classify, predict, predictAndUpdateState, and resetState
object functions are supported.

• To create a SeriesNetwork object for code generation, see “Load Pretrained Networks for Code
Generation” (GPU Coder).

See Also
vggish | crepePreprocess | pitchnn | crepePostprocess

2 Functions

2-58

openl3Embeddings
Extract OpenL3 feature embeddings

Syntax
embeddings = openl3Embeddings(audioIn,fs)

embeddings = openl3Embeddings(audioIn,fs,Name=Value)

Description
embeddings = openl3Embeddings(audioIn,fs) returns OpenL3 feature embeddings over time
for audio input audioIn with sample rate fs. Columns of the input are treated as individual
channels.

embeddings = openl3Embeddings(audioIn,fs,Name=Value) specifies options using one or
more name-value arguments. For example, embeddings =
openl3Embeddings(audioIn,fs,OverlapPercentage=75) applies a 75% overlap between
consecutive frames used to create the audio embeddings.

This function requires both Audio Toolbox and Deep Learning Toolbox.

Examples

Download openl3Embeddings Functionality

Download and unzip the Audio Toolbox™ model for OpenL3.

Type openl3Embeddings at the command line. If the Audio Toolbox model for OpenL3 is not
installed, the function provides a link to the location of the network weights. To download the model,
click the link. Unzip the file to a location on the MATLAB path.

Alternatively, execute the following commands to download and unzip the OpenL3 model to your
temporary directory.

downloadFolder = fullfile(tempdir,"OpenL3Download");
loc = websave(downloadFolder,"https://ssd.mathworks.com/supportfiles/audio/openl3.zip");
OpenL3Location = tempdir;
unzip(loc,OpenL3Location)
addpath(fullfile(OpenL3Location,"openl3"))

Extract OpenL3 Embeddings

Read in an audio file.

[audioIn,fs] = audioread('MainStreetOne-16-16-mono-12secs.wav');

 openl3Embeddings

2-59

Call the openl3Embeddings function with the audio and sample rate to extract OpenL3 feature
embeddings from the audio. Using the openl3Embeddings function requires installing the pretrained
OpenL3 network. If the network is not installed, the function provides a link to download the
pretrained model.

embeddings = openl3Embeddings(audioIn,fs);

The openl3Embeddings function returns a matrix of 512-element feature vectors over time.

[numHops,numElementsPerHop,numChannels] = size(embeddings)

numHops = 111

numElementsPerHop = 512

numChannels = 1

Decrease Time Resolution of OpenL3 Embeddings

Create a 10-second pink noise signal and then extract OpenL3 embeddings. The openl3Embeddings
function extracts feature embeddings from mel spectrograms with 90% overlap. Using the
openl3Embeddings function requires installing the pretrained OpenL3 network. If the network is
not installed, the function provides a link to download the pretrained model.

fs = 16e3;
dur = 10;
audioIn = pinknoise(dur*fs,1,"single");
embeddings = openl3Embeddings(audioIn,fs);

Plot the OpenL3 feature embeddings over time.

surf(embeddings,EdgeColor="none")
view([30 65])
axis tight
xlabel("Feature Index")
ylabel("Frame")
xlabel("Feature Value")
title("OpenL3 Feature Embeddings")

2 Functions

2-60

To decrease the resolution of OpenL3 feature embeddings over time, specify the percent overlap
between mel spectrograms. Plot the results.

overlapPercentage = ;
embeddings = openl3Embeddings(audioIn,fs,OverlapPercentage=overlapPercentage);
surf(embeddings,EdgeColor="none")
view([30 65])
axis tight
xlabel("Feature Index")
ylabel("Frame")
zlabel("Feature Value")
title("OpenL3 Feature Embeddings")

 openl3Embeddings

2-61

Input Arguments
audioIn — Input signal
column vector | matrix

Input signal, specified as a column vector or matrix. If you specify a matrix, openl3Embeddings
treats the columns of the matrix as individual audio channels.
Data Types: single | double

fs — Sample rate (Hz)
positive scalar

Sample rate of the input signal in Hz, specified as a positive scalar.
Data Types: single | double

2 Functions

2-62

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: openl3Embeddings(audioIn,fs,SpectrumType="mel256")

OverlapPercentage — Percentage overlap between consecutive spectrograms
90 (default) | scalar in the range [0,100)

Percentage overlap between consecutive spectrograms, specified as a scalar in the range [0,100).
Data Types: single | double

SpectrumType — Spectrum type
"mel128" (default) | "mel256" | "linear"

Spectrum type generated from audio and used as input to the neural network, specified as
"mel128", "mel256", or "linear".

Note The SpectrumType that you select controls the spectrogram used in the network. See openl3
or openl3Preprocess for more details.

Data Types: char | string

EmbeddingLength — Embedding length
512 (default) | 6144

Length of the output audio embedding, specified as 512 or 6144.
Data Types: single | double

ContentType — Audio content type
"env" (default) | "music"

Audio content type the neural network is trained on, specified as "env" or "music".

Set ContentType to:

• "env" when you want to use a model trained on environmental data.
• "music" when you want to use a model trained on musical data.

Data Types: char | string

Output Arguments
embeddings — Compact representation of audio data
N-by-L-by-C array

Compact representation of audio data, returned as an N-by-L-by-C array, where:

 openl3Embeddings

2-63

• N –– Represents the number of buffered frames the audio signal is partitioned into and depends on
the length of audioIn and the OverlapPercentage.

• L –– Represents the audio embedding length.
• C –– Represents the number of input channels.

Data Types: single

Version History
Introduced in R2022a

References
[1] Cramer, Jason, et al. "Look, Listen, and Learn More: Design Choices for Deep Audio Embeddings."

In ICASSP 2019 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), IEEE, 2019, pp. 3852-56. DOI.org (Crossref), doi:/10.1109/ICASSP.2019.8682475.

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
openl3Preprocess | openl3 | vggish | classifySound | vggishEmbeddings |
audioFeatureExtractor

2 Functions

2-64

openl3Features
(To be removed) Extract OpenL3 features

Note The openl3Features function will be removed in a future release. Use openl3Embeddings
instead. For more information, see “Compatibility Considerations”.

Syntax
embeddings = openl3Features(audioIn,fs)

embeddings = openl3Features(audioIn,fs,Name,Value)

Description
embeddings = openl3Features(audioIn,fs) returns OpenL3 feature embeddings over time for
audio input audioIn with sample rate fs. Columns of the input are treated as individual channels.

embeddings = openl3Features(audioIn,fs,Name,Value) specifies options using one or more
Name,Value arguments. For example, embeddings =
openl3Features(audioIn,fs,'OverlapPercentage',75) applies a 75% overlap between
consecutive frames used to create the audio embeddings.

This function requires both Audio Toolbox and Deep Learning Toolbox.

Examples

Download openl3Features Functionality

Download and unzip the Audio Toolbox™ model for OpenL3.

Type openl3Features at the command line. If the Audio Toolbox model for OpenL3 is not installed,
the function provides a link to the location of the network weights. To download the model, click the
link. Unzip the file to a location on the MATLAB path.

Alternatively, execute the following commands to download and unzip the OpenL3 model to your
temporary directory.

downloadFolder = fullfile(tempdir,'OpenL3Download');
loc = websave(downloadFolder,'https://ssd.mathworks.com/supportfiles/audio/openl3.zip');
OpenL3Location = tempdir;
unzip(loc,OpenL3Location)
addpath(fullfile(OpenL3Location,'openl3'))

Extract OpenL3 Embeddings

Read in an audio file.

 openl3Features

2-65

[audioIn,fs] = audioread('MainStreetOne-16-16-mono-12secs.wav');

Call the openl3Features function with the audio and sample rate to extract OpenL3 feature
embeddings from the audio.

featureVectors = openl3Features(audioIn,fs);

The openl3Features function returns a matrix of 512-element feature vectors over time.

[numHops,numElementsPerHop,numChannels] = size(featureVectors)

numHops = 111

numElementsPerHop = 512

numChannels = 1

Decrease Time Resolution of OpenL3 Features

Create a 10-second pink noise signal and then extract OpenL3 features. The openl3Features
function extracts features from mel spectrograms with 90% overlap.

fs = 16e3;
dur = 10;
audioIn = pinknoise(dur*fs,1,'single');
features = openl3Features(audioIn,fs);

Plot the OpenL3 features over time.

surf(features,'EdgeColor','none')
view([30 65])
axis tight
xlabel('Feature Index')
ylabel('Frame')
xlabel('Feature Value')
title('OpenL3 Features')

2 Functions

2-66

To decrease the resolution of OpenL3 features over time, specify the percent overlap between mel
spectrograms. Plot the results.

overlapPercentage = ;
features = openl3Features(audioIn,fs,'OverlapPercentage',overlapPercentage);
surf(features,'EdgeColor','none')
view([30 65])
axis tight
xlabel('Feature Index')
ylabel('Frame')
zlabel('Feature Value')
title('OpenL3 Features')

 openl3Features

2-67

Input Arguments
audioIn — Input signal
column vector | matrix

Input signal, specified as a column vector or matrix. If you specify a matrix, openl3Features treats
the columns of the matrix as individual audio channels.
Data Types: single | double

fs — Sample rate (Hz)
positive scalar

Sample rate of the input signal in Hz, specified as a positive scalar.
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: openl3Features(audioIn,fs,'SpectrumType','mel256')

2 Functions

2-68

OverlapPercentage — Percentage overlap between consecutive spectrograms
90 (default) | scalar in the range [0,100)

Percentage overlap between consecutive spectrograms, specified as a scalar in the range [0,100).
Data Types: single | double

SpectrumType — Spectrum type
'mel128' (default) | 'mel256' | 'linear'

Spectrum type generated from audio and used as input to the neural network, specified as
'mel128', 'mel256', or 'linear'.

Note The SpectrumType that you select controls the spectrogram used in the network. See openl3
or openl3Preprocess for more details.

Data Types: char | string

EmbeddingLength — Embedding length
512 (default) | 6144

Length of the output audio embedding, specified as '512' or '6144'.
Data Types: single | double

ContentType — Audio content type
'env' (default) | 'music'

Audio content type the neural network is trained on, specified as 'env' or 'music'.

Set ContentType to:

• 'env' when you want to use a model trained on environmental data.
• 'music' when you want to use a model trained on musical data.

Data Types: char | string

Output Arguments
embeddings — Compact representation of audio data
N-by-L-by-C array

Compact representation of audio data, returned as an N-by-L-by-C array, where:

• N –– Represents the number of buffered frames the audio signal is partitioned into and depends on
the length of audioIn and the 'OverlapPercentage'.

• L –– Represents the audio embedding length.
• C –– Represents the number of input channels.

Data Types: single

 openl3Features

2-69

Version History
Introduced in R2021a

openl3Features will be removed
Not recommended starting in R2022a

The openl3Features function will be removed in a future release. Use openl3Embeddings
instead. Existing calls to openl3Features continue to run.

References
[1] Cramer, Jason, et al. "Look, Listen, and Learn More: Design Choices for Deep Audio Embeddings."

In ICASSP 2019 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), IEEE, 2019, pp. 3852-56. DOI.org (Crossref), doi:/10.1109/ICASSP.2019.8682475.

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
openl3Preprocess | openl3 | vggish | classifySound | vggishEmbeddings |
audioFeatureExtractor

2 Functions

2-70

openl3Preprocess
Preprocess audio for OpenL3 feature extraction

Syntax
features = openl3Preprocess(audioIn,fs)

features = openl3Preprocess(audioIn,fs,Name,Value)

Description
features = openl3Preprocess(audioIn,fs) generates spectrograms from audioIn that can
be fed to the OpenL3 pretrained network.

features = openl3Preprocess(audioIn,fs,Name,Value) specifies options using one or more
Name,Value arguments. For example, features =
openl3Preprocess(audioIn,fs,'OverlapPercentage',75) applies a 75% overlap between
consecutive frames used to generate the spectrograms.

Examples

Download OpenL3 Network

Download and unzip the Audio Toolbox™ model for OpenL3.

Type openl3 at the Command Window. If the Audio Toolbox model for OpenL3 is not installed, the
function provides a link to the location of the network weights. To download the model, click the link.
Unzip the file to a location on the MATLAB path.

Alternatively, execute these commands to download and unzip the OpenL3 model to your temporary
directory.

downloadFolder = fullfile(tempdir,'OpenL3Download');
loc = websave(downloadFolder,'https://ssd.mathworks.com/supportfiles/audio/openl3.zip');
OpenL3Location = tempdir;
unzip(loc,OpenL3Location)
addpath(fullfile(OpenL3Location,'openl3'))

Check that the installation is successful by typing openl3 at the Command Window. If the network is
installed, then the function returns a DAGNetwork (Deep Learning Toolbox) object.

openl3

ans =
 DAGNetwork with properties:

 Layers: [30×1 nnet.cnn.layer.Layer]
 Connections: [29×2 table]
 InputNames: {'in'}
 OutputNames: {'out'}

 openl3Preprocess

2-71

Extract OpenL3 Embeddings from Audio Signal

Use openl3Preprocess to extract embeddings from an audio signal.

Read in an audio signal.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');

To extract spectrograms from the audio, call the openl3Preprocess function with the audio and
sample rate. Use 50% overlap and set the spectrum type to linear. The openl3Preprocess function
returns an array of 30 spectrograms produced using an FFT length of 512.

features = openl3Preprocess(audioIn,fs,'OverlapPercentage',50,'SpectrumType','linear');
[posFFTbinsOvLap50,numHopsOvLap50,~,numSpectOvLap50] = size(features)

posFFTbinsOvLap50 = 257

numHopsOvLap50 = 197

numSpectOvLap50 = 30

Call openl3Preprocess again, this time using the default overlap of 90%. The openl3Preprocess
function now returns an array of 146 spectrograms.

features = openl3Preprocess(audioIn,fs,'SpectrumType','linear');
[posFFTbinsOvLap90,numHopsOvLap90,~,numSpectOvLap90] = size(features)

posFFTbinsOvLap90 = 257

numHopsOvLap90 = 197

numSpectOvLap90 = 146

Visualize one of the spectrograms at random.

randSpect = randi(numSpectOvLap90);
viewRandSpect = features(:,:,:,randSpect);
N = size(viewRandSpect,2);
binsToHz = (0:N-1)*fs/N;
nyquistBin = round(N/2);
semilogx(binsToHz(1:nyquistBin),mag2db(abs(viewRandSpect(1:nyquistBin))))
xlabel('Frequency (Hz)')
ylabel('Power (dB)');
title([num2str(randSpect),'th Spectrogram'])
axis tight
grid on

2 Functions

2-72

Create an OpenL3 network (this requires Deep Learning Toolbox) using the same 'SpectrumType'.

net = openl3('SpectrumType','linear');

Extract and visualize the audio embeddings.

embeddings = predict(net,features);
surf(embeddings,'EdgeColor','none')
view([90,-90])
axis([1 numSpectOvLap90 1 numSpectOvLap90])
xlabel('Embedding Length')
ylabel('Spectrum Number')
title('OpenL3 Feature Embeddings')
axis tight

 openl3Preprocess

2-73

Input Arguments
audioIn — Input signal
column vector | matrix

Input signal, specified as a column vector or matrix. If you specify a matrix, openl3Preprocess
treats the columns of the matrix as individual audio channels.
Data Types: single | double

fs — Sample rate (Hz)
positive scalar

Sample rate of the input signal in Hz, specified as a positive scalar.
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: openl3Preprocess(audioIn,fs,'SpectrumType','mel256')

2 Functions

2-74

OverlapPercentage — Percentage overlap between consecutive spectrograms
90 (default) | scalar in the range [0,100)

Percentage overlap between consecutive spectrograms, specified as a scalar in the range [0,100).
Data Types: single | double

SpectrumType — Spectrum type
'mel128' (default) | 'mel256' | 'linear'

Spectrum type generated from audio and used as input to the neural network, specified as one of
these:

• 'mel128' –– Generates mel spectrograms using 128 mel bands.
• 'mel256' –– Generates mel spectrograms using 256 mel bands.
• 'linear' –– Generates positive one-sided spectrograms using an FFT length of 512.

Data Types: char | string

Output Arguments
features — Spectrograms that can be fed to OpenL3 pretrained network
N-by-M-by-1-by-K array

Spectrograms generated from audioIn, returned as an N-by-M-by-1-by-K array.

When you specify 'SpectrumType' as one of these:

• 'mel128' –– The dimensions are 128-by-199-by-1-by-K, where 128 is the number of mel bands
and 199 is the number of time hops.

• 'mel256' –– The dimensions are 256-by-199-by-1-by-K, where 256 is the number of mel bands
and 199 is the number of time hops.

• 'linear' –– The dimensions are 257-by-197-by-1-by-K, where 257 is the positive one-sided FFT
length and 197 is the number of time hops.

• K represents the number of spectrograms and depends on the length of audioIn, the number of
channels in audioIn, as well as OverlapPercentage.

Data Types: single

Version History
Introduced in R2021a

References
[1] Cramer, Jason, et al. "Look, Listen, and Learn More: Design Choices for Deep Audio Embeddings."

In ICASSP 2019 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), IEEE, 2019, pp. 3852-56. DOI.org (Crossref), doi:/10.1109/ICASSP.2019.8682475.

 openl3Preprocess

2-75

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
openl3 | vggish | vggishEmbeddings | openl3Embeddings | classifySound |
audioFeatureExtractor

2 Functions

2-76

openl3
OpenL3 neural network

Syntax
net = openl3
net = openl3(Name,Value)

Description
net = openl3 returns a pretrained OpenL3 model.

This function requires both Audio Toolbox and Deep Learning Toolbox.

net = openl3(Name,Value) specifies options using one or more Name, Value arguments. For
example, net = openl3('EmbeddingLength',6144) specifies the output embedding length as
6144.

Examples

Download OpenL3 Network

Download and unzip the Audio Toolbox™ model for OpenL3.

Type openl3 at the Command Window. If the Audio Toolbox model for OpenL3 is not installed, the
function provides a link to the location of the network weights. To download the model, click the link.
Unzip the file to a location on the MATLAB path.

Alternatively, execute these commands to download and unzip the OpenL3 model to your temporary
directory.

downloadFolder = fullfile(tempdir,'OpenL3Download');
loc = websave(downloadFolder,'https://ssd.mathworks.com/supportfiles/audio/openl3.zip');
OpenL3Location = tempdir;
unzip(loc,OpenL3Location)
addpath(fullfile(OpenL3Location,'openl3'))

Check that the installation is successful by typing openl3 at the Command Window. If the network is
installed, then the function returns a DAGNetwork (Deep Learning Toolbox) object.

openl3

ans =
 DAGNetwork with properties:

 Layers: [30×1 nnet.cnn.layer.Layer]
 Connections: [29×2 table]
 InputNames: {'in'}
 OutputNames: {'out'}

 openl3

2-77

Load Pretrained OpenL3 Network

Load a pretrained OpenL3 convolutional neural network and examine the layers and classes.

Use openl3 to load the pretrained OpenL3 network. The output net is a DAGNetwork (Deep
Learning Toolbox) object.

net = openl3

net =
 DAGNetwork with properties:

 Layers: [30×1 nnet.cnn.layer.Layer]
 Connections: [29×2 table]
 InputNames: {'in'}
 OutputNames: {'out'}

View the network architecture using the Layers property. The network has 30 layers. There are 16
layers with learnable weights, of which eight are batch normalization layers and eight are
convolutional layers.

net.Layers

ans =
 30×1 Layer array with layers:

 1 'in' Image Input 128×199×1 images
 2 'batch_normalization_81' Batch Normalization Batch normalization with 1 channels
 3 'conv2d_71' Convolution 64 3×3×1 convolutions with stride [1 1] and padding 'same'
 4 'batch_normalization_82' Batch Normalization Batch normalization with 64 channels
 5 'activation_71' ReLU ReLU
 6 'conv2d_72' Convolution 64 3×3×64 convolutions with stride [1 1] and padding 'same'
 7 'batch_normalization_83' Batch Normalization Batch normalization with 64 channels
 8 'activation_72' ReLU ReLU
 9 'max_pooling2d_41' Max Pooling 2×2 max pooling with stride [2 2] and padding [0 0 0 0]
 10 'conv2d_73' Convolution 128 3×3×64 convolutions with stride [1 1] and padding 'same'
 11 'batch_normalization_84' Batch Normalization Batch normalization with 128 channels
 12 'activation_73' ReLU ReLU
 13 'conv2d_74' Convolution 128 3×3×128 convolutions with stride [1 1] and padding 'same'
 14 'batch_normalization_85' Batch Normalization Batch normalization with 128 channels
 15 'activation_74' ReLU ReLU
 16 'max_pooling2d_42' Max Pooling 2×2 max pooling with stride [2 2] and padding [0 0 0 0]
 17 'conv2d_75' Convolution 256 3×3×128 convolutions with stride [1 1] and padding 'same'
 18 'batch_normalization_86' Batch Normalization Batch normalization with 256 channels
 19 'activation_75' ReLU ReLU
 20 'conv2d_76' Convolution 256 3×3×256 convolutions with stride [1 1] and padding 'same'
 21 'batch_normalization_87' Batch Normalization Batch normalization with 256 channels
 22 'activation_76' ReLU ReLU
 23 'max_pooling2d_43' Max Pooling 2×2 max pooling with stride [2 2] and padding [0 0 0 0]
 24 'conv2d_77' Convolution 512 3×3×256 convolutions with stride [1 1] and padding 'same'
 25 'batch_normalization_88' Batch Normalization Batch normalization with 512 channels
 26 'activation_77' ReLU ReLU
 27 'audio_embedding_layer' Convolution 512 3×3×512 convolutions with stride [1 1] and padding 'same'
 28 'max_pooling2d_44' Max Pooling 16×24 max pooling with stride [16 24] and padding 'same'
 29 'flatten' Keras Flatten Flatten activations into 1-D assuming C-style (row-major) order
 30 'out' Regression Output mean-squared-error

2 Functions

2-78

Use analyzeNetwork (Deep Learning Toolbox) to visually explore the network.

analyzeNetwork(net)

Extract OpenL3 Embeddings from Audio Signal

Use openl3Preprocess to extract embeddings from an audio signal.

Read in an audio signal.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');

To extract spectrograms from the audio, call the openl3Preprocess function with the audio and
sample rate. Use 50% overlap and set the spectrum type to linear. The openl3Preprocess function
returns an array of 30 spectrograms produced using an FFT length of 512.

features = openl3Preprocess(audioIn,fs,'OverlapPercentage',50,'SpectrumType','linear');
[posFFTbinsOvLap50,numHopsOvLap50,~,numSpectOvLap50] = size(features)

posFFTbinsOvLap50 = 257

numHopsOvLap50 = 197

numSpectOvLap50 = 30

 openl3

2-79

Call openl3Preprocess again, this time using the default overlap of 90%. The openl3Preprocess
function now returns an array of 146 spectrograms.

features = openl3Preprocess(audioIn,fs,'SpectrumType','linear');
[posFFTbinsOvLap90,numHopsOvLap90,~,numSpectOvLap90] = size(features)

posFFTbinsOvLap90 = 257

numHopsOvLap90 = 197

numSpectOvLap90 = 146

Visualize one of the spectrograms at random.

randSpect = randi(numSpectOvLap90);
viewRandSpect = features(:,:,:,randSpect);
N = size(viewRandSpect,2);
binsToHz = (0:N-1)*fs/N;
nyquistBin = round(N/2);
semilogx(binsToHz(1:nyquistBin),mag2db(abs(viewRandSpect(1:nyquistBin))))
xlabel('Frequency (Hz)')
ylabel('Power (dB)');
title([num2str(randSpect),'th Spectrogram'])
axis tight
grid on

Create an OpenL3 network (this requires Deep Learning Toolbox) using the same 'SpectrumType'.

net = openl3('SpectrumType','linear');

2 Functions

2-80

Extract and visualize the audio embeddings.

embeddings = predict(net,features);
surf(embeddings,'EdgeColor','none')
view([90,-90])
axis([1 numSpectOvLap90 1 numSpectOvLap90])
xlabel('Embedding Length')
ylabel('Spectrum Number')
title('OpenL3 Feature Embeddings')
axis tight

Input Arguments
Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: openl3('EmbeddingLength',6144)

SpectrumType — Spectrum type
'mel128' (default) | 'mel256' | 'linear'

 openl3

2-81

Spectrum type generated from audio and used as input to the neural network, specified as
'mel128', 'mel256', or 'linear'.

When using 'SpectrumType' and:

• 'mel128' –– The network accepts mel spectrograms with 128 mel bands as input. The input
dimensions to the network are 128-by-199-by-1-by-K, where 128 is the number of mel bands and
199 is the number of time hops.

• 'mel256' –– The network accepts mel spectrograms with 256 mel bands as input. The input
dimensions to the network are 256-by-199-by-1-by-K, where 256 is the number of mel bands and
199 is the number of time hops.

• 'linear' –– The network accepts positive one-sided spectrograms with an FFT length of 257.
The input dimensions to the network are 257-by-197-by-1-by-K, where 257 is the positive one-
sided FFT length and 197 is the number of time hops.

K represents the number of spectrograms. When preprocessing your data with openl3Preprocess,
you must use the same 'SpectrumType'.
Data Types: char | string

EmbeddingLength — Embedding length
512 (default) | 6144

Length of the output audio embedding, specified as 512 or 6144.
Data Types: single | double

ContentType — Audio content type
'env' (default) | 'music'

Audio content type the neural network is trained on, specified as 'env' or 'music'.

Set ContentType to:

• 'env' when you want to use a model trained on environmental data.
• 'music' when you want to use a model trained on musical data.

Data Types: char | string

Output Arguments
net — Pretrained OpenL3 neural network
DAGNetwork object

Pretrained OpenL3 neural network, returned as a DAGNetwork object.

Version History
Introduced in R2021a

2 Functions

2-82

References
[1] Cramer, Jason, et al. "Look, Listen, and Learn More: Design Choices for Deep Audio Embeddings."

In ICASSP 2019 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), IEEE, 2019, pp. 3852-56. DOI.org (Crossref), doi:/10.1109/ICASSP.2019.8682475.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Only the activations and predict object functions are supported.
• To create a SeriesNetwork object for code generation, see “Load Pretrained Networks for Code

Generation” (MATLAB Coder).

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• Only the activations, classify, predict, predictAndUpdateState, and resetState
object functions are supported.

• To create a SeriesNetwork object for code generation, see “Load Pretrained Networks for Code
Generation” (GPU Coder).

See Also
openl3Preprocess | openl3Embeddings | vggish | classifySound | vggishEmbeddings |
audioFeatureExtractor

 openl3

2-83

speakerRecognition
Pretrained speaker recognition system

Syntax
sr = speakerRecognition

Description
sr = speakerRecognition returns a pretrained speaker recognition system, 'ivec-
english-16kHz'. The 'ivec-english-16kHz' system is an instance of an object of type
ivectorSystem trained on the LibriSpeech data set.

Examples

Perform Speaker Verification

This example uses a pretrained speaker recognition system, 'ivec-english-16kHz'. The 'ivec-
english-16kHz' system is an instance of ivectorSystem trained on the LibriSpeech data set.

Download the pretrained speaker recognition system into your temporary directory, whose location is
specified by the MATLAB® tempdir command. If you want to place the data files in a folder different
from tempdir, change the directory name. Add the temporary directory to the search path. Create
an i-vector system.

fname = "ivec-english-16kHz.zip";
URL = "https://ssd.mathworks.com/supportfiles/audio/speakerRecognition/" + fname;

unzip(URL,tempdir);

addpath(tempdir)

sr = speakerRecognition;

Read two speech signals, each of which contains the phrase "volume up" spoken out loud several
times with different intonations. In one of the signals, the speaker is male. In the other signal, the
speaker is female.

Read each signal and split it into two parts. One of the parts is used to enroll the speaker. The other
part is used for speaker verification and identification.

[bf,fs] = audioread("MaleVolumeUp-16-mono-6secs.ogg");
enrollBF = bf(1:3*fs);
testBF = bf(3*fs+1:end);
bfLabel = "BF";

[rd,fs] = audioread("FemaleVolumeUp-16-mono-11secs.ogg");
enrollRD = rd(1:5*fs);
testRD = rd(5*fs+1:end);
rdLabel = "RD";

2 Functions

2-84

Enroll the speakers into the speaker recognition system. This creates a template of the speaker that
can be used for verification or identification.

 enroll(sr,{enrollBF,enrollRD},[bfLabel,rdLabel])

Extracting i-vectors ...done.
Enrolling i-vectorsdone.
Enrollment complete.

Call the identify function on the test data.

candidates = identify(sr,testBF)

candidates=2×2 table
 Label Score
 _____ _________

 BF 0.99474
 RD 0.0017846

candidates = identify(sr,testRD)

candidates=2×2 table
 Label Score
 _____ __________

 RD 0.24113
 BF 3.2741e-05

Call the verify function with the test data to confirm that the system correctly accepts or rejects
speakers.

isVerified = verify(sr,testBF,bfLabel)

isVerified = logical
 1

isVerified = verify(sr,testBF,rdLabel)

isVerified = logical
 0

isVerified = verify(sr,testRD,rdLabel)

isVerified = logical
 1

isVerified = verify(sr,testRD,bfLabel)

isVerified = logical
 0

Call the info function to get information about how the model was trained.

 speakerRecognition

2-85

info(sr)

Header
 - This system was trained using the LibriSpeech train and development sets.
 LibriSpeech is an approximately 1000-hour corpus of read English speech sampled at 16 kHz.
 - The detection error tradeoff was determined by enrolling one file from each speaker in the
 LibriSpeech test set, and then evaluating exhaustive pairs of the enrolled and remaining data.
 - The system was calibrated using the train-clean-100 and dev-clean data of LibriSpeech.

i-vector system input
 Input feature vector length: 60
 Input data type: double

trainExtractor
 Train signals: 286808
 UBMNumComponents: 2048
 UBMNumIterations: 10
 TVSRank: 512
 TVSNumIterations: 5

trainClassifier
 Train signals: 286807
 Train labels: 1 (91), 100043 (31) ... and 5652 more
 NumEigenvectors: 200
 PLDANumDimensions: 200
 PLDANumIterations: 5

calibrate
 Calibration signals: 31242
 Calibration labels: 103 (102), 1034 (96) ... and 289 more

detectionErrorTradeoff
 Evaluation signals: 5382
 Evaluation labels: 102255 (46), 1066 (24) ... and 175 more

Remove the temporary directory from the search path.

rmpath(tempdir)

Output Arguments
sr — Pretrained speaker recognition system
ivectorSystem object

Pretrained speaker recognition system, returned as an object of type ivectorSystem.

Version History
Introduced in R2021b

References
[1] Panayotov, Vassil, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur. “Librispeech: An ASR

Corpus Based on Public Domain Audio Books.” In 2015 IEEE International Conference on

2 Functions

2-86

Acoustics, Speech and Signal Processing (ICASSP), 5206–10. South Brisbane, Queensland,
Australia: IEEE, 2015. https://doi.org/10.1109/ICASSP.2015.7178964.

See Also
classifySound | ivectorSystem | pitchnn

Topics
“i-vector Score Normalization”
“i-vector Score Calibration”

External Websites
https://www.openslr.org/12

 speakerRecognition

2-87

https://doi.org/10.1109/ICASSP.2015.7178964
https://www.openslr.org/12

acousticRoughness
Perceived roughness of acoustic signal

Syntax
roughness = acousticRoughness(audioIn,fs)
roughness = acousticRoughness(audioIn,fs,calibrationFactor)
roughness = acousticRoughness(specificLoudnessIn)
roughness = acousticRoughness(___ ,Name,Value)

[roughness,specificRoughness] = acousticRoughness(___)
[roughness,specificRoughness,fMod] = acousticRoughness(___)

acousticRoughness(___)

Description
roughness = acousticRoughness(audioIn,fs) returns roughness strength in aspers based on
Zwicker [1] and ISO 532-1 time-varying loudness [2].

roughness = acousticRoughness(audioIn,fs,calibrationFactor) specifies a nondefault
microphone calibration factor used to compute loudness.

roughness = acousticRoughness(specificLoudnessIn) computes roughness using high-
resolution time-varying specific loudness.

roughness = acousticRoughness(___ ,Name,Value) specifies options using one or more
Name, Value pair arguments. For example, roughness =
acousticRoughness(audioIn,fs,'SoundField','diffuse') returns roughness assuming a
diffuse sound field.

[roughness,specificRoughness] = acousticRoughness(___) also returns specific
roughness strength.

[roughness,specificRoughness,fMod] = acousticRoughness(___) also returns the
dominant modulation frequency detected by the algorithm.

acousticRoughness(___) with no output arguments plots roughness strength and specific
roughness strength and displays the modulation frequency textually. If audioIn is stereo, the 3-D
plot shows the sum of both channels.

Examples

Measure Acoustic Roughness

Measure acoustic roughness based on [1] on page 2-89 and ISO 532-1 [2] on page 2-89. Assume a
free-field reference pressure of 20 micropascals and a recording level calibration such that a 1 kHz
tone registers as 100 dB on a SPL meter.

2 Functions

2-88

Read in a stereo audio file and convert to mono.

[audioInStereo,fs] = audioread('Engine-16-44p1-stereo-20sec.wav');
audioIn = (audioInStereo(:,1) + audioInStereo(:,2)) / 2;

Compute acoustic roughness on the mono audio signal and display the average value.

roughness = acousticRoughness(audioIn,fs);
meanRoughness = mean(roughness);
displayOutput = ['Average computed value of acoustic roughness is ',num2str(meanRoughness),' aspers.'];
disp(displayOutput)

Average computed value of acoustic roughness is 0.17901 aspers.

References

[1] Zwicker, Eberhard, and Hugo Fastl. Psychoacoustics: Facts and Models. Vol. 22. Springer Science
& Business Media, 2013.

[2] ISO 532-1:2017(E). "Acoustics – Methods for calculating loudness – Part 1: Zwicker method."
International Organization for Standardization.

Roughness Measurements Using Calibrated Microphone

Set up an experiment as indicated by the diagram.

Create an audioDeviceReader object to read from the microphone and an audioDeviceWriter
object to write to your speaker.

 acousticRoughness

2-89

fs = 48e3;
deviceReader = audioDeviceReader(fs,"SamplesPerFrame",2048);
deviceWriter = audioDeviceWriter(fs);

Create an audioOscillator object to generate a 1 kHz sinusoid.

osc = audioOscillator("sine",1e3,"SampleRate",fs,"SamplesPerFrame",2048);

Create a dsp.AsyncBuffer object to buffer data acquired from the microphone.

dur = 5;
buff = dsp.AsyncBuffer(dur*fs);

For 5 seconds, play the sinusoid through your speaker and record using your microphone. While the
audio streams, note the loudness as reported by your SPL meter. Once complete, read the contents of
the buffer object.

numFrames = dur*(fs/osc.SamplesPerFrame);
for ii = 1:numFrames
 audioOut = osc();
 deviceWriter(audioOut);

 audioIn = deviceReader();
 write(buff,audioIn);
end

SPLreading = 69.7;

micRecording = read(buff);

To compute the calibration factor for the microphone, use the calibrateMicrophone function.

calibrationFactor = calibrateMicrophone(micRecording(fs+1:end),deviceReader.SampleRate,SPLreading);

You can now use the calibration factor you determined to measure the roughness of any sound that is
acquired through the same microphone recording chain.

Perform the experiment again by adding 100% amplitude modulation at 40 Hz. To create the
modulation signal, use the audioOscillator object and specify the amplitude as 0.5 and the DC
offset as 0.5 to oscillate between 0 and 1.

mod = audioOscillator("sine",40,"SampleRate",fs, ...
 "Amplitude",0.5,"DCOffset",0.5,"SamplesPerFrame",2048);

dur = 5;
buff = dsp.AsyncBuffer(dur*fs);
numFrames = dur*(fs/osc.SamplesPerFrame);
for ii = 1:numFrames
 audioOut = osc().*mod();
 deviceWriter(audioOut);

 audioIn = deviceReader();
 write(buff,audioIn);
end

micRecording = read(buff);

Call the acousticRoughness function with the microphone recording, sample rate, and
calibration factor. The roughness reported from acousticRoughness uses the true acoustic

2 Functions

2-90

loudness measurement as specified by ISO 532-1. Display the average roughness strength over the 5
seconds and plot roughness and specific roughness.

roughness = acousticRoughness(micRecording,deviceReader.SampleRate,calibrationFactor);
fprintf('Average roughness = %d (asper)',mean(roughness(2001:end,:)))

Average roughness = 4.992723e-01 (asper)

acousticRoughness(micRecording,deviceReader.SampleRate,calibrationFactor)

Measure Roughness from Specific Loudness

Read in an audio file.

[audioIn,fs] = audioread("Engine-16-44p1-stereo-20sec.wav");

Call the acousticLoudness function using high time resolution to calculate the specific loudness.

[~,specificLoudnessHD] = acousticLoudness(audioIn,fs,'TimeVarying',true,'TimeResolution','high');

Call the acousticSharpness function using standard resolution specific loudness without any
output arguments to plot the acoustic sharpness.

specificLoudness = specificLoudnessHD(1:4:end,:,:);
acousticSharpness(specificLoudness,'TimeVarying',true)

 acousticRoughness

2-91

Call acousticRoughness without any outputs to plot the acoustic roughness.

acousticRoughness(specificLoudnessHD)

2 Functions

2-92

Effect of Frequency Modulation on Acoustic Roughness

Generate a pure tone with a 1500 Hz center frequency and approximately 700 Hz frequency deviation
at a modulation frequency of 200 Hz.

fs = 48e3;

fMod = ;

dur = ;

numSamples = dur*fs;
t = (0:numSamples-1)/fs;

tone = sin(2*pi*t*fMod)';

fc = ;

excursionRatio = ;

excursion = 2*pi*(fc*excursionRatio/fs);
audioIn = modulate(tone,fc,fs,'fm',excursion);

 acousticRoughness

2-93

Listen to the audio and plot a spectrogram of the first 10 ms.

sound(audioIn,fs)
spectrogram(audioIn(1:0.01*fs),hann(64,'periodic'),63,1024,fs,'yaxis')

Call the acousticRoughness function with no output arguments to plot the acoustic roughness
strength.

acousticRoughness(audioIn,fs);

2 Functions

2-94

Specify Known Roughness Modulation Frequency

The acousticRoughness function enables you to specify a known roughness frequency. If you do
not specify a known roughness frequency, the function auto detects the roughness.

Create a dsp.AudioFileReader object to read in an audio signal frame-by-frame. Create an
audioOscillator object to create a modulation wave. Apply the modulation wave to the audio file.

fileReader = dsp.AudioFileReader('Engine-16-44p1-stereo-20sec.wav');

fMod = ;

amplitude = ;

osc = audioOscillator('sine',fMod, ...
 "DCOffset",0.5, ...
 "Amplitude",amplitude, ...
 "SampleRate",fileReader.SampleRate, ...
 "SamplesPerFrame",fileReader.SamplesPerFrame);

testSignal = [];
while ~isDone(fileReader)
 x = fileReader();

 acousticRoughness

2-95

 testSignal = [testSignal;osc().*fileReader()];
end

Listen to 2 seconds of the test signal and plot its waveform.

samplesToView = 1:2*fileReader.SampleRate;
sound(testSignal(samplesToView,:),fileReader.SampleRate);

plot(samplesToView/fileReader.SampleRate,testSignal(samplesToView,:))
xlabel('Time (s)')

Plot the acoustic roughness. The detected frequency of the modulation is displayed textually.

acousticRoughness(testSignal,fileReader.SampleRate);

2 Functions

2-96

Specify the known modulation frequency and then plot the acoustic roughness again.

acousticRoughness(testSignal,fileReader.SampleRate,'ModulationFrequency',fMod)

 acousticRoughness

2-97

Input Arguments
audioIn — Audio input
column vector | two-column matrix

Audio input, specified as a column vector (mono) or matrix with two columns (stereo).

Tip To measure roughness strength given any modulation frequency, the recommended minimum
signal duration is 0.5 seconds.

Data Types: single | double

fs — Sample rate (Hz)
positive scalar

Sample rate in Hz, specified as a positive scalar. The recommended sample rate for new recordings is
48 kHz.

Note The minimum acceptable sample rate is 8 kHz.

Data Types: single | double

2 Functions

2-98

calibrationFactor — Microphone calibration factor
sqrt(8) | positive scalar

Microphone calibration factor, specified as a positive scalar. The default calibration factor
corresponds to a full-scale 1 kHz sine wave with a sound pressure level of 100 dB (SPL). To compute
the calibration factor specific to your system, use the calibrateMicrophone function.
Data Types: single | double

specificLoudnessIn — Specific loudness (sones/Bark)
T-by-240-by-C

Specific loudness in sones/Bark, specified as a T-by-240-by-C array, where:

• T is 1 per 0.5 ms of the time-varying signal (high resolution loudness).
• 240 is the number of Bark bins in the domain for specific loudness. The Bark bins are

0.1:0.1:24.
• C is the number of channels.

You can use the acousticLoudness function to calculate time varying specific loudness using this
syntax.

[~,specificLoudness] = acousticLoudness(audioIn,fs,'TimeVarying',true,'TimeResolution','high');

Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: acousticRoughness(audioIn,fs,'ModulationFrequency',100)

ModulationFrequency — Known roughness modulation frequency (Hz)
'auto-detect' (default) | scalar or two-element vector with values in the range [1,1000]

Known modulation frequency in Hz, specified as the comma-separated pair consisting of
'ModulationFrequency' and a scalar or two-element vector with values in the range [1,1000].

Set ModulationFrequency to:

• 'auto-detect' when you want the function to detect the modulation frequency automatically.
When you select this option the function limits the search range to between 10 and 400 Hz.

• a scalar if the input is mono.
• a scalar or two-element vector if the input is stereo.

Data Types: single | double | char | string

SoundField — Sound field
'free' (default) | 'diffuse'

Sound field of audio recording, specified as the comma-separated pair of 'SoundField' and 'free'
or 'diffuse'.

 acousticRoughness

2-99

Data Types: char | string

PressureReference — Reference pressure (Pa)
20e-6 (default) | positive scalar

Reference pressure for dB calculation in pascals, specified as the comma-separated pair of
'PressureReference' and a positive scalar. The default value, 20 micropascals, is the common
value of air.
Data Types: single | double

Output Arguments
roughness — Roughness strength (asper)
K-by-1 | K-by-2

Roughness strength in asper, returned as a K-by-1 column vector or K-by-2 matrix of independent
channels. K corresponds to the time dimension.

Note Roughness is reported for each channel independently at every 0.5 ms interval.

Data Types: single | double

specificRoughness — Specific roughness strength (asper/Bark)
K-by-47 matrix | K-by-47-by-2 array

Specific roughness strength in asper/Bark, returned as a K-by-47 matrix or a K-by-47-by-2 array. The
first dimension of specificRoughness, K, corresponds to the time dimension and matches the first
dimension of roughness. The second dimension of specificRoughness, 47, corresponds to bands
on the Bark scale, with centers in the range of [0.5, 23.5], in increments of 0.5. The third dimension
of specificRoughness corresponds to the number of channels and matches the second dimension
of roughness.
Data Types: single | double

fMod — Dominant modulation frequency (Hz)
scalar (mono input) | 1-by-2 vector (stereo input)

Dominant modulation frequency in Hz, returned as a scalar for mono input or a 1-by-2 vector for
stereo input.
Data Types: single | double

Algorithms
Acoustic roughness strength is a perceptual measurement of modulations in amplitude or frequency
that are too high to discern separately. The acoustic loudness algorithm is described in [2] and
implemented in the acousticLoudness function. The acoustic roughness calculation is described in
[1]. The algorithm for acoustic roughness defines the roughness of 1 asper as a 1 kHz tone at 60 dB
with a 100% amplitude modulation at 70 Hz [3]. The algorithm is outlined as follows:

roughness = cal ∫
z = 0

24
fmod ΔL dz

2 Functions

2-100

Where fmod is the detected or known modulation frequency, cal is a constant ensuring unity roughness
of the reference signal, and ΔL is the perceived modulation depth. If the modulation frequency is not
specified when calling acousticRoughness, it is auto-detected by peak-picking a frequency-domain
representation of the acoustic loudness. The perceived modulation depth ΔL is calculated by passing
rectified specific loudness bands through ½ octave filters centered around fmod, followed by a lowpass
filter to determine the envelope.

Version History
Introduced in R2021a

References
[1] Zwicker, Eberhard, and Hugo Fastl. Psychoacoustics: Facts and Models. Vol. 22. Springer Science

& Business Media, 2013.

[2] ISO 532-1:2017(E). "Acoustics – Methods for calculating loudness – Part 1: Zwicker method."
International Organization for Standardization.

[3] Kalafata, Stamatina. "Sound Levels, Noise Source Identification and Perceptual Analysis in an
Intensive Care Unit." Master's thesis, University of Gothenburg, 2014.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Sample rate must be known (constant) at compile-time.

See Also
acousticFluctuation | acousticLoudness | acousticSharpness | calibrateMicrophone

Topics
“Effect of Soundproofing on Perceived Noise Levels”

 acousticRoughness

2-101

vggish
VGGish neural network

Syntax
net = vggish

Description
net = vggish returns a pretrained VGGish model.

This function requires both Audio Toolbox and Deep Learning Toolbox.

Examples

Download VGGish Network

Download and unzip the Audio Toolbox™ model for VGGish.

Type vggish at the Command Window. If the Audio Toolbox model for VGGish is not installed, then
the function provides a link to the location of the network weights. To download the model, click the
link. Unzip the file to a location on the MATLAB path.

Alternatively, execute these commands to download and unzip the VGGish model to your temporary
directory.

downloadFolder = fullfile(tempdir,'VGGishDownload');
loc = websave(downloadFolder,'https://ssd.mathworks.com/supportfiles/audio/vggish.zip');
VGGishLocation = tempdir;
unzip(loc,VGGishLocation)
addpath(fullfile(VGGishLocation,'vggish'))

Check that the installation is successful by typing vggish at the Command Window. If the network is
installed, then the function returns a SeriesNetwork (Deep Learning Toolbox) object.

vggish

ans =
 SeriesNetwork with properties:

 Layers: [24×1 nnet.cnn.layer.Layer]
 InputNames: {'InputBatch'}
 OutputNames: {'regressionoutput'}

Load Pretrained VGGish Network

Load a pretrained VGGish convolutional neural network and examine the layers and classes.

2 Functions

2-102

Use vggish to load the pretrained VGGish network. The output net is a SeriesNetwork (Deep
Learning Toolbox) object.

net = vggish

net =
 SeriesNetwork with properties:

 Layers: [24×1 nnet.cnn.layer.Layer]
 InputNames: {'InputBatch'}
 OutputNames: {'regressionoutput'}

View the network architecture using the Layers property. The network has 24 layers. There are nine
layers with learnable weights, of which six are convolutional layers and three are fully connected
layers.

net.Layers

ans =
 24×1 Layer array with layers:

 1 'InputBatch' Image Input 96×64×1 images
 2 'conv1' Convolution 64 3×3×1 convolutions with stride [1 1] and padding 'same'
 3 'relu' ReLU ReLU
 4 'pool1' Max Pooling 2×2 max pooling with stride [2 2] and padding 'same'
 5 'conv2' Convolution 128 3×3×64 convolutions with stride [1 1] and padding 'same'
 6 'relu2' ReLU ReLU
 7 'pool2' Max Pooling 2×2 max pooling with stride [2 2] and padding 'same'
 8 'conv3_1' Convolution 256 3×3×128 convolutions with stride [1 1] and padding 'same'
 9 'relu3_1' ReLU ReLU
 10 'conv3_2' Convolution 256 3×3×256 convolutions with stride [1 1] and padding 'same'
 11 'relu3_2' ReLU ReLU
 12 'pool3' Max Pooling 2×2 max pooling with stride [2 2] and padding 'same'
 13 'conv4_1' Convolution 512 3×3×256 convolutions with stride [1 1] and padding 'same'
 14 'relu4_1' ReLU ReLU
 15 'conv4_2' Convolution 512 3×3×512 convolutions with stride [1 1] and padding 'same'
 16 'relu4_2' ReLU ReLU
 17 'pool4' Max Pooling 2×2 max pooling with stride [2 2] and padding 'same'
 18 'fc1_1' Fully Connected 4096 fully connected layer
 19 'relu5_1' ReLU ReLU
 20 'fc1_2' Fully Connected 4096 fully connected layer
 21 'relu5_2' ReLU ReLU
 22 'fc2' Fully Connected 128 fully connected layer
 23 'EmbeddingBatch' ReLU ReLU
 24 'regressionoutput' Regression Output mean-squared-error

Use analyzeNetwork (Deep Learning Toolbox) to visually explore the network.

analyzeNetwork(net)

 vggish

2-103

Extract Features Using VGGish

Read in an audio signal to extract feature embeddings from it.

[audioIn,fs] = audioread();

Plot and listen to the audio signal.

t = (0:numel(audioIn)-1)/fs;
plot(t,audioIn)
xlabel("Time (s)")
ylabel("Ampltiude")
axis tight

2 Functions

2-104

% To play the sound, call soundsc(audioIn,fs)

VGGish requires you to preprocess the audio signal to match the input format used to train the
network. The preprocesssing steps include resampling the audio signal and computing an array of
mel spectrograms. To learn more about mel spectrograms, see melSpectrogram. Use
vggishPreprocess to preprocess the signal and extract the mel spectrograms to be passed to
VGGish. Visualize one of these spectrograms chosen at random.

spectrograms = vggishPreprocess(audioIn,fs);

arbitrarySpect = spectrograms(:,:,1,randi(size(spectrograms,4)));
surf(arbitrarySpect,EdgeColor="none")
view(90,-90)
xlabel("Mel Band")
ylabel("Frame")
title("Mel Spectrogram for VGGish")
axis tight

 vggish

2-105

Create a VGGish neural network. Using the vggish function requires installing the pretrained
VGGish network. If the network is not installed, the function provides a link to download the
pretrained model.

net = vggish;

Call predict with the network on the preprocessed mel spectrogram images to extract feature
embeddings. The feature embeddings are returned as a numFrames-by-128 matrix, where
numFrames is the number of individual spectrograms and 128 is the number of elements in each
feature vector.

features = predict(net,spectrograms);
[numFrames,numFeatures] = size(features)

numFrames = 24

numFeatures = 128

Visualize the VGGish feature embeddings.

surf(features,EdgeColor="none")
view([90 -90])

2 Functions

2-106

xlabel("Feature")
ylabel("Frame")
title("VGGish Feature Embeddings")
axis tight

Transfer Learning Using VGGish

In this example, you transfer the learning in the VGGish regression model to an audio classification
task.

Download and unzip the environmental sound classification data set. This data set consists of
recordings labeled as one of 10 different audio sound classes (ESC-10).

downloadFolder = matlab.internal.examples.downloadSupportFile("audio","ESC-10.zip");
unzip(downloadFolder,tempdir)
dataLocation = fullfile(tempdir,"ESC-10");

 vggish

2-107

Create an audioDatastore object to manage the data and split it into train and validation sets. Call
countEachLabel to display the distribution of sound classes and the number of unique labels.

ads = audioDatastore(dataLocation,IncludeSubfolders=true,LabelSource="foldernames");
labelTable = countEachLabel(ads)

labelTable=10×2 table
 Label Count
 ______________ _____

 chainsaw 40
 clock_tick 40
 crackling_fire 40
 crying_baby 40
 dog 40
 helicopter 40
 rain 40
 rooster 38
 sea_waves 40
 sneezing 40

Determine the total number of classes.

numClasses = height(labelTable);

Call splitEachLabel to split the data set into train and validation sets. Inspect the distribution of
labels in the training and validation sets.

[adsTrain, adsValidation] = splitEachLabel(ads,0.8);

countEachLabel(adsTrain)

ans=10×2 table
 Label Count
 ______________ _____

 chainsaw 32
 clock_tick 32
 crackling_fire 32
 crying_baby 32
 dog 32
 helicopter 32
 rain 32
 rooster 30
 sea_waves 32
 sneezing 32

countEachLabel(adsValidation)

ans=10×2 table
 Label Count
 ______________ _____

 chainsaw 8
 clock_tick 8
 crackling_fire 8
 crying_baby 8

2 Functions

2-108

 dog 8
 helicopter 8
 rain 8
 rooster 8
 sea_waves 8
 sneezing 8

The VGGish network expects audio to be preprocessed into log mel spectrograms. Use
vggishPreprocess to extract the spectrograms from the train set. There are multiple spectrograms
for each audio signal. Replicate the labels so that they are in one-to-one correspondence with the
spectrograms.

overlapPercentage = ;

trainFeatures = [];
trainLabels = [];
while hasdata(adsTrain)
 [audioIn,fileInfo] = read(adsTrain);
 features = vggishPreprocess(audioIn,fileInfo.SampleRate,OverlapPercentage=overlapPercentage);
 numSpectrograms = size(features,4);
 trainFeatures = cat(4,trainFeatures,features);
 trainLabels = cat(2,trainLabels,repelem(fileInfo.Label,numSpectrograms));
end

Extract spectrograms from the validation set and replicate the labels.

validationFeatures = [];
validationLabels = [];
segmentsPerFile = zeros(numel(adsValidation.Files), 1);
idx = 1;
while hasdata(adsValidation)
 [audioIn,fileInfo] = read(adsValidation);
 features = vggishPreprocess(audioIn,fileInfo.SampleRate,OverlapPercentage=overlapPercentage);
 numSpectrograms = size(features,4);
 validationFeatures = cat(4,validationFeatures,features);
 validationLabels = cat(2,validationLabels,repelem(fileInfo.Label,numSpectrograms));

 segmentsPerFile(idx) = numSpectrograms;
 idx = idx + 1;
end

Load the VGGish model and convert it to a layerGraph (Deep Learning Toolbox) object.

net = vggish;

lgraph = layerGraph(net.Layers);

Use removeLayers (Deep Learning Toolbox) to remove the final regression output layer from the
graph. After you remove the regression layer, the new final layer of the graph is a ReLU layer named
'EmbeddingBatch'.

lgraph = removeLayers(lgraph,"regressionoutput");
lgraph.Layers(end)

ans =
 ReLULayer with properties:

 vggish

2-109

 Name: 'EmbeddingBatch'

Use addLayers (Deep Learning Toolbox) to add a fullyConnectedLayer (Deep Learning Toolbox),
a softmaxLayer (Deep Learning Toolbox), and a classificationLayer (Deep Learning Toolbox)
to the graph. Set the WeightLearnRateFactor and BiasLearnRateFactor of the new fully
connected layer to 10 so that learning is faster in the new layer than in the transferred layers.

lgraph = addLayers(lgraph,[...
 fullyConnectedLayer(numClasses,Name="FCFinal",WeightLearnRateFactor=10,BiasLearnRateFactor=10)
 softmaxLayer(Name="softmax")
 classificationLayer(Name="classOut")]);

Use connectLayers (Deep Learning Toolbox) to append the fully connected, softmax, and
classification layers to the layer graph.

lgraph = connectLayers(lgraph,"EmbeddingBatch","FCFinal");

To define training options, use trainingOptions (Deep Learning Toolbox).

miniBatchSize = 128;
options = trainingOptions("adam", ...
 MaxEpochs=5, ...
 MiniBatchSize=miniBatchSize, ...
 Shuffle="every-epoch", ...
 ValidationData={validationFeatures,validationLabels}, ...
 ValidationFrequency=50, ...
 LearnRateSchedule="piecewise", ...
 LearnRateDropFactor=0.5, ...
 LearnRateDropPeriod=2, ...
 OutputNetwork="best-validation-loss", ...
 Verbose=false, ...
 Plots="training-progress");

To train the network, use trainNetwork (Deep Learning Toolbox).

[trainedNet, netInfo] = trainNetwork(trainFeatures,trainLabels,lgraph,options);

2 Functions

2-110

Each audio file was split into several segments to feed into the VGGish network. Combine the
predictions for each file in the validation set using a majority-rule decision.

validationPredictions = classify(trainedNet,validationFeatures);

idx = 1;
validationPredictionsPerFile = categorical;
for ii = 1:numel(adsValidation.Files)
 validationPredictionsPerFile(ii,1) = mode(validationPredictions(idx:idx+segmentsPerFile(ii)-1));
 idx = idx + segmentsPerFile(ii);
end

Use confusionchart (Deep Learning Toolbox) to evaluate the performance of the network on the
validation set.

figure(Units="normalized",Position=[0.2 0.2 0.5 0.5]);
confusionchart(adsValidation.Labels,validationPredictionsPerFile, ...
 Title=sprintf("Confusion Matrix for Validation Data \nAccuracy = %0.2f %%",mean(validationPredictionsPerFile==adsValidation.Labels)*100), ...
 ColumnSummary="column-normalized", ...
 RowSummary="row-normalized")

 vggish

2-111

Output Arguments
net — Pretrained VGGish neural network
SeriesNetwork object

Pretrained VGGish neural network, returned as a SeriesNetwork object.

Version History
Introduced in R2020b

References
[1] Gemmeke, Jort F., Daniel P. W. Ellis, Dylan Freedman, Aren Jansen, Wade Lawrence, R. Channing

Moore, Manoj Plakal, and Marvin Ritter. 2017. “Audio Set: An Ontology and Human-Labeled
Dataset for Audio Events.” In 2017 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), 776–80. New Orleans, LA: IEEE. https://doi.org/10.1109/
ICASSP.2017.7952261.

[2] Hershey, Shawn, Sourish Chaudhuri, Daniel P. W. Ellis, Jort F. Gemmeke, Aren Jansen, R. Channing
Moore, Manoj Plakal, et al. 2017. “CNN Architectures for Large-Scale Audio Classification.”
In 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
131–35. New Orleans, LA: IEEE. https://doi.org/10.1109/ICASSP.2017.7952132.

2 Functions

2-112

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Only the activations and predict object functions are supported.
• To create a SeriesNetwork object for code generation, see “Load Pretrained Networks for Code

Generation” (MATLAB Coder).

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• Only the activations, classify, predict, predictAndUpdateState, and resetState
object functions are supported.

• To create a SeriesNetwork object for code generation, see “Load Pretrained Networks for Code
Generation” (GPU Coder).

See Also
Apps
Signal Labeler

Blocks
Sound Classifier | VGGish Embeddings | VGGish Preprocess | VGGish | YAMNet | YAMNet Preprocess

Functions
audioFeatureExtractor | classifySound | melSpectrogram | vggishEmbeddings |
vggishPreprocess | yamnet | yamnetGraph | yamnetPreprocess

 vggish

2-113

yamnet
YAMNet neural network

Syntax
net = yamnet

Description
net = yamnet returns a pretrained YAMNet model.

This function requires both Audio Toolbox and Deep Learning Toolbox.

Examples

Download YAMNet

Download and unzip the Audio Toolbox™ model for YAMNet.

Type yamnet at the Command Window. If the Audio Toolbox model for YAMNet is not installed, then
the function provides a link to the location of the network weights. To download the model, click the
link. Unzip the file to a location on the MATLAB path.

Alternatively, execute the following commands to download and unzip the YAMNet model to your
temporary directory.

downloadFolder = fullfile(tempdir,'YAMNetDownload');
loc = websave(downloadFolder,'https://ssd.mathworks.com/supportfiles/audio/yamnet.zip');
YAMNetLocation = tempdir;
unzip(loc,YAMNetLocation)
addpath(fullfile(YAMNetLocation,'yamnet'))

Check that the installation is successful by typing yamnet at the Command Window. If the network is
installed, then the function returns a SeriesNetwork (Deep Learning Toolbox) object.

yamnet

ans =
 SeriesNetwork with properties:

 Layers: [86×1 nnet.cnn.layer.Layer]
 InputNames: {'input_1'}
 OutputNames: {'Sound'}

Load Pretrained YAMNet

Load a pretrained YAMNet convolutional neural network and examine the layers and classes.

2 Functions

2-114

Use yamnet to load the pretrained YAMNet network. The output net is a SeriesNetwork (Deep
Learning Toolbox) object.

net = yamnet

net =
 SeriesNetwork with properties:

 Layers: [86×1 nnet.cnn.layer.Layer]
 InputNames: {'input_1'}
 OutputNames: {'Sound'}

View the network architecture using the Layers property. The network has 86 layers. There are 28
layers with learnable weights: 27 convolutional layers, and 1 fully connected layer.

net.Layers

ans =
 86x1 Layer array with layers:

 1 'input_1' Image Input 96×64×1 images
 2 'conv2d' Convolution 32 3×3×1 convolutions with stride [2 2] and padding 'same'
 3 'b' Batch Normalization Batch normalization with 32 channels
 4 'activation' ReLU ReLU
 5 'depthwise_conv2d' Grouped Convolution 32 groups of 1 3×3×1 convolutions with stride [1 1] and padding 'same'
 6 'L11' Batch Normalization Batch normalization with 32 channels
 7 'activation_1' ReLU ReLU
 8 'conv2d_1' Convolution 64 1×1×32 convolutions with stride [1 1] and padding 'same'
 9 'L12' Batch Normalization Batch normalization with 64 channels
 10 'activation_2' ReLU ReLU
 11 'depthwise_conv2d_1' Grouped Convolution 64 groups of 1 3×3×1 convolutions with stride [2 2] and padding 'same'
 12 'L21' Batch Normalization Batch normalization with 64 channels
 13 'activation_3' ReLU ReLU
 14 'conv2d_2' Convolution 128 1×1×64 convolutions with stride [1 1] and padding 'same'
 15 'L22' Batch Normalization Batch normalization with 128 channels
 16 'activation_4' ReLU ReLU
 17 'depthwise_conv2d_2' Grouped Convolution 128 groups of 1 3×3×1 convolutions with stride [1 1] and padding 'same'
 18 'L31' Batch Normalization Batch normalization with 128 channels
 19 'activation_5' ReLU ReLU
 20 'conv2d_3' Convolution 128 1×1×128 convolutions with stride [1 1] and padding 'same'
 21 'L32' Batch Normalization Batch normalization with 128 channels
 22 'activation_6' ReLU ReLU
 23 'depthwise_conv2d_3' Grouped Convolution 128 groups of 1 3×3×1 convolutions with stride [2 2] and padding 'same'
 24 'L41' Batch Normalization Batch normalization with 128 channels
 25 'activation_7' ReLU ReLU
 26 'conv2d_4' Convolution 256 1×1×128 convolutions with stride [1 1] and padding 'same'
 27 'L42' Batch Normalization Batch normalization with 256 channels
 28 'activation_8' ReLU ReLU
 29 'depthwise_conv2d_4' Grouped Convolution 256 groups of 1 3×3×1 convolutions with stride [1 1] and padding 'same'
 30 'L51' Batch Normalization Batch normalization with 256 channels
 31 'activation_9' ReLU ReLU
 32 'conv2d_5' Convolution 256 1×1×256 convolutions with stride [1 1] and padding 'same'
 33 'L52' Batch Normalization Batch normalization with 256 channels
 34 'activation_10' ReLU ReLU
 35 'depthwise_conv2d_5' Grouped Convolution 256 groups of 1 3×3×1 convolutions with stride [2 2] and padding 'same'
 36 'L61' Batch Normalization Batch normalization with 256 channels
 37 'activation_11' ReLU ReLU

 yamnet

2-115

 38 'conv2d_6' Convolution 512 1×1×256 convolutions with stride [1 1] and padding 'same'
 39 'L62' Batch Normalization Batch normalization with 512 channels
 40 'activation_12' ReLU ReLU
 41 'depthwise_conv2d_6' Grouped Convolution 512 groups of 1 3×3×1 convolutions with stride [1 1] and padding 'same'
 42 'L71' Batch Normalization Batch normalization with 512 channels
 43 'activation_13' ReLU ReLU
 44 'conv2d_7' Convolution 512 1×1×512 convolutions with stride [1 1] and padding 'same'
 45 'L72' Batch Normalization Batch normalization with 512 channels
 46 'activation_14' ReLU ReLU
 47 'depthwise_conv2d_7' Grouped Convolution 512 groups of 1 3×3×1 convolutions with stride [1 1] and padding 'same'
 48 'L81' Batch Normalization Batch normalization with 512 channels
 49 'activation_15' ReLU ReLU
 50 'conv2d_8' Convolution 512 1×1×512 convolutions with stride [1 1] and padding 'same'
 51 'L82' Batch Normalization Batch normalization with 512 channels
 52 'activation_16' ReLU ReLU
 53 'depthwise_conv2d_8' Grouped Convolution 512 groups of 1 3×3×1 convolutions with stride [1 1] and padding 'same'
 54 'L91' Batch Normalization Batch normalization with 512 channels
 55 'activation_17' ReLU ReLU
 56 'conv2d_9' Convolution 512 1×1×512 convolutions with stride [1 1] and padding 'same'
 57 'L92' Batch Normalization Batch normalization with 512 channels
 58 'activation_18' ReLU ReLU
 59 'depthwise_conv2d_9' Grouped Convolution 512 groups of 1 3×3×1 convolutions with stride [1 1] and padding 'same'
 60 'L101' Batch Normalization Batch normalization with 512 channels
 61 'activation_19' ReLU ReLU
 62 'conv2d_10' Convolution 512 1×1×512 convolutions with stride [1 1] and padding 'same'
 63 'L102' Batch Normalization Batch normalization with 512 channels
 64 'activation_20' ReLU ReLU
 65 'depthwise_conv2d_10' Grouped Convolution 512 groups of 1 3×3×1 convolutions with stride [1 1] and padding 'same'
 66 'L111' Batch Normalization Batch normalization with 512 channels
 67 'activation_21' ReLU ReLU
 68 'conv2d_11' Convolution 512 1×1×512 convolutions with stride [1 1] and padding 'same'
 69 'L112' Batch Normalization Batch normalization with 512 channels
 70 'activation_22' ReLU ReLU
 71 'depthwise_conv2d_11' Grouped Convolution 512 groups of 1 3×3×1 convolutions with stride [2 2] and padding 'same'
 72 'L121' Batch Normalization Batch normalization with 512 channels
 73 'activation_23' ReLU ReLU
 74 'conv2d_12' Convolution 1024 1×1×512 convolutions with stride [1 1] and padding 'same'
 75 'L122' Batch Normalization Batch normalization with 1024 channels
 76 'activation_24' ReLU ReLU
 77 'depthwise_conv2d_12' Grouped Convolution 1024 groups of 1 3×3×1 convolutions with stride [1 1] and padding 'same'
 78 'L131' Batch Normalization Batch normalization with 1024 channels
 79 'activation_25' ReLU ReLU
 80 'conv2d_13' Convolution 1024 1×1×1024 convolutions with stride [1 1] and padding 'same'
 81 'L132' Batch Normalization Batch normalization with 1024 channels
 82 'activation_26' ReLU ReLU
 83 'global_average_pooling2d' Global Average Pooling Global average pooling
 84 'dense' Fully Connected 521 fully connected layer
 85 'softmax' Softmax softmax
 86 'Sound' Classification Output crossentropyex with 'Speech' and 520 other classes

To view the names of the classes learned by the network, you can view the Classes property of the
classification output layer (the final layer). View the first 10 classes by specifying the first 10
elements.

net.Layers(end).Classes(1:10)

ans = 10×1 categorical
 Speech

2 Functions

2-116

 Child speech, kid speaking
 Conversation
 Narration, monologue
 Babbling
 Speech synthesizer
 Shout
 Bellow
 Whoop
 Yell

Use analyzeNetwork (Deep Learning Toolbox) to visually explore the network.

analyzeNetwork(net)

YAMNet was released with a corresponding sound class ontology, which you can explore using the
yamnetGraph object.

ygraph = yamnetGraph;
p = plot(ygraph);
layout(p,'layered')

 yamnet

2-117

The ontology graph plots all 521 possible sound classes. Plot a subgraph of the sounds related to
respiratory sounds.

allRespiratorySounds = dfsearch(ygraph,"Respiratory sounds");
ygraphSpeech = subgraph(ygraph,allRespiratorySounds);
plot(ygraphSpeech)

2 Functions

2-118

Classify Sounds Using YAMNet

Read in an audio signal to classify it.

[audioIn,fs] = audioread();

Plot and listen to the audio signal.

t = (0:numel(audioIn)-1)/fs;
plot(t,audioIn)
xlabel("Time (s)")
ylabel("Ampltiude")
axis tight

 yamnet

2-119

% To play the sound, call soundsc(audioIn,fs)

YAMNet requires you to preprocess the audio signal to match the input format used to train the
network. The preprocesssing steps include resampling the audio signal and computing an array of
mel spectrograms. To learn more about mel spectrograms, see melSpectrogram. Use
yamnetPreprocess to preprocess the signal and extract the mel spectrograms to be passed to
YAMNet. Visualize one of these spectrograms chosen at random.

spectrograms = yamnetPreprocess(audioIn,fs);

arbitrarySpect = spectrograms(:,:,1,randi(size(spectrograms,4)));
surf(arbitrarySpect,EdgeColor="none")
view([90 -90])
xlabel("Mel Band")
ylabel("Frame")
title("Mel Spectrogram for YAMNet")
axis tight

2 Functions

2-120

Create a YAMNet neural network. Using the yamnet function requires installing the pretrained
YAMNet network. If the network is not installed, the function provides a link to download the
pretrained model. Call classify with the network on the preprocessed mel spectrogram images.

net = yamnet;
classes = classify(net,spectrograms);

Calling classify returns a label for each of the spectrogram images in the input. Classify the sound
as the most frequently occurring label in the output of classify.

mySound = mode(classes)

mySound = categorical
 Whistle

 yamnet

2-121

Transfer Learning Using YAMNet

Download and unzip the air compressor data set [1] on page 2-125. This data set consists of
recordings from air compressors in a healthy state or one of 7 faulty states.

url = 'https://www.mathworks.com/supportfiles/audio/AirCompressorDataset/AirCompressorDataset.zip';
downloadFolder = fullfile(tempdir,'aircompressordataset');
datasetLocation = tempdir;

if ~exist(fullfile(tempdir,'AirCompressorDataSet'),'dir')
 loc = websave(downloadFolder,url);
 unzip(loc,fullfile(tempdir,'AirCompressorDataSet'))
end

Create an audioDatastore object to manage the data and split it into train and validation sets.

ads = audioDatastore(downloadFolder,'IncludeSubfolders',true,'LabelSource','foldernames');

[adsTrain,adsValidation] = splitEachLabel(ads,0.8,0.2);

Read an audio file from the datastore and save the sample rate for later use. Reset the datastore to
return the read pointer to the beginning of the data set. Listen to the audio signal and plot the signal
in the time domain.

[x,fileInfo] = read(adsTrain);
fs = fileInfo.SampleRate;

reset(adsTrain)

sound(x,fs)

figure
t = (0:size(x,1)-1)/fs;
plot(t,x)
xlabel('Time (s)')
title('State = ' + string(fileInfo.Label))
axis tight

2 Functions

2-122

Extract Mel spectrograms from the train set using yamnetPreprocess. There are multiple
spectrograms for each audio signal. Replicate the labels so that they are in one-to-one
correspondence with the spectrograms.

emptyLabelVector = adsTrain.Labels;
emptyLabelVector(:) = [];

trainFeatures = [];
trainLabels = emptyLabelVector;
while hasdata(adsTrain)
 [audioIn,fileInfo] = read(adsTrain);
 features = yamnetPreprocess(audioIn,fileInfo.SampleRate);
 numSpectrums = size(features,4);
 trainFeatures = cat(4,trainFeatures,features);
 trainLabels = cat(2,trainLabels,repmat(fileInfo.Label,1,numSpectrums));
end

Extract features from the validation set and replicate the labels.

validationFeatures = [];
validationLabels = emptyLabelVector;
while hasdata(adsValidation)
 [audioIn,fileInfo] = read(adsValidation);
 features = yamnetPreprocess(audioIn,fileInfo.SampleRate);
 numSpectrums = size(features,4);
 validationFeatures = cat(4,validationFeatures,features);
 validationLabels = cat(2,validationLabels,repmat(fileInfo.Label,1,numSpectrums));
end

 yamnet

2-123

The air compressor data set has only eight classes.

Read in YAMNet and convert it to a layerGraph (Deep Learning Toolbox).

If YAMNet pretrained network is not installed on your machine, execute the following commands to
download and unzip the YAMNet model to your temporary directory.

downloadFolder = fullfile(tempdir,'YAMNetDownload');
loc = websave(downloadFolder,'https://ssd.mathworks.com/supportfiles/audio/yamnet.zip');
YAMNetLocation = tempdir;
unzip(loc,YAMNetLocation)
addpath(fullfile(YAMNetLocation,'yamnet'))

After you read in YAMNet and convert it to a layerGraph (Deep Learning Toolbox), replace the final
fullyConnectedLayer (Deep Learning Toolbox) and the final classificationLayer (Deep
Learning Toolbox) to reflect the new task.

uniqueLabels = unique(adsTrain.Labels);
numLabels = numel(uniqueLabels);

net = yamnet;

lgraph = layerGraph(net.Layers);

newDenseLayer = fullyConnectedLayer(numLabels,"Name","dense");
lgraph = replaceLayer(lgraph,"dense",newDenseLayer);

newClassificationLayer = classificationLayer("Name","Sounds","Classes",uniqueLabels);
lgraph = replaceLayer(lgraph,"Sound",newClassificationLayer);

To define training options, use trainingOptions (Deep Learning Toolbox).

miniBatchSize = 128;
validationFrequency = floor(numel(trainLabels)/miniBatchSize);
options = trainingOptions('adam', ...
 'InitialLearnRate',3e-4, ...
 'MaxEpochs',2, ...
 'MiniBatchSize',miniBatchSize, ...
 'Shuffle','every-epoch', ...
 'Plots','training-progress', ...
 'Verbose',false, ...
 'ValidationData',{single(validationFeatures),validationLabels}, ...
 'ValidationFrequency',validationFrequency);

To train the network, use trainNetwork (Deep Learning Toolbox).

airCompressorNet = trainNetwork(trainFeatures,trainLabels,lgraph,options);

2 Functions

2-124

Save the trained network to airCompressorNet.mat. You can now use this pre-trained network by
loading the airCompressorNet.mat file.

save airCompressorNet.mat airCompressorNet

References

[1] Verma, Nishchal K., et al. “Intelligent Condition Based Monitoring Using Acoustic Signals for Air
Compressors.” IEEE Transactions on Reliability, vol. 65, no. 1, Mar. 2016, pp. 291–309. DOI.org
(Crossref), doi:10.1109/TR.2015.2459684.

Output Arguments
net — Pretrained YAMNet neural network
SeriesNetwork object

Pretrained YAMNet neural network, returned as a SeriesNetwork object.

Version History
Introduced in R2020b

 yamnet

2-125

References
[1] Gemmeke, Jort F., et al. “Audio Set: An Ontology and Human-Labeled Dataset for Audio Events.”

2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
IEEE, 2017, pp. 776–80. DOI.org (Crossref), doi:10.1109/ICASSP.2017.7952261.

[2] Hershey, Shawn, et al. “CNN Architectures for Large-Scale Audio Classification.” 2017 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2017,
pp. 131–35. DOI.org (Crossref), doi:10.1109/ICASSP.2017.7952132.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Only the activations and predict object functions are supported.
• To create a SeriesNetwork object for code generation, see “Load Pretrained Networks for Code

Generation” (MATLAB Coder).

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• Only the activations, classify, predict, predictAndUpdateState, and resetState
object functions are supported.

• To create a SeriesNetwork object for code generation, see “Load Pretrained Networks for Code
Generation” (GPU Coder).

See Also
Apps
Signal Labeler

Blocks
Sound Classifier | VGGish Embeddings | VGGish Preprocess | VGGish | YAMNet | YAMNet Preprocess

Functions
audioFeatureExtractor | classifySound | designAuditoryFilterBank | melSpectrogram |
vggish | vggishPreprocess | yamnetGraph | yamnetPreprocess

2 Functions

2-126

vggishEmbeddings
Extract VGGish feature embeddings

Syntax
embeddings = vggishEmbeddings(audioIn,fs)
embeddings = vggishEmbeddings(audioIn,fs,Name=Value)

Description
embeddings = vggishEmbeddings(audioIn,fs) returns VGGish feature embeddings over time
for the audio input audioIn with sample rate fs. Columns of the input are treated as individual
channels.

embeddings = vggishEmbeddings(audioIn,fs,Name=Value) specifies options using one or
more name-value arguments. For example, embeddings =
vggishEmbeddings(audioIn,fs,ApplyPCA=true) applies a principal component analysis (PCA)
transformation to the audio embeddings.

This function requires both Audio Toolbox and Deep Learning Toolbox.

Examples

Download vggishEmbeddings Functionality

Download and unzip the Audio Toolbox™ model for VGGish.

Type vggishEmbeddings at the command line. If the Audio Toolbox model for VGGish is not
installed, then the function provides a link to the location of the network weights. To download the
model, click the link. Unzip the file to a location on the MATLAB path.

Alternatively, execute the following commands to download and unzip the VGGish model to your
temporary directory.

downloadFolder = fullfile(tempdir,"VGGishDownload");
loc = websave(downloadFolder,"https://ssd.mathworks.com/supportfiles/audio/vggish.zip");
VGGishLocation = tempdir;
unzip(loc,VGGishLocation)
addpath(fullfile(VGGishLocation,"vggish"))

Extract VGGish Embeddings

Read in an audio file.

[audioIn,fs] = audioread("MainStreetOne-16-16-mono-12secs.wav");

Call the vggishEmbeddings function with the audio and sample rate to extract VGGish feature
embeddings from the audio. Using the vggishEmbeddings function requires installing the

 vggishEmbeddings

2-127

pretrained VGGish network. If the network is not installed, the function provides a link to download
the pretrained model.

embeddings = vggishEmbeddings(audioIn,fs);

The vggishEmbeddings function returns a matrix of 128-element feature vectors over time.

[numHops,numElementsPerHop,numChannels] = size(embeddings)

numHops = 23

numElementsPerHop = 128

numChannels = 1

Increase Time Resolution of VGGish Embeddings

Create a 10-second pink noise signal and then extract VGGish embeddings. The vggishEmbeddings
function extracts feature embeddings from mel spectrograms with 50% overlap. Using the
vggishEmbeddings function requires installing the pretrained VGGish network. If the network is
not installed, the function provides a link to download the pretrained model.

fs = 16e3;
dur = 10;
audioIn = pinknoise(dur*fs,1,"single");
embeddings = vggishEmbeddings(audioIn,fs);

Plot the VGGish feature embeddings over time.

surf(embeddings,EdgeColor="none")
view([30 65])
axis tight
xlabel("Feature Index")
ylabel("Frame")
xlabel("Feature Value")
title("VGGish Feature Embeddings")

2 Functions

2-128

To increase the resolution of VGGish feature embeddings over time, specify the percent overlap
between mel spectrograms. Plot the results.

overlapPercentage = ;
embeddings = vggishEmbeddings(audioIn,fs,OverlapPercentage=overlapPercentage);

surf(embeddings,EdgeColor="none")
view([30 65])
axis tight
xlabel("Feature Index")
ylabel("Frame")
zlabel("Feature Value")
title("VGGish Feature Embeddings")

 vggishEmbeddings

2-129

Apply Principal Component Analysis to VGGish Embeddings

Read in an audio file, listen to it, and then extract VGGish feature embeddings from the audio. Using
the vggishEmbeddings function requires installing the pretrained VGGish network. If the network
is not installed, the function provides a link to download the pretrained model.

[audioIn,fs] = audioread("Counting-16-44p1-mono-15secs.wav");

sound(audioIn,fs)

embeddings = vggishEmbeddings(audioIn,fs);

Visualize the VGGish feature embeddings over time. Many of the individual features are zero-valued
and contain no useful information.

surf(embeddings,EdgeColor="none")
view([90,-90])
axis tight

2 Functions

2-130

xlabel("Feature Index")
ylabel("Frame Index")
title("VGGish Feature Embeddings")

You can apply principal component analysis (PCA) to map the feature vectors into a space that
emphasizes variation between the embeddings. Call the vggishEmbeddings function again and
specify ApplyPCA as true. Visualize the VGGish feature embeddings after PCA.

embeddings = vggishEmbeddings(audioIn,fs,ApplyPCA=true);

surf(embeddings,EdgeColor="none")
view([90,-90])
axis tight
xlabel("Feature Index")
ylabel("Frame Index")
title("VGGish Features + PCA")

 vggishEmbeddings

2-131

Use VGGish Embeddings for Deep Learning

Download and unzip the air compressor data set. This data set consists of recordings from air
compressors in a healthy state or in one of seven faulty states.

zipFile = matlab.internal.examples.downloadSupportFile("audio", ...
 "AirCompressorDataset/AirCompressorDataset.zip");
unzip(zipFile,tempdir)
dataLocation = fullfile(tempdir,"AirCompressorDataset");

Create an audioDatastore object to manage the data and split it into training and validation sets.

ads = audioDatastore(dataLocation,IncludeSubfolders=true, ...
 LabelSource="foldernames");

[adsTrain,adsValidation] = splitEachLabel(ads,0.8);

Read an audio file from the datastore. Reset the datastore to return the read pointer to the beginning
of the data set. Listen to the audio signal and plot the signal in the time domain.

2 Functions

2-132

[x,fileInfo] = read(adsTrain);
fs = fileInfo.SampleRate;

reset(adsTrain)

sound(x,fs)

figure
t = (0:size(x,1)-1)/fs;
plot(t,x)
xlabel("Time (s)")
title("State = " + string(fileInfo.Label))
axis tight

Extract VGGish feature embeddings from the training and validation sets. Using the
vggishEmbeddings function requires installing the pretrained VGGish network. If the network is
not installed, the function provides a link to download the pretrained model. There are multiple
embeddings vectors for each audio file. Replicate the labels so that they are in one-to-one
correspondence with the embeddings vectors.

 vggishEmbeddings

2-133

trainFeatures = [];
trainLabels = [];
while hasdata(adsTrain)
 [audioIn,fileInfo] = read(adsTrain);
 features = vggishEmbeddings(audioIn,fileInfo.SampleRate, ...
 OverlapPercentage=75);
 numFeatureVecs = size(features,1);
 trainFeatures = cat(1,trainFeatures,features);
 trainLabels = cat(1,trainLabels,repelem(fileInfo.Label,numFeatureVecs)');
end

validationFeatures = [];
validationLabels = [];
segmentsPerFile = zeros(numel(adsValidation.Files), 1);
idx = 1;
while hasdata(adsValidation)
 [audioIn,fileInfo] = read(adsValidation);
 features = vggishEmbeddings(audioIn,fileInfo.SampleRate, ...
 OverlapPercentage=75);
 numFeatureVecs = size(features,1);
 validationFeatures = cat(1,validationFeatures,features);
 validationLabels = cat(1,validationLabels, ...
 repelem(fileInfo.Label,numFeatureVecs)');

 segmentsPerFile(idx) = numFeatureVecs;
 idx = idx + 1;
end

Define a simple network with two fully connected layers.

layers = [
 featureInputLayer(128)
 fullyConnectedLayer(32)
 reluLayer
 fullyConnectedLayer(8)
 softmaxLayer
 classificationLayer];

To define training options, use trainingOptions (Deep Learning Toolbox).

miniBatchSize = 128;
options = trainingOptions("adam", ...
 MaxEpochs=20, ...
 MiniBatchSize=miniBatchSize, ...
 Shuffle="every-epoch", ...
 ValidationData={validationFeatures,validationLabels}, ...
 ValidationFrequency=50, ...
 Plots="training-progress", ...
 Verbose=false);

To train the network, use trainNetwork (Deep Learning Toolbox).

net = trainNetwork(trainFeatures,trainLabels,layers,options)

2 Functions

2-134

net =
 SeriesNetwork with properties:

 Layers: [6×1 nnet.cnn.layer.Layer]
 InputNames: {'input'}
 OutputNames: {'classoutput'}

Each audio file was split into several segments to feed into the network. Combine the predictions for
each file in the validation set using a majority-rule decision.

validationPredictions = classify(net,validationFeatures);

idx = 1;
validationPredictionsPerFile = categorical;
for ii = 1:numel(adsValidation.Files)
 validationPredictionsPerFile(ii,1) = ...
 mode(validationPredictions(idx:idx+segmentsPerFile(ii)-1));
 idx = idx + segmentsPerFile(ii);
end

Visualize the confusion matrix for the validation set.

figure
confusionchart(adsValidation.Labels,validationPredictionsPerFile, ...
 Title=sprintf("Confusion Matrix for Validation Data \nAccuracy = %0.2f %%", ...
 mean(validationPredictionsPerFile==adsValidation.Labels)*100))

 vggishEmbeddings

2-135

Use VGGish Embeddings for Machine Learning

Download and unzip the air compressor data set [1] on page 2-138. This data set consists of
recordings from air compressors in a healthy state or in one of seven faulty states.

datasetZipFile = matlab.internal.examples.downloadSupportFile("audio","AirCompressorDataset/AirCompressorDataset.zip");
datasetFolder = fullfile(fileparts(datasetZipFile),"AirCompressorDataset");
if ~exist(datasetFolder,"dir")
 unzip(datasetZipFile,fileparts(datasetZipFile));
end

Create an audioDatastore object to manage the data and split it into training and validation sets.

ads = audioDatastore(datasetFolder,IncludeSubfolders=true,LabelSource="foldernames");

In this example, you classify signals as either healthy or faulty. Combine all of the faulty labels into a
single label. Split the datastore into training and validation sets.

2 Functions

2-136

labels = ads.Labels;
labels(labels~=categorical("Healthy")) = categorical("Faulty");
ads.Labels = removecats(labels);

[adsTrain,adsValidation] = splitEachLabel(ads,0.8,0.2);

Extract VGGish feature embeddings from the training set. Each audio file corresponds to multiple
VGGish features. Replicate the labels so that they are in one-to-one correspondence with the features.
Using the vggishEmbeddings function requires installing the pretrained VGGish network. If the
network is not installed, the function provides a link to download the pretrained model.

trainFeatures = [];
trainLabels = [];
for idx = 1:numel(adsTrain.Files)
 [audioIn,fileInfo] = read(adsTrain);
 embeddings = vggishEmbeddings(audioIn,fileInfo.SampleRate);
 trainFeatures = [trainFeatures;embeddings];
 trainLabels = [trainLabels;repelem(fileInfo.Label,size(embeddings,1))'];
end

Train a cubic support vector machine (SVM) using fitcsvm (Statistics and Machine Learning
Toolbox). To explore other classifiers and their performances, use Classification Learner (Statistics
and Machine Learning Toolbox).

faultDetector = fitcsvm(...
 trainFeatures, ...
 trainLabels, ...
 KernelFunction="polynomial", ...
 PolynomialOrder=3, ...
 KernelScale="auto", ...
 BoxConstraint=1, ...
 Standardize=true, ...
 ClassNames=categories(trainLabels));

For each file in the validation set:

1 Extract VGGish feature embeddings.
2 For each VGGish feature vector in a file, use the trained classifier to predict whether the machine

is healthy or faulty.
3 Take the mode of the predictions for each file.

predictions = [];
for idx = 1:numel(adsValidation.Files)
 [audioIn,fileInfo] = read(adsValidation);

 embeddings = vggishEmbeddings(audioIn,fileInfo.SampleRate);

 predictionsPerFile = categorical(predict(faultDetector,embeddings));

 predictions = [predictions;mode(predictionsPerFile)];
end

Use confusionchart (Statistics and Machine Learning Toolbox) to display the performance of the
classifier.

 vggishEmbeddings

2-137

accuracy = sum(predictions==adsValidation.Labels)/numel(adsValidation.Labels);
cc = confusionchart(predictions,adsValidation.Labels);
cc.Title = sprintf("Accuracy = %0.2f %",accuracy*100);

References

[1] Verma, Nishchal K., Rahul Kumar Sevakula, Sonal Dixit, and Al Salour. 2016. “Intelligent
Condition Based Monitoring Using Acoustic Signals for Air Compressors.” IEEE Transactions on
Reliability 65 (1): 291–309. https://doi.org/10.1109/TR.2015.2459684.

Input Arguments
audioIn — Input signal
column vector | matrix

Input signal, specified as a column vector or matrix. If you specify a matrix, vggishEmbeddings
treats the columns of the matrix as individual audio channels.

2 Functions

2-138

The duration of audioIn must be equal to or greater than 0.975 seconds.
Data Types: single | double

fs — Sample rate (Hz)
positive scalar

Sample rate of the input signal in Hz, specified as a positive scalar.
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: OverlapPercentage=75

OverlapPercentage — Percentage overlap between consecutive audio frames
50 (default) | scalar in the range [0,100)

Percentage overlap between consecutive audio frames, specified as a scalar in the range [0,100).
Data Types: single | double

ApplyPCA — Flag to apply PCA transformation to audio embeddings
false (default) | true

Flag to apply PCA transformation to audio embeddings, specified as either true or false.
Data Types: logical

Output Arguments
embeddings — Compact representation of audio data
L-by-128-by-N array

Compact representation of audio data, returned as an L-by-128-by-N array, where:

• L –– Represents the number of frames the audio signal is partitioned into. This is determined by
the OverlapPercentage.

• 128 –– Represents the audio embedding length.
• N –– Represents the number of channels.

Algorithms
The vggishEmbeddings function uses VGGish to extract feature embeddings from audio. The
vggishEmbeddings function preprocesses the audio so that it is in the format required by VGGish
and optionally postprocesses the embeddings.

 vggishEmbeddings

2-139

Preprocess

1 Resample audioIn to 16 kHz and cast to single precision.
2 Compute a one-sided short time Fourier transform using a 25 ms periodic Hann window with a

10 ms hop, and a 512-point DFT. The audio is now represented by a 257-by-L array, where 257 is
the number of bins in the one-sided spectra, and L depends on the length of the input.

3 Convert the complex spectral values to magnitude and discard phase information.
4 Pass the one-sided magnitude spectrum through a 64-band mel-spaced filter bank, then sum the

magnitudes in each band. The audio is now represented by a single 64-by-L mel spectrogram.
5 Convert the mel spectrogram to a log scale.
6 Buffer the mel spectrogram into overlapped segments consisting of 96 spectra each. The audio is

now represented by a 96-by-64-by-1-by-K array, where 96 is the number of spectra in the
individual mel spectrograms, 64 is the number of mel bands, and the spectrograms are spaced
along the fourth dimension for compatibility with the VGGish model. The number of mel
spectrograms, K, depends on the input length and OverlapPercentage.

Feature Extraction

Pass the 96-by-64-by-1-by-K array of mel spectrograms through VGGish to return a K-by-128 matrix.
The output from VGGish are the feature embeddings corresponding to each 0.975 s frame of audio
data.

Postprocess

If ApplyPCA is set to true, the feature embeddings are postprocessed to match the postprocessing
of the released AudioSet embeddings. The VGGish model was released with a precomputed principal
component analysis (PCA) matrix and mean vector to apply a PCA transformation and whitening
during inference. The postprocessing includes applying PCA, whitening, and quantization.

1 Subtract the precomputed 1-by-128 PCA mean vector from the K-by-128 feature matrix, and then
premultiply the result by the precomputed 128-by-128 PCA matrix.

2 Clip the transformed and whitened embeddings to between –2 and 2, then quantize the result to
values that can be represented by uint8.

Version History
Introduced in R2022a

References
[1] Gemmeke, Jort F., Daniel P. W. Ellis, Dylan Freedman, Aren Jansen, Wade Lawrence, R. Channing

Moore, Manoj Plakal, and Marvin Ritter. 2017. “Audio Set: An Ontology and Human-Labeled
Dataset for Audio Events.” In 2017 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), 776–80. New Orleans, LA: IEEE. https://doi.org/10.1109/
ICASSP.2017.7952261.

[2] Hershey, Shawn, Sourish Chaudhuri, Daniel P. W. Ellis, Jort F. Gemmeke, Aren Jansen, R. Channing
Moore, Manoj Plakal, et al. 2017. “CNN Architectures for Large-Scale Audio Classification.”
In 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
131–35. New Orleans, LA: IEEE. https://doi.org/10.1109/ICASSP.2017.7952132.

2 Functions

2-140

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
Apps
Signal Labeler

Blocks
Sound Classifier | VGGish Embeddings | VGGish Preprocess | VGGish | YAMNet | YAMNet Preprocess

Functions
audioFeatureExtractor | classifySound | vggish | vggishPreprocess | yamnet |
yamnetGraph | yamnetPreprocess

 vggishEmbeddings

2-141

vggishFeatures
(To be removed) Extract VGGish features

Note The vggishFeatures function will be removed in a future release. Use vggishEmbeddings
instead. For more information, see “Compatibility Considerations”.

Syntax
embeddings = vggishFeatures(audioIn,fs)
embeddings = vggishFeatures(audioIn,fs,Name,Value)

Description
embeddings = vggishFeatures(audioIn,fs) returns VGGish feature embeddings over time for
the audio input audioIn with sample rate fs. Columns of the input are treated as individual
channels.

embeddings = vggishFeatures(audioIn,fs,Name,Value) specifies options using one or more
Name,Value arguments. For example, embeddings =
vggishFeatures(audioIn,fs,'ApplyPCA',true) applies a principal component analysis (PCA)
transformation to the audio embeddings.

This function requires both Audio Toolbox and Deep Learning Toolbox.

Examples

Download vggishFeatures Functionality

Download and unzip the Audio Toolbox™ model for VGGish.

Type vggishFeatures at the command line. If the Audio Toolbox model for VGGish is not installed,
then the function provides a link to the location of the network weights. To download the model, click
the link. Unzip the file to a location on the MATLAB path.

Alternatively, execute the following commands to download and unzip the VGGish model to your
temporary directory.

downloadFolder = fullfile(tempdir,'VGGishDownload');
loc = websave(downloadFolder,'https://ssd.mathworks.com/supportfiles/audio/vggish.zip');
VGGishLocation = tempdir;
unzip(loc,VGGishLocation)
addpath(fullfile(VGGishLocation,'vggish'))

Extract VGGish Embeddings

Read in an audio file.

2 Functions

2-142

[audioIn,fs] = audioread('MainStreetOne-16-16-mono-12secs.wav');

Call the vggishFeatures function with the audio and sample rate to extract VGGish feature
embeddings from the audio.

featureVectors = vggishFeatures(audioIn,fs);

The vggishFeatures function returns a matrix of 128-element feature vectors over time.

[numHops,numElementsPerHop,numChannels] = size(featureVectors)

numHops = 23

numElementsPerHop = 128

numChannels = 1

Increase Time Resolution of VGGish Features

Create a 10-second pink noise signal and then extract VGGish features. The vggishFeatures
function extracts features from mel spectrograms with 50% overlap.

fs = 16e3;
dur = 10;

audioIn = pinknoise(dur*fs,1,'single');

features = vggishFeatures(audioIn,fs);

Plot the VGGish features over time.

surf(features,'EdgeColor','none')
view([30 65])
axis tight
xlabel('Feature Index')
ylabel('Frame')
xlabel('Feature Value')
title('VGGish Features')

 vggishFeatures

2-143

To increase the resolution of VGGish features over time, specify the percent overlap between mel
spectrograms. Plot the results.

overlapPercentage = ;
features = vggishFeatures(audioIn,fs,'OverlapPercentage',overlapPercentage);

surf(features,'EdgeColor','none')
view([30 65])
axis tight
xlabel('Feature Index')
ylabel('Frame')
zlabel('Feature Value')
title('VGGish Features')

2 Functions

2-144

Apply Principal Component Analysis to VGGish Embeddings

Read in an audio file, listen to it, and then extract VGGish features from the audio.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');

sound(audioIn,fs)

features = vggishFeatures(audioIn,fs);

Visualize the VGGish features over time. Many of the individual features are zero-valued and contain
no useful information.

surf(features,'EdgeColor','none')
view([90,-90])
axis tight
xlabel('Feature Index')
ylabel('Frame Index')
title('VGGish Features')

 vggishFeatures

2-145

You can apply principal component analysis (PCA) to map the feature vectors into a space that
emphasizes variation between the embeddings. Call the vggishFeatures function again and specify
ApplyPCA as true. Visualize the VGGish features after PCA.

features = vggishFeatures(audioIn,fs,'ApplyPCA',true);

surf(features,'EdgeColor','none')
view([90,-90])
axis tight
xlabel('Feature Index')
ylabel('Frame Index')
title('VGGish Features + PCA')

2 Functions

2-146

Use VGGish Embeddings for Deep Learning

Download and unzip the air compressor data set. This data set consists of recordings from air
compressors in a healthy state or in one of seven faulty states.

url = 'https://www.mathworks.com/supportfiles/audio/AirCompressorDataset/AirCompressorDataset.zip';
downloadFolder = fullfile(tempdir,'aircompressordataset');
datasetLocation = tempdir;

if ~exist(fullfile(tempdir,'AirCompressorDataSet'),'dir')
 loc = websave(downloadFolder,url);
 unzip(loc,fullfile(tempdir,'AirCompressorDataSet'))
end

Create an audioDatastore object to manage the data and split it into training and validation sets.

ads = audioDatastore(downloadFolder,'IncludeSubfolders',true,'LabelSource','foldernames');

[adsTrain,adsValidation] = splitEachLabel(ads,0.8,0.2);

Read an audio file from the datastore and save the sample rate for later use. Reset the datastore to
return the read pointer to the beginning of the data set. Listen to the audio signal and plot the signal
in the time domain.

[x,fileInfo] = read(adsTrain);
fs = fileInfo.SampleRate;

 vggishFeatures

2-147

reset(adsTrain)

sound(x,fs)

figure
t = (0:size(x,1)-1)/fs;
plot(t,x)
xlabel('Time (s)')
title('State = ' + string(fileInfo.Label))
axis tight

Extract VGGish features from the training and validation sets. Transpose the features so that time is
along rows.

trainFeatures = cell(1,numel(adsTrain.Files));
for idx = 1:numel(adsTrain.Files)
 [audioIn,fileInfo] = read(adsTrain);
 features = vggishFeatures(audioIn,fileInfo.SampleRate);
 trainFeatures{idx} = features';
end

validationFeatures = cell(1,numel(adsValidation.Files));
for idx = 1:numel(adsValidation.Files)
 [audioIn,fileInfo] = read(adsValidation);
 features = vggishFeatures(audioIn,fileInfo.SampleRate);
 validationFeatures{idx} = features';
end

2 Functions

2-148

Define a “Long Short-Term Memory Networks” (Deep Learning Toolbox) network.

layers = [
 sequenceInputLayer(128)
 lstmLayer(100,'OutputMode','last')
 fullyConnectedLayer(8)
 softmaxLayer
 classificationLayer];

To define training options, use trainingOptions (Deep Learning Toolbox).

miniBatchSize = 64;
validationFrequency = 5*floor(numel(trainFeatures)/miniBatchSize);
options = trainingOptions("adam", ...
 "MaxEpochs",12, ...
 "MiniBatchSize",miniBatchSize, ...
 "Plots","training-progress", ...
 "Shuffle","every-epoch", ...
 "LearnRateSchedule","piecewise", ...
 "LearnRateDropPeriod",6, ...
 "LearnRateDropFactor",0.1, ...
 "ValidationData",{validationFeatures,adsValidation.Labels}, ...
 "ValidationFrequency",validationFrequency, ...
 'Verbose',false);

To train the network, use trainNetwork (Deep Learning Toolbox).

net = trainNetwork(trainFeatures,adsTrain.Labels,layers,options)

net =
 SeriesNetwork with properties:

 Layers: [5×1 nnet.cnn.layer.Layer]

 vggishFeatures

2-149

 InputNames: {'sequenceinput'}
 OutputNames: {'classoutput'}

Visualize the confusion matrix for the validation set.

predictedClass = classify(net,validationFeatures);
confusionchart(adsValidation.Labels,predictedClass)

Use VGGish Embeddings for Machine Learning

Download and unzip the air compressor data set [1] on page 2-152. This data set consists of
recordings from air compressors in a healthy state or in one of seven faulty states.

url = 'https://www.mathworks.com/supportfiles/audio/AirCompressorDataset/AirCompressorDataset.zip';
downloadFolder = fullfile(tempdir,'aircompressordataset');
datasetLocation = tempdir;

if ~exist(fullfile(tempdir,'AirCompressorDataSet'),'dir')
 loc = websave(downloadFolder,url);
 unzip(loc,fullfile(tempdir,'AirCompressorDataSet'))
end

Create an audioDatastore object to manage the data and split it into training and validation sets.

ads = audioDatastore(downloadFolder,'IncludeSubfolders',true,'LabelSource','foldernames');

2 Functions

2-150

In this example, you classify signals as either healthy or faulty. Combine all of the faulty labels into a
single label. Split the datastore into training and validation sets.

labels = ads.Labels;
labels(labels~=categorical("Healthy")) = categorical("Faulty");
ads.Labels = removecats(labels);

[adsTrain,adsValidation] = splitEachLabel(ads,0.8,0.2);

Extract VGGish features from the training set. Each audio file corresponds to multiple VGGish
features. Replicate the labels so that they are in one-to-one correspondence with the features.

trainFeatures = [];
trainLabels = [];
for idx = 1:numel(adsTrain.Files)
 [audioIn,fileInfo] = read(adsTrain);
 features = vggishFeatures(audioIn,fileInfo.SampleRate);
 trainFeatures = [trainFeatures;features];
 trainLabels = [trainLabels;repelem(fileInfo.Label,size(features,1))'];
end

Train a cubic support vector machine (SVM) using fitcsvm (Statistics and Machine Learning
Toolbox). To explore other classifiers and their performances, use Classification Learner (Statistics
and Machine Learning Toolbox).

faultDetector = fitcsvm(...
 trainFeatures, ...
 trainLabels, ...
 'KernelFunction','polynomial', ...
 'PolynomialOrder',3, ...
 'KernelScale','auto', ...
 'BoxConstraint',1, ...
 'Standardize',true, ...
 'ClassNames',categories(trainLabels));

For each file in the validation set:

1 Extract VGGish features.
2 For each VGGish feature vector in a file, use the trained classifier to predict whether the machine

is healthy or faulty.
3 Take the mode of the predictions for each file.

predictions = [];
for idx = 1:numel(adsValidation.Files)
 [audioIn,fileInfo] = read(adsValidation);

 features = vggishFeatures(audioIn,fileInfo.SampleRate);

 predictionsPerFile = categorical(predict(faultDetector,features));

 predictions = [predictions;mode(predictionsPerFile)];
end

Use confusionchart (Statistics and Machine Learning Toolbox) to display the performance of the
classifier.

 vggishFeatures

2-151

accuracy = sum(predictions==adsValidation.Labels)/numel(adsValidation.Labels);
cc = confusionchart(predictions,adsValidation.Labels);
cc.Title = sprintf('Accuracy = %0.2f %',accuracy*100);

References

[1] Verma, Nishchal K., Rahul Kumar Sevakula, Sonal Dixit, and Al Salour. 2016. “Intelligent
Condition Based Monitoring Using Acoustic Signals for Air Compressors.” IEEE Transactions on
Reliability 65 (1): 291–309. https://doi.org/10.1109/TR.2015.2459684.

Input Arguments
audioIn — Input signal
column vector | matrix

Input signal, specified as a column vector or matrix. If you specify a matrix, vggishFeatures treats
the columns of the matrix as individual audio channels.

The duration of audioIn must be equal to or greater than 0.975 seconds.
Data Types: single | double

fs — Sample rate (Hz)
positive scalar

2 Functions

2-152

Sample rate of the input signal in Hz, specified as a positive scalar.
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'OverlapPercentage',75

OverlapPercentage — Percentage overlap between consecutive audio frames
50 (default) | scalar in the range [0,100)

Percentage overlap between consecutive audio frames, specified as a scalar in the range [0,100).
Data Types: single | double

ApplyPCA — Flag to apply PCA transformation to audio embeddings
false (default) | true

Flag to apply PCA transformation to audio embeddings, specified as either true or false.
Data Types: logical

Output Arguments
embeddings — Compact representation of audio data
L-by-128-by-N array

Compact representation of audio data, returned as an L-by-128-by-N array, where:

• L –– Represents the number of frames the audio signal is partitioned into. This is determined by
the OverlapPercentage.

• 128 –– Represents the audio embedding length.
• N –– Represents the number of channels.

Algorithms
The vggishFeatures function uses VGGish to extract feature embeddings from audio. The
vggishFeatures function preprocesses the audio so that it is in the format required by VGGish and
optionally postprocesses the embeddings.

Preprocess

1 Resample audioIn to 16 kHz and cast to single precision.
2 Compute a one-sided short time Fourier transform using a 25 ms periodic Hann window with a

10 ms hop, and a 512-point DFT. The audio is now represented by a 257-by-L array, where 257 is
the number of bins in the one-sided spectra, and L depends on the length of the input.

3 Convert the complex spectral values to magnitude and discard phase information.

 vggishFeatures

2-153

4 Pass the one-sided magnitude spectrum through a 64-band mel-spaced filter bank, then sum the
magnitudes in each band. The audio is now represented by a single 64-by-L mel spectrogram.

5 Convert the mel spectrogram to a log scale.
6 Buffer the mel spectrogram into overlapped segments consisting of 96 spectra each. The audio is

now represented by a 96-by-64-by-1-by-K array, where 96 is the number of spectra in the
individual mel spectrograms, 64 is the number of mel bands, and the spectrograms are spaced
along the fourth dimension for compatibility with the VGGish model. The number of mel
spectrograms, K, depends on the input length and OverlapPercentage.

Feature Extraction

Pass the 96-by-64-by-1-by-K array of mel spectrograms through VGGish to return a K-by-128 matrix.
The output from VGGish are the feature embeddings corresponding to each 0.975 s frame of audio
data.

Postprocess

If ApplyPCA is set to true, the feature embeddings are postprocessed to match the postprocessing
of the released AudioSet embeddings. The VGGish model was released with a precomputed principal
component analysis (PCA) matrix and mean vector to apply a PCA transformation and whitening
during inference. The postprocessing includes applying PCA, whitening, and quantization.

1 Subtract the precomputed 1-by-128 PCA mean vector from the K-by-128 feature matrix, and then
premultiply the result by the precomputed 128-by-128 PCA matrix.

2 Clip the transformed and whitened embeddings to between –2 and 2, then quantize the result to
values that can be represented by uint8.

Version History
Introduced in R2020b

vggishFeatures will be removed
Not recommended starting in R2022a

The vggishFeatures function will be removed in a future release. Use vggishEmbeddings
instead. Existing calls to vggishFeatures continue to run.

References
[1] Gemmeke, Jort F., Daniel P. W. Ellis, Dylan Freedman, Aren Jansen, Wade Lawrence, R. Channing

Moore, Manoj Plakal, and Marvin Ritter. 2017. “Audio Set: An Ontology and Human-Labeled
Dataset for Audio Events.” In 2017 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), 776–80. New Orleans, LA: IEEE. https://doi.org/10.1109/
ICASSP.2017.7952261.

[2] Hershey, Shawn, Sourish Chaudhuri, Daniel P. W. Ellis, Jort F. Gemmeke, Aren Jansen, R. Channing
Moore, Manoj Plakal, et al. 2017. “CNN Architectures for Large-Scale Audio Classification.”
In 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
131–35. New Orleans, LA: IEEE. https://doi.org/10.1109/ICASSP.2017.7952132.

2 Functions

2-154

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
Apps
Signal Labeler

Blocks
Sound Classifier | VGGish Embeddings | VGGish Preprocess | VGGish | YAMNet | YAMNet Preprocess

Functions
audioFeatureExtractor | classifySound | vggish | vggishPreprocess | yamnet |
yamnetGraph | yamnetPreprocess

 vggishFeatures

2-155

yamnetGraph
Graph of YAMNet AudioSet ontology

Syntax
ygraph = yamnetGraph
[ygraph,classes] = yamnetGraph

Description
ygraph = yamnetGraph returns a directed graph of the AudioSet ontology.

[ygraph,classes] = yamnetGraph also returns a string array of classes supported by YAMNet.

This function requires both Audio Toolbox and Deep Learning Toolbox.

Examples

Download yamnetGraph

Download and unzip the Audio Toolbox™ support for YAMNet.

Type yamnetGraph at the Command Window. If the Audio Toolbox support for YAMNet is not
installed, then the function provides a link to the download location. To download the model, click the
link. Unzip the file to a location on the MATLAB path.

Alternatively, execute the following commands to download and unzip the YAMNet model to your
temporary directory.

downloadFolder = fullfile(tempdir,'YAMNetDownload');
loc = websave(downloadFolder,'https://ssd.mathworks.com/supportfiles/audio/yamnet.zip');
YAMNetLocation = tempdir;
unzip(loc,YAMNetLocation)
addpath(fullfile(YAMNetLocation,'yamnet'))

Check that the installation is successful by typing yamnetGraph at the Command Window. If the
network is installed, then the function returns a digraph object.

yamnetGraph

Identify Major Categories of Ontology

Create a digraph object that describes the AudioSet ontology.

ygraph = yamnetGraph

ygraph =
 digraph with properties:

2 Functions

2-156

 Edges: [670×1 table]
 Nodes: [632×1 table]

Visualize the ontology. The ontology consists of 632 separate classes with 670 connections.

p = plot(ygraph);
layout(p,'layered')

Get the name of each sound class. If the sound class has no predecessors, identify it as a major
category of the ontology.

nodeNames = ygraph.Nodes.Name;
topCategories = {};
for index = 1:numel(nodeNames)
 pre = predecessors(ygraph,nodeNames{index});
 if isempty(pre)
 topCategories{end+1} = nodeNames{index};
 end
end

Display the categories as an array of strings.

topCategories = string(topCategories)

topCategories = 1×7 string
 "Human sounds" "Animal" "Music" "Natural sounds" "Sounds of things" "Source-ambiguous sounds" "Channel, environment and background"

Highlight and label the top categories on the digraph plot.

highlight(p,topCategories,"NodeColor","red","MarkerSize",8)
labelnode(p,topCategories,topCategories)

Plot Subgraph of Animal Sounds

Create a digraph object that represents the AudioSet ontology.

ygraph = yamnetGraph;

Use dfsearch to perform a depth-first graph search to identify all audio classes under the class
Animal.

animalNodes = dfsearch(ygraph,"Animal");

Use subgraph to create a new digraph object that only includes the identified audio classes. Plot
the resulting directed edges graph.

animalGraph = subgraph(ygraph,animalNodes);

p = plot(animalGraph);

p.NodeFontSize = 12;
graphFigure = gcf;

 yamnetGraph

2-157

old = graphFigure.Position;
set(graphFigure,'position',[old(1),old(2),old(3)*3,old(4)*3])

Use predecessors to determine all predecessors to the Growling sound. Highlight the
predecessors on the plot.

preIDs = predecessors(animalGraph,"Growling")

preIDs = 4×1 string
 "Dog"
 "Cat"
 "Roaring cats (lions, tigers)"
 "Canidae, dogs, wolves"

Use highlight to highlight the Growling node and the predecessors on the plot.

highlight(p,"Growling",'NodeColor','g','MarkerSize',8)
highlight(p,preIDs,'NodeColor','r','MarkerSize',8)

2 Functions

2-158

Visualize Sounds Supported by YAMNet

Create a digraph object that describes the AudioSet ontology. Also return the classes supported by
YAMNet. Plot the directed graph.

[ygraph,classes] = yamnetGraph;
p = plot(ygraph);
layout(p,'layered')

 yamnetGraph

2-159

YAMNet predicts a subset of the full AudioSet ontology. Display the sound classes that are in the
AudioSet ontology but are not possible outputs from the YAMNet network.

audiosetClasses = ygraph.Nodes.Name;
classDiff = setdiff(audiosetClasses,classes)

classDiff = 111×1 string
 "Acoustic environment"
 "Alto saxophone"
 "Background noise"
 "Bass (frequency range)"
 "Bass (instrument role)"
 "Bassline"
 "Bassoon"
 "Battle cry"
 "Bay"
 "Beat"
 "Birthday music"
 "Blare"
 "Booing"
 "Brief tone"
 "Bugle"
 "Cat communication"
 "Cellphone buzz, vibrating alert"
 "Channel, environment and background"
 "Chipmunk"
 "Chord"
 "Clavinet"

2 Functions

2-160

 "Clunk"
 "Compact disc"
 "Cornet"
 "Crash cymbal"
 "Cumbia"
 "Deformable shell"
 "Digestive"
 "Domestic sounds, home sounds"
 "Donkey, ass"
 ⋮

Highlight the classes that are not possible outputs from YAMNet.

highlight(p,classDiff,'NodeColor','r')

Analyze one of the major categories.

categoryToAnalyze = ;
subsetNodes = dfsearch(ygraph,categoryToAnalyze);
ygraphSubset = subgraph(ygraph,subsetNodes);
classToHighlight = intersect(classDiff,ygraphSubset.Nodes.Name);
pSub = plot(ygraphSubset);
layout(pSub,'layered')
highlight(pSub,classToHighlight,'NodeColor','r')

 yamnetGraph

2-161

Visualize Specificity of Sound Classes

Create a digraph object that describes the AudioSet ontology.

ygraph = yamnetGraph;

Specify a sound class to visualize, and specify the number of predecessors and successors. The
available sound classes are only those that are supported as outputs from YAMNet. If you specify
more predecessors or successors than those in the ontology, only the predecessors and successors in
the ontology are shown.

soundClass = ;

numPredecessors = ;

numSuccessors = ;

pred = nearest(ygraph,soundClass,numPredecessors,'Direction','incoming');
suc = nearest(ygraph,soundClass,numSuccessors,'Direction','outgoing');
subClasses = [soundClass;pred;suc];

ygraphSub = subgraph(ygraph,unique(subClasses));
p = plot(ygraphSub);

2 Functions

2-162

layout(p,'layered')
highlight(p,soundClass,'Marker','d','NodeColor','red','MarkerSize',6)

Output Arguments
ygraph — AudioSet ontology graph with directed edges
digraph object

AudioSet ontology graph with directed edges, returned as a digraph object.

classes — Classes supported by YAMNet
string array

Classes supported by YAMNet, returned as a string array. The classes supported by YAMNet are a
subset of the AudioSet ontology.

Tips
Google® provides a website where you can explore the AudioSet ontology and the corresponding data
set: https://research.google.com/audioset/ontology/index.html.

Version History
Introduced in R2020b

 yamnetGraph

2-163

https://research.google.com/audioset/ontology/index.html

References
[1] Gemmeke, Jort F., et al. “Audio Set: An Ontology and Human-Labeled Dataset for Audio Events.”

2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
IEEE, 2017, pp. 776–80. DOI.org (Crossref), doi:10.1109/ICASSP.2017.7952261.

[2] Hershey, Shawn, et al. “CNN Architectures for Large-Scale Audio Classification.” 2017 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2017,
pp. 131–35. DOI.org (Crossref), doi:10.1109/ICASSP.2017.7952132.

See Also
Apps
Signal Labeler

Blocks
Sound Classifier | VGGish Embeddings | VGGish Preprocess | VGGish | YAMNet | YAMNet Preprocess

Functions
classifySound | vggish | vggishEmbeddings | vggishPreprocess | yamnet |
yamnetPreprocess

2 Functions

2-164

classifySound
Classify sounds in audio signal

Syntax
sounds = classifySound(audioIn,fs)
sounds = classifySound(audioIn,fs,Name,Value)

[sounds,timestamps] = classifySound(___)
[sounds,timestamps,resultsTable] = classifySound(___)

classifySound(___)

Description
sounds = classifySound(audioIn,fs) returns the sound classes detected over time in the
audio input, audioIn, with sample rate fs.

sounds = classifySound(audioIn,fs,Name,Value) specifies options using one or more
Name,Value pair arguments.
Example: sounds = classifySound(audioIn,fs,'SpecificityLevel','low') classifies
sounds using low specificity.

[sounds,timestamps] = classifySound(___) also returns time stamps associated with each
detected sound.

[sounds,timestamps,resultsTable] = classifySound(___) also returns a table containing
result details.

classifySound(___) with no output arguments creates a word cloud of the identified sounds in
the audio signal.

This function requires both Audio Toolbox and Deep Learning Toolbox.

Examples

Download classifySound

Download and unzip the Audio Toolbox™ support for YAMNet.

If the Audio Toolbox support for YAMNet is not installed, then the first call to the function provides a
link to the download location. To download the model, click the link. Unzip the file to a location on the
MATLAB path.

Alternatively, execute the following commands to download and unzip the YAMNet model to your
temporary directory.

downloadFolder = fullfile(tempdir,'YAMNetDownload');
loc = websave(downloadFolder,'https://ssd.mathworks.com/supportfiles/audio/yamnet.zip');

 classifySound

2-165

YAMNetLocation = tempdir;
unzip(loc,YAMNetLocation)
addpath(fullfile(YAMNetLocation,'yamnet'))

Identify Colored Noise

Generate 1 second of pink noise assuming a 16 kHz sample rate.

fs = 16e3;
x = pinknoise(fs);

Call classifySound with the pink noise signal and the sample rate.

identifiedSound = classifySound(x,fs)

identifiedSound =
"Pink noise"

Identify and Locate Sounds in Time

Read in an audio signal. Call classifySound to return the detected sounds and corresponding time
stamps.

[audioIn,fs] = audioread('multipleSounds-16-16-mono-18secs.wav');
[sounds,timeStamps] = classifySound(audioIn,fs);

Plot the audio signal and label the detected sound regions.

t = (0:numel(audioIn)-1)/fs;
plot(t,audioIn)
xlabel('Time (s)')
axis([t(1),t(end),-1,1])

textHeight = 1.1;
for idx = 1:numel(sounds)
 patch([timeStamps(idx,1),timeStamps(idx,1),timeStamps(idx,2),timeStamps(idx,2)], ...
 [-1,1,1,-1], ...
 [0.3010 0.7450 0.9330], ...
 'FaceAlpha',0.2);
 text(timeStamps(idx,1),textHeight+0.05*(-1)^idx,sounds(idx))
end

2 Functions

2-166

Select a region and listen only to the selected region.

sampleStamps = floor(timeStamps*fs)+1;

soundEvent = ;

isolatedSoundEvent = audioIn(sampleStamps(soundEvent,1):sampleStamps(soundEvent,2));
sound(isolatedSoundEvent,fs);
display('Detected Sound = ' + sounds(soundEvent))

 "Detected Sound = Snoring"

Identify Only Specific Sounds

Read in an audio signal containing multiple different sound events.

[audioIn,fs] = audioread('multipleSounds-16-16-mono-18secs.wav');

Call classifySound with the audio signal and sample rate.

[sounds,~,soundTable] = classifySound(audioIn,fs);

The sounds string array contains the most likely sound event in each region.

sounds

 classifySound

2-167

sounds = 1×5 string
 "Stream" "Machine gun" "Snoring" "Bark" "Meow"

The soundTable contains detailed information regarding the sounds detected in each region,
including score means and maximums over the analyzed signal.

soundTable

soundTable=5×2 table
 TimeStamps Results
 ________________ ___________

 0 3.92 {4×3 table}
 4.0425 6.0025 {3×3 table}
 6.86 9.1875 {2×3 table}
 10.658 12.373 {4×3 table}
 12.985 16.66 {4×3 table}

View the last detected region.

soundTable.Results{end}

ans=4×3 table
 Sounds AverageScores MaxScores
 ________________________ _____________ _________

 "Animal" 0.79514 0.99941
 "Domestic animals, pets" 0.80243 0.99831
 "Cat" 0.8048 0.99046
 "Meow" 0.6342 0.90177

Call classifySound again. This time, set IncludedSounds to Animal so that the function retains
only regions in which the Animal sound class is detected.

[sounds,timeStamps,soundTable] = classifySound(audioIn,fs, ...
 'IncludedSounds','Animal');

The sounds array only returns sounds specified as included sounds. The sounds array now contains
two instances of Animal that correspond to the regions declared as Bark and Meow previously.

sounds

sounds = 1×2 string
 "Animal" "Animal"

The sound table only includes regions where the specified sound classes were detected.

soundTable

soundTable=2×2 table
 TimeStamps Results
 ________________ ___________

 10.658 12.373 {4×3 table}

2 Functions

2-168

 12.985 16.66 {4×3 table}

View the last detected region in soundTable. The results table still includes statistics for all
detected sounds in the region.

soundTable.Results{end}

ans=4×3 table
 Sounds AverageScores MaxScores
 ________________________ _____________ _________

 "Animal" 0.79514 0.99941
 "Domestic animals, pets" 0.80243 0.99831
 "Cat" 0.8048 0.99046
 "Meow" 0.6342 0.90177

To explore which sound classes are supported by classifySound, use yamnetGraph.

Exclude Specific Sounds

Read in an audio signal and call classifySound to inspect the most likely sounds arranged in
chronological order of detection.

[audioIn,fs] = audioread("multipleSounds-16-16-mono-18secs.wav");
sounds = classifySound(audioIn,fs)

sounds = 1×5 string
 "Stream" "Machine gun" "Snoring" "Bark" "Meow"

Call classifySound again and set ExcludedSounds to Meow to exclude the sound Meow from the
results. The segment previously classified as Meow is now classified as Cat, which is its immediate
predecessor in the AudioSet ontology.

sounds = classifySound(audioIn,fs,"ExcludedSounds","Meow")

sounds = 1×5 string
 "Stream" "Machine gun" "Snoring" "Bark" "Cat"

Call classifySound again, and set ExcludedSounds to Cat. When you exclude a sound, all
successors are also excluded. This means that excluding the sound Cat also excludes the sound
Meow. The segment originally classified as Meow is now classified as Domestic animals, pets,
which is the immediate predecessor to Cat in the AudioSet ontology.

sounds = classifySound(audioIn,fs,"ExcludedSounds","Cat")

sounds = 1×5 string
 "Stream" "Machine gun" "Snoring" "Bark" "Domestic animals, pets"

Call classifySound again and set ExcludedSounds to Domestic animals, pets. The sound
class, Domestic animals, pets is a predecessor to both Bark and Meow, so by excluding it, the

 classifySound

2-169

sounds previously identified as Bark and Meow are now both identified as the predecessor of
Domestic animals, pets, which is Animal.

sounds = classifySound(audioIn,fs,"ExcludedSounds","Domestic animals, pets")

sounds = 1×5 string
 "Stream" "Machine gun" "Snoring" "Animal" "Animal"

Call classifySound again and set ExcludedSounds to Animal. The sound class Animal has no
predecessors.

sounds = classifySound(audioIn,fs,"ExcludedSounds","Animal")

sounds = 1×3 string
 "Stream" "Machine gun" "Snoring"

If you want to avoid detecting Meow and its predecessors, but continue detecting successors under
the same predecessors, use the IncludedSounds option. Call yamnetGraph to get a list of all
supported classes. Remove Meow and its predecessors from the array of all classes, and then call
classifySound again.

[~,classes] = yamnetGraph;
classesToInclude = setxor(classes,["Meow","Cat","Domestic animals, pets","Animal"]);
sounds = classifySound(audioIn,fs,"IncludedSounds",classesToInclude)

sounds = 1×4 string
 "Stream" "Machine gun" "Snoring" "Bark"

Generate Word Cloud

Read in an audio signal and listen to it.

[audioIn,fs] = audioread('multipleSounds-16-16-mono-18secs.wav');
sound(audioIn,fs)

Call classifySound with no output arguments to generate a word cloud of the detected sounds.

classifySound(audioIn,fs);

2 Functions

2-170

Modify default parameters of classifySound to explore the effect on the word cloud.

threshold = ;

minimumSoundSeparation = ;

minimumSoundDuration = ;

classifySound(audioIn,fs, ...
 'Threshold',threshold, ...
 'MinimumSoundSeparation',minimumSoundSeparation, ...
 'MinimumSoundDuration',minimumSoundDuration);

 classifySound

2-171

Input Arguments
audioIn — Audio input
column vector

Audio input, specified as a one-channel signal (column vector).
Data Types: single | double

fs — Sample rate (Hz)
positive scalar

Sample rate in Hz, specified as a positive scalar.
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Threshold',0.1

2 Functions

2-172

Threshold — Confidence threshold for reporting sounds
0.35 (default) | scalar in the range (0,1)

Confidence threshold for reporting sounds, specified as the comma-separated pair consisting of
'Threshold' and a scalar in the range (0,1).
Data Types: single | double

MinimumSoundSeparation — Minimum separation between detected sound regions (s)
0.25 (default) | positive scalar

Minimum separation between consecutive regions of the same detected sound in seconds, specified
as the comma-separated pair consisting of 'MinimumSoundSeparation' and a positive scalar.
Regions closer than the minimum sound separation are merged.
Data Types: single | double

MinimumSoundDuration — Minimum duration of detected sound region (s)
0.5 (default) | positive scalar

Minimum duration of detected sound regions in seconds, specified as the comma-separated pair
consisting of 'MinimumSoundDuration' and a positive scalar. Regions shorter than the minimum
sound duration are discarded.
Data Types: single | double

IncludedSounds — Sounds to include in results
character vector | cell array of character vectors | string scalar | string array

Sounds to include in results, specified as the comma-separated pair consisting of
'IncludedSounds' and a character vector, cell array of character vectors, string scalar, or string
array. Use yamnetGraph to inspect and analyze the sounds supported by classifySound. By
default, all supported sounds are included.

This option cannot be used with the 'ExcludedSounds' option.
Data Types: char | string | cell

ExcludedSounds — Sounds to exclude from results
character vector | cell array of character vectors | string scalar | string array

Sounds to exclude from results, specified as the comma-separated pair consisting of
'ExcludedSounds' and a character vector, cell array of character vectors, string scalar, or string
array. When you specify an excluded sound, any successors of the excluded sound are also excluded.
Use yamnetGraph to inspect valid sound classes and their predecessors and successors according to
the AudioSet ontology. By default, no sounds are excluded.

This option cannot be used with the 'IncludedSounds' option.
Data Types: char | string | cell

SpecificityLevel — Specificity of reported sounds
'high' (default) | 'low' | 'none'

Specificity of reported sounds, specified as the comma-separated pair consisting of
'SpecificityLevel' and 'high', 'low', or 'none'. Set SpecificityLevel to 'high' to make
the function emphasize specific sound classes instead of general categories. Set SpecificityLevel

 classifySound

2-173

to 'low' to make the function return the most general sound categories instead of specific sound
classes. Set SpecificityLevel to 'none' to make the function return the most likely sound,
regardless of its specificity.
Data Types: char | string

Output Arguments
sounds — Sounds detected over time in audio input
string array

Sounds detected over time in audio input, returned as a string array containing the detected sounds
in chronological order.

timestamps — Time stamps associated with detected sounds (s)
N-by-2 matrix

Time stamps associated with detected sounds in seconds, returned as an N-by-2 matrix. N is the
number of detected sounds. Each row of timestamps contains the start and end times of the
detected sound region.

resultsTable — Detailed results of sound classification
table

Detailed results of sound classification, returned as a table. The number of rows in the table is equal
to the number of detected sound regions. The columns are as follows.

• TimeStamps –– Time stamps corresponding to each analyzed region.
• Results –– Table with three variables:

• Sounds –– Sounds detected in each region.
• AverageScores –– Mean network scores corresponding to each detected sound class in the

region.
• MaxScores –– Maximum network scores corresponding to each detected sound class in the

region.

Algorithms
The classifySound function uses YAMNet to classify audio segments into sound classes described
by the AudioSet ontology. The classifySound function preprocesses the audio so that it is in the
format required by YAMNet and postprocesses YAMNet's predictions with common tasks that make
the results more interpretable.

Preprocess

1 Resample audioIn to 16 kHz and cast to single precision.
2 Buffer into L overlapping segments. Each segment is 0.98 seconds and the segments are

overlapped by 0.8575 seconds.
3 Pass each segment through a one-sided short time Fourier transform using a 25 ms periodic

Hann window with a 10 ms hop and a 512-point DFT. The audio is now represented by a 257-
by-96-by-L array, where 257 is the number of bins in the one-sided spectra and 96 is the number
of spectra in the spectrograms.

2 Functions

2-174

4 Convert the complex spectral values to magnitude and discard phase information.
5 Pass the one-sided magnitude spectrum through a 64-band mel-spaced filter bank and then sum

the magnitudes in each band. The audio is now represented by a 96-by-64-by-1-by-L array, where
96 is the number of spectra in the mel spectrogram, 64 is the number of mel bands, and the
spectrograms are now spaced along the fourth dimension for compatibility with the YAMNet
model.

6 Convert the mel spectrograms to a log scale.

Prediction

Pass the 96-by-64-by-1-by-L array of mel spectrograms through YAMNet to return an L-by-521 matrix.
The output from YAMNet corresponds to confidence scores for each of the 521 sound classes over
time.

Postprocess
Sound Event Region Detection

1 Pass each of the 521 confidence signals through a moving mean filter with a window length of 7.
2 Pass each of the signals through a moving median filter with a window length of 3.
3 Convert the confidence signals to binary masks using the specified Threshold.
4 Discard any sound shorter than MinimumSoundDuration.
5 Merge regions that are closer than MinimumSoundSeparation.

Consolidate Overlapping Sound Regions

Consolidate identified sound regions that overlap by 50% or more into single regions. The region
start time is the smallest start time of all sounds in the group. The region end time is the largest end
time of all sounds in the group. The function returns time stamps, sounds classes, and the mean and
maximum confidence of the sound classes within the region in the resultsTable.

Select Specificity of Sound Group

You can set the specificity level of your sound classification using the SpecificityLevel option. For
example, assume there are four sound classes in a sound group with the following corresponding
mean scores over the sound region:

• Water –– 0.82817
• Stream –– 0.81266
• Trickle, dribble –– 0.23102
• Pour –– 0.20732

The sound classes, Water, Stream, Trickle, dribble, and Pour are situated in AudioSet ontology
as indicated by the graph:

 classifySound

2-175

The functions returns the sound class for the sound group in the sounds output argument depending
on the SpecificityLevel:

• "high" (default) –– In this mode, Stream is preferred to Water, and Trickle, dribble is
preferred to Pour. Stream has a higher mean score over the region, so the function returns
Stream in the sounds output for the region.

• "low" –– In this mode, the most general ontological category for the sound class with the highest
mean confidence over the region is returned. For Trickle, dribble and Pour, the most
general category is Sounds of things. For Stream and Water, the most general category is
Natural sounds. Because Water has the highest mean confidence over the sound region, the
function returns Natural sounds.

• "none" –– In this mode, the function returns the sound class with the highest mean confidence
score, which in this example is Water.

Version History
Introduced in R2020b

References
[1] Gemmeke, Jort F., et al. “Audio Set: An Ontology and Human-Labeled Dataset for Audio Events.”

2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
IEEE, 2017, pp. 776–80. DOI.org (Crossref), doi:10.1109/ICASSP.2017.7952261.

[2] Hershey, Shawn, et al. “CNN Architectures for Large-Scale Audio Classification.” 2017 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2017,
pp. 131–35. DOI.org (Crossref), doi:10.1109/ICASSP.2017.7952132.

2 Functions

2-176

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
Apps
Signal Labeler

Blocks
Sound Classifier | VGGish Embeddings | VGGish Preprocess | VGGish | YAMNet | YAMNet Preprocess

Functions
vggish | vggishEmbeddings | vggishPreprocess | yamnet | yamnetGraph |
yamnetPreprocess

 classifySound

2-177

acousticFluctuation
Perceived fluctuation strength of acoustic signal

Syntax
fluctuation = acousticFluctuation(audioIn,fs)
fluctuation = acousticFluctuation(audioIn,fs,calibrationFactor)
fluctuation = acousticFluctuation(specificLoudnessIn)
fluctuation = acousticFluctuation(___ ,Name,Value)

[fluctuation,specificFluctuation] = acousticFluctuation(___)
[fluctuation,specificFluctuation,fMod] = acousticFluctuation(___)

acousticFluctuation(___)

Description
fluctuation = acousticFluctuation(audioIn,fs) returns fluctuation strength in vacil based
on Zwicker et al. [1] and ISO 532-1 time-varying loudness [2].

fluctuation = acousticFluctuation(audioIn,fs,calibrationFactor) specifies a
nondefault microphone calibration factor used to compute loudness.

fluctuation = acousticFluctuation(specificLoudnessIn) computes fluctuation using
time-varying specific loudness.

fluctuation = acousticFluctuation(___ ,Name,Value) specifies options using one or more
Name,Value pair arguments.
Example: fluctuation = acousticFluctuation(audioIn,fs,'SoundField','diffuse')
returns fluctuation assuming a diffuse sound field.

[fluctuation,specificFluctuation] = acousticFluctuation(___) also returns specific
fluctuation strength.

[fluctuation,specificFluctuation,fMod] = acousticFluctuation(___) also returns
the dominant modulation frequency.

acousticFluctuation(___) with no output arguments plots fluctuation strength and specific
fluctuation strength and displays the modulation frequency textually. If the input is stereo, the 3-D
plot shows the sum of both channels.

Examples

Measure Acoustic Fluctuation

Measure acoustic fluctuation based on Zwicker et al [2] and ISO 532-1 [1]. Assume the recording
level is calibrated such that a 1 kHz tone registers as 100 dB on an SPL meter.

2 Functions

2-178

[audioIn,fs] = audioread('WashingMachine-16-44p1-stereo-10secs.wav');

fluctuation = acousticFluctuation(audioIn,fs);

Fluctuation Measurements Using Calibrated Microphone

Set up an experiment as indicated by the diagram.

Create an audioDeviceReader object to read from the microphone and an audioDeviceWriter
object to write to your speaker.

fs = 48e3;
deviceReader = audioDeviceReader(fs,"SamplesPerFrame",2048);
deviceWriter = audioDeviceWriter(fs);

Create an audioOscillator object to generate a 1 kHz sinusoid.

osc = audioOscillator("sine",1e3,"SampleRate",fs,"SamplesPerFrame",2048);

Create a dsp.AsyncBuffer object to buffer data acquired from the microphone.

dur = 5;
buff = dsp.AsyncBuffer(dur*fs);

For five seconds, play the sinusoid through your speaker and record using your microphone. While
the audio streams, note the loudness as reported by your SPL meter. Once complete, read the
contents of the buffer object.

numFrames = dur*(fs/osc.SamplesPerFrame);
for ii = 1:numFrames
 audioOut = osc();
 deviceWriter(audioOut);

 acousticFluctuation

2-179

 audioIn = deviceReader();
 write(buff,audioIn);
end

SPLreading = 60.4;

micRecording = read(buff);

To compute the calibration factor for the microphone, use the calibrateMicrophone function.

calibrationFactor = calibrateMicrophone(micRecording(fs+1:end,:),deviceReader.SampleRate,SPLreading);

You can now use the calibration factor you determined to measure the fluctuation of any sound that is
acquired through the same microphone recording chain.

Perform the experiment again, this time, add 100% amplitude modulation at 4 Hz. To create the
modulation signal, use audioOscillator and specify the amplitude as 0.5 and the DC offset as 0.5
to oscillate between 0 and 1.

mod = audioOscillator("sine",4,"SampleRate",fs, ...
 "Amplitude",0.5,"DCOffset",0.5,"SamplesPerFrame",2048);

dur = 5;
buff = dsp.AsyncBuffer(dur*fs);
numFrames = dur*(fs/osc.SamplesPerFrame);
for ii = 1:numFrames
 audioOut = osc().*mod();
 deviceWriter(audioOut);

 audioIn = deviceReader();
 write(buff,audioIn);
end

micRecording = read(buff);

Call acousticFluctuation with the microphone recording, sample rate, and calibration factor. The
fluctuation reported from acousticFluctuation uses the true acoustic loudness measurement as
specified by 532-1. Display the average fluctuation strength over the 5 seconds.

fluctuation = acousticFluctuation(micRecording,deviceReader.SampleRate,calibrationFactor);
fprintf('Average fluctuation = %d (vacil)',mean(fluctuation(501:end,:)))

Average fluctuation = 1.413824e+00 (vacil)

acousticFluctuation(micRecording,deviceReader.SampleRate,calibrationFactor)

2 Functions

2-180

Measure Fluctuation from Specific Loudness

Read in an audio file.

[audioIn,fs] = audioread("Engine-16-44p1-stereo-20sec.wav");

Call acousticLoudness to calculate the specific loudness.

[~,specificLoudness] = acousticLoudness(audioIn,fs,'TimeVarying',true);

Call acousticSharpness without any outputs to plot the acoustic sharpness.

acousticSharpness(specificLoudness,'TimeVarying',true)

 acousticFluctuation

2-181

Call acousticFluctuation without any outputs to plot the acoustic fluctuation.

acousticFluctuation(specificLoudness)

2 Functions

2-182

Effect of Frequency Modulation on Acoustic Fluctuation

Generate a pure tone with a 1500 Hz center frequency and approximately 700 Hz frequency deviation
at a modulation frequency of 0.25 Hz.

fs = 48e3;

fMod = ;

dur = ;

numSamples = dur*fs;
t = (0:numSamples-1)/fs;

tone = sin(2*pi*t*fMod)';

fc = ;

excursionRatio = ;

excursion = 2*pi*(fc*excursionRatio/fs);
audioIn = modulate(tone,fc,fs,'fm',excursion);

 acousticFluctuation

2-183

Listen to the first 5 seconds of the audio and plot the spectrogram.

sound(audioIn(1:5*fs),fs)
spectrogram(audioIn(1:5*fs),hann(512,'periodic'),256,1024,fs,'yaxis')

Call acousticFluctuation with no output arguments to plot the acoustic fluctuation strength.

acousticFluctuation(audioIn,fs);

2 Functions

2-184

Specify Known Modulation Frequency

The acousticFluctuation function enables you to specify a known fluctuation frequency. If you do
not specify a known fluctuation frequency, the function auto-detects the fluctuation.

Create a dsp.AudioFileReader object to read in an audio signal frame-by-frame. Create an
audioOscillator object to create a modulation wave. Apply the modulation wave to the audio file.

fileReader = dsp.AudioFileReader('Engine-16-44p1-stereo-20sec.wav');

fmod = ;

amplitude = ;

osc = audioOscillator('sine',fmod, ...
 "DCOffset",0.5, ...
 "Amplitude",amplitude, ...
 "SampleRate",fileReader.SampleRate, ...
 "SamplesPerFrame",fileReader.SamplesPerFrame);

testSignal = [];
while ~isDone(fileReader)
 x = fileReader();

 acousticFluctuation

2-185

 testSignal = [testSignal;osc().*fileReader()];
end

Listen to two seconds of the test signal and plot its waveform.

samplesToView = 1:2*fileReader.SampleRate;
sound(testSignal(samplesToView,:),fileReader.SampleRate);

plot(samplesToView/fileReader.SampleRate,testSignal(samplesToView,:))
xlabel('Time (s)')

Plot the acoustic fluctuation. The detected frequency of the modulation is displayed textually.

acousticFluctuation(testSignal,fileReader.SampleRate);

2 Functions

2-186

Specify the known modulation frequency and then plot the acoustic fluctuation again.

acousticFluctuation(testSignal,fileReader.SampleRate,'ModulationFrequency',fmod)

 acousticFluctuation

2-187

Input Arguments
audioIn — Audio input
column vector | two-column matrix

Audio input, specified as a column vector (mono) or matrix with two columns (stereo).

Tip To measure fluctuation strength given any modulation frequency, the recommended minimum
signal duration is 10 seconds.

Data Types: single | double

fs — Sample rate (Hz)
positive scalar

Sample rate in Hz, specified as a positive scalar. The recommended sample rate for new recordings is
48 kHz.

Note The minimum acceptable sample rate is 8 kHz.

Data Types: single | double

2 Functions

2-188

calibrationFactor — Microphone calibration factor
sqrt(8) (default) | positive scalar

Microphone calibration factor, specified as a positive scalar. The default calibration factor
corresponds to a full-scale 1 kHz sine wave with a sound pressure level of 100 dB (SPL). To compute
the calibration factor specific to your system, use the calibrateMicrophone function.
Data Types: single | double

specificLoudnessIn — Specific loudness (sones/Bark)
T-by-240-by-C

Specific loudness in sones/Bark, specified as a T-by-240-by-C array, where:

• T is one per 2 ms of the time-varying signal.
• 240 is the number of Bark bins in the domain for specific loudness. The Bark bins are

0.1:0.1:24.
• C is the number of channels.

You can use the acousticLoudness function to calculate time-varying specific loudness using this
syntax:

[~,specificLoudness] = acousticLoudness(audioIn,fs,'TimeVarying',true);

Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: acousticFluctuation(audioIn,fs,'ModulationFrequency',50)

ModulationFrequency — Known modulation frequency (Hz)
'auto-detect' (default) | scalar or two-element vector with values in the range [0.1,100]

Known modulation frequency in Hz, specified either 'auto-detect' or as a scalar or two-element
vector with values in the range [0.1,100]. If ModulationFrequency is set to 'auto-detect',
then the function limits the search range to between 0.2 and 64 Hz. If the input is mono, then the
modulation frequency must be specified as a scalar. If the input is stereo, then the modulation
frequency can be specified as either a scalar or two-element vector.
Data Types: single | double | char | string

SoundField — Sound field
'free' (default) | 'diffuse'

Sound field of audio recording, specified as 'free' or 'diffuse'.
Data Types: char | string

PressureReference — Reference pressure (Pa)
20e-6 (default) | positive scalar

 acousticFluctuation

2-189

Reference pressure for dB calculation in pascals, specified as a positive scalar. The default value, 20
micropascals, is the common value of air.
Data Types: single | double

Output Arguments
fluctuation — Fluctuation strength (vacil)
K-by-1 | K-by-2

Fluctuation strength in vacil, returned as a K-by-1 column vector or K-by-2 matrix of independent
channels. K corresponds to the time dimension.
Data Types: single | double

specificFluctuation — Specific fluctuation strength (vacil/Bark)
K-by-47 matrix | K-by-47-by-2 array

Specific fluctuation strength in vacil/Bark, returned as a K-by-47 matrix or a K-by-47-by-2 array. The
first dimension of specificFluctation, K, corresponds to the time dimension and matches the
first dimension of fluctuation. The second dimension of specificFluctation, 47, corresponds
to bands on the Bark scale, with centers from 0.5 to 23.5, inclusive, in 0.5 increments. The third
dimension of specificFluctation corresponds to the number of channels and matches the second
dimension of fluctuation.
Data Types: single | double

fMod — Dominant modulation frequency (Hz)
scalar (mono input) | 1-by-2 vector (stereo input)

Dominant modulation frequency in Hz, returned as a scalar for mono input or a 1-by-2 vector for
stereo input.
Data Types: single | double

Algorithms
Acoustic fluctuation strength is a perceptual measurement of slow modulations in amplitude or
frequency. The acoustic loudness algorithm is described in [1] and implemented in the
acousticLoudness function. The acoustic fluctuation calculation is described in [2]. The algorithm
for acoustic fluctuation is outlined as follows.

f luctuation =
0.008 ∫

z = 0

24
ΔL dz

fmod
4 + 4

fmod

Where fmod is the detected or known modulation frequency and ΔL is the perceived modulation depth.
If the modulation frequency is not specified when calling acousticFluctuation, it is auto-detected
by peak-picking a frequency-domain representation of the acoustic loudness. The perceived
modulation depth, ΔL, is calculated by passing rectified specific loudness bands through ½ octave
filters centered around fmod, followed by a lowpass filter to determine the envelope.

2 Functions

2-190

Version History
Introduced in R2020b

References
[1] ISO 532-1:2017(E). "Acoustics – Methods for calculating loudness – Part 1: Zwicker method."

International Organization for Standardization.

[2] Zwicker, Eberhard, and H. Fastl. Psychoacoustics: Facts and Models. 2nd updated ed, Springer,
1999.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
acousticLoudness | acousticSharpness | calibrateMicrophone | acousticRoughness

Topics
“Effect of Soundproofing on Perceived Noise Levels”

 acousticFluctuation

2-191

cepstralCoefficients
Extract cepstral coefficients

Syntax
coeffs = cepstralCoefficients(S)
coeffs = cepstralCoefficients(S,Name=Value)

Description
coeffs = cepstralCoefficients(S) returns the cepstral coefficients over time. The input, S,
must be a real-valued spectrogram or auditory spectrogram.

coeffs = cepstralCoefficients(S,Name=Value) specifies options using one or more name-
value arguments.

For example, coeffs = cepstralCoefficients(S,Rectification="cubic-root") uses
cubic-root rectification to calculate the coefficients.

Examples

Mel Frequency Cepstral Coefficients

Read an audio file into the workspace.

[audioIn,fs] = audioread('SpeechDFT-16-8-mono-5secs.wav');

Convert the audio signal to a frequency-domain representation using 30 ms windows with 15 ms
overlap. Because the input is real and therefore the spectrum is symmetric, you can use just one side
of the frequency domain representation without any loss of information. Convert the complex
spectrum to the magnitude spectrum: phase information is discarded when calculating mel frequency
cepstral coefficients (MFCC).

windowLength = round(0.03*fs);
overlapLength = round(0.015*fs);
S = stft(audioIn,"Window",hann(windowLength,"periodic"),"OverlapLength",overlapLength,"FrequencyRange","onesided");
S = abs(S);

Design a one-sided frequency-domain mel filter bank. Apply the filter bank to the frequency-domain
representation to create a mel spectrogram.

filterBank = designAuditoryFilterBank(fs,'FFTLength',windowLength);
melSpec = filterBank*S;

Call cepstralCofficients with the mel spectrogram to create MFCC.

melcc = cepstralCoefficients(melSpec);

2 Functions

2-192

Gammatone Frequency Cepstral Coefficients

Read an audio signal and convert it to a one-sided magnitude short-time Fourier transform. Use a 50
ms periodic Hamming window with a 10 ms hop.

[audioIn,fs] = audioread('NoisySpeech-16-22p5-mono-5secs.wav');

windowLength = round(0.05*fs);
hopLength = round(0.01*fs);
overlapLength = windowLength - hopLength;

S = stft(audioIn,"Window",hamming(windowLength,'periodic'),"OverlapLength",overlapLength,"FrequencyRange","onesided");
S = abs(S);

Design a one-sided frequency-domain gammatone filter bank. Apply the filter bank to the frequency-
domain representation to create a gammatone spectrogram.

filterBank = designAuditoryFilterBank(fs,'FFTLength',windowLength,"FrequencyScale","erb");
gammaSpec = filterBank*S;

Call cepstralCoefficients with the gammatone spectrogram to create gammatone frequency
cepstral coefficients. Use a cubic-root rectification.

gammacc = cepstralCoefficients(gammaSpec,"Rectification","cubic-root");

Custom Cepstral Coefficients

Cepstral coefficients are commonly used as compact representations of audio signals. Generally, they
are calculated after an audio signal is passed through a filter bank and the energy in the individual
filters is summed. Researchers have proposed various filter banks based on psychoacoustic
experiments (such as mel, Bark, and ERB). Using the cepstralCoefficients function, you can
define your own custom filter bank and then analyze the resulting cepstral coefficients.

Read in an audio file for analysis.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');

Design a filter bank that consists of 20 triangular filters with band edges over the range 62.5 Hz to
8000 Hz. Spread the filters evenly in the log domain. For simplicity, design the filters in bins. Most
popular auditory filter banks are designed in a continuous domain, such as Hz, mel, or Bark, and then
warped back to bins.

numFilters = ;

filterbankStart = ;

filterbankEnd = ;

numBandEdges = numFilters + 2;
NFFT = 1024;
filterBank = zeros(numFilters,NFFT);

bandEdges = logspace(log10(filterbankStart),log10(filterbankEnd),numBandEdges);

 cepstralCoefficients

2-193

bandEdgesBins = round((bandEdges/fs)*NFFT) + 1;

for ii = 1:numFilters
 filt = triang(bandEdgesBins(ii+2)-bandEdgesBins(ii));
 leftPad = bandEdgesBins(ii);
 rightPad = NFFT - numel(filt) - leftPad;
 filterBank(ii,:) = [zeros(1,leftPad),filt',zeros(1,rightPad)];
end

Plot the filter bank.

frequencyVector = (fs/NFFT)*(0:NFFT-1);
plot(frequencyVector,filterBank');
xlabel('Hz')
axis([0 frequencyVector(NFFT/2) 0 1])

Transform the audio signal using the stft function, and then apply the custom filter bank. Apply the
filter bank to the frequency-domain representation to create a custom auditory spectrogram. Plot the
spectrogram.

[S,~,t] = stft(audioIn,fs,"Window",hann(NFFT,'periodic'),"FrequencyRange","twosided");
S = abs(S);
spec = filterBank*S;

surf(t,bandEdges(2:end-1),10*log10(spec),'EdgeColor','none')
view([0,90])
axis([t(1) t(end) bandEdges(2) bandEdges(end-1)])
xlabel('Time (s)')

2 Functions

2-194

ylabel('Frequency (Hz)')
c = colorbar;
c.Label.String = 'Power (dB)';

Call cepstralCoefficients with the custom auditory spectrogram to create custom cepstral
coefficients.

ccc = cepstralCoefficients(S);

Extract Cepstral Coefficients from Streaming Audio

Create a dsp.AudioFileReader object to read in audio frame-by-frame. Create a
dsp.AsyncBuffer object to buffer the input into overlapped frames.

fileReader = dsp.AudioFileReader("Ambiance-16-44p1-mono-12secs.wav");
buff = dsp.AsyncBuffer;

Design a two-sided mel filter bank that is compatible with 30 ms windows.

windowLength = round(0.03*fileReader.SampleRate);
filterBank = designAuditoryFilterBank(fileReader.SampleRate,"FFTLength",windowLength,"OneSided",false);

In an audio stream loop:

1 Read a frame of data from the audio file.

 cepstralCoefficients

2-195

2 Write the frame of data to the buffer.
3 If enough data is available for a hop, read a 30 ms frame of data from the buffer with a 20 ms

overlap between frames.
4 Transform the data to a magnitude spectrum.
5 Apply the mel filter bank to create a mel spectrum.
6 Call cepstralCoefficients to return the mel frequency cepstral coefficients (MFCC).

win = hann(windowLength,'periodic');
overlapLength = round(0.02*fileReader.SampleRate);
hopLength = windowLength - overlapLength;

while ~isDone(fileReader)
 audioIn = fileReader();
 write(buff,audioIn);
 while buff.NumUnreadSamples > hopLength
 x = read(buff,windowLength,overlapLength);
 X = abs(fft(x.*win));
 melSpectrum = filterBank*X;
 melcc = cepstralCoefficients(melSpectrum);
 end
end

Input Arguments
S — Spectrogram or auditory spectrogram
matrix | 3-D array

Spectrogram or auditory spectrogram, specified as an L-by-M matrix or L-by-M-by-N array, where:

• L –– Number of frequency bands
• M –– Number of frames
• N –– Number of channels

Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: cepstralCoefficients(S,NumCoeffs=16)

NumCoeffs — Number of cepstral coefficients returned
13 (default) | positive integer greater than 1

Number of coefficients returned for each window of data, specified as a positive integer greater than
1.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

2 Functions

2-196

Rectification — Type of nonlinear rectification
"log" (default) | "cubic-root" | "none"

Type of nonlinear rectification applied prior to the discrete cosine transform, specified as "log",
"cubic-root", or "none".
Data Types: char | string

Output Arguments
coeffs — Cepstral coefficients
matrix | 3-D array

Cepstral coefficients, returned as an M-by-B matrix or M-by-B-by-N array, where:

• M –– Number of frames (columns) of the input.
• B –– Number of coefficients returned per frame. This is determined by NumCoeffs.
• N –– Number of channels (pages) of the input.

Data Types: single | double

Algorithms
Given an auditory spectrogram, the algorithm to extract N cepstral coefficients from each individual
spectrum comprises the following steps.

1 Rectify the spectrum by applying a logarithm, cubic root, or optionally perform no rectification.
2 Apply the discrete cosine transform (DCT-II) to the rectified spectrum.
3 Return the first N coefficients from the cepstral representation.

For more information, see [1].

Version History
Introduced in R2020b

References
[1] Rabiner, Lawrence R., and Ronald W. Schafer. Theory and Applications of Digital Speech

Processing. Upper Saddle River, NJ: Pearson, 2010.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

 cepstralCoefficients

2-197

See Also
Functions
mfcc | gtcc | audioDelta | designAuditoryFilterBank | melSpectrogram | stft

Blocks
Cepstral Coefficients | MFCC | Audio Delta

Objects
audioFeatureExtractor

2 Functions

2-198

audioDelta
Compute delta features

Syntax
delta = audioDelta(x)
delta = audioDelta(x,deltaWindowLength)
delta = audioDelta(x,deltaWindowLength,initialCondition)
[delta,finalCondition] = audioDelta(x, ___)

Description
delta = audioDelta(x) returns the delta of audio features x.

delta = audioDelta(x,deltaWindowLength) specifies the delta window length.

delta = audioDelta(x,deltaWindowLength,initialCondition) specifies the initial
condition of the filter.

[delta,finalCondition] = audioDelta(x, ___) also returns the final condition of the filter.

Examples

Delta of Audio Features

Read in an audio file.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');

Create an audioFeatureExtractor object to extract some spectral features over time from the
audio. Call extract to extract the audio features.

afe = audioFeatureExtractor('SampleRate',fs, ...
 'spectralCentroid',true, ...
 'spectralSlope',true);

audioFeatures = extract(afe,audioIn);

Call audioDelta to approximate the first derivative of the spectral features over time.

deltaAudioFeatures = audioDelta(audioFeatures);

Plot the spectral features and the delta of the spectral features.

map = info(afe);
tiledlayout(2,1)
nexttile
plot(audioFeatures(:,map.spectralCentroid))
ylabel('Spectral Centroid')
nexttile
plot(deltaAudioFeatures(:,map.spectralCentroid))

 audioDelta

2-199

ylabel('Delta Spectral Centroid')
xlabel('Frame')

tiledlayout(2,1)
nexttile
plot(audioFeatures(:,map.spectralSlope))
ylabel('Spectral Slope')
nexttile
plot(deltaAudioFeatures(:,map.spectralSlope))
ylabel('Delta Spectral Slope')
xlabel('Frame')

2 Functions

2-200

Delta and Delta-Delta of MFCC

The delta and delta-delta of mel frequency cepstral coefficients (MFCC) are often used with the
MFCC for machine learning and deep learning applications.

Read in an audio file.

[audioIn,fs] = audioread("Counting-16-44p1-mono-15secs.wav");

Use the designAuditoryFilterBank function to design a one-sided frequency-domain mel filter
bank.

analysisWindowLength = round(fs*0.03);
fb = designAuditoryFilterBank(fs,"FFTLength",analysisWindowLength);

Use the stft function to convert the audio signal to a complex, one-sided frequency-domain
representation. Convert the STFT to magnitude and apply the frequency-domain filtering.

[S,~,t] = stft(audioIn,fs,"Window",hann(analysisWindowLength,"periodic"),"FrequencyRange","onesided");
auditorySTFT = fb*abs(S);

Call the cepstralCoefficients function to extract the MFCC.

melcc = cepstralCoefficients(auditorySTFT);

 audioDelta

2-201

Call the audioDelta function to compute the delta MFCC. Call audioDelta again to compute the
delta-delta MFCC. Plot the results.

deltaWindowLength = ;

melccDelta = audioDelta(melcc,deltaWindowLength);
melccDeltaDelta = audioDelta(melccDelta,deltaWindowLength);

coefficientToDisplay = ;

tiledlayout(3,1)
nexttile
plot(t,melcc(:,coefficientToDisplay+1))
ylabel('Coefficient ' + string(coefficientToDisplay))
nexttile
plot(t,melccDelta(:,coefficientToDisplay+1))
ylabel('Delta')
nexttile
plot(t,melccDeltaDelta(:,coefficientToDisplay+1))
xlabel('Time (s)')
ylabel('Delta-Delta')

2 Functions

2-202

Delta of Streaming Signals

You can calculate the delta of streaming signals by passing state in and out of the audioDelta
function.

Create a dsp.AudioFileReader object to read an audio file frame-by-frame. Create an
audioDeviceWriter object to write audio to your speaker. Create a timescope object to visualize
the change in harmonic ratio over time.

fileReader = dsp.AudioFileReader("FemaleSpeech-16-8-mono-3secs.wav","SamplesPerFrame",32,"PlayCount",3);
deviceWriter = audioDeviceWriter("SampleRate",fileReader.SampleRate);
scope = timescope("SampleRate",fileReader.SampleRate/fileReader.SamplesPerFrame, ...
 "TimeSpanSource","Property", ...
 "TimeSpan",3, ...
 "YLimits",[-1,1], ...
 "Title","Delta of Harmonic Ratio");

While the audio file has unread frames of data:

1 Read a frame from the audio file
2 Calculate the harmonic ratio of that frame
3 Calculate the delta of the harmonic ratio
4 Write the audio frame to your speaker
5 Write the change in the harmonic ratio to your scope

On each call to audioDelta, overwrite the previous state. Initialize the state using an empty array.

z = [];
while ~isDone(fileReader)
 audioIn = fileReader();

 hr = harmonicRatio(audioIn,fileReader.SampleRate,"Window",hann(fileReader.SamplesPerFrame,'periodic'),"OverlapLength",0);

 [deltaHR, z] = audioDelta(hr,5,z);

 deviceWriter(audioIn);

 scope(deltaHR)
end
release(scope)

 audioDelta

2-203

Input Arguments
x — Audio features
vector | matrix | array

Audio features, specified as a vector, matrix, or multi-dimensional array. The delta computation
operates along the first dimension. All other dimensions are treated as independent channels.
Data Types: single | double

deltaWindowLength — Window length over which to calculate delta
9 (default) | odd integer greater than 2

Window length over which to calculate delta, specified as an odd integer greater than 2.
Data Types: single | double

initialCondition — Initial condition of filter
[] (default) | vector | matrix | array

Initial condition of the filter used to calculate the delta, specified as a vector, matrix, or multi-
dimensional array. The first dimension of initialCondition must equal deltaWindowLength-1.
The remaining dimensions of initialCondition must match the remaining dimensions of the input
x. The default initial condition, [], is equivalent to initializing the state with all zeros.

2 Functions

2-204

Data Types: single | double

Output Arguments
delta — Delta of audio features
vector | matrix | array

Delta of audio features, returned as a vector, matrix, or multi-dimensional array with the same
dimensions as the input x.
Data Types: single | double

finalCondition — Final condition of filter
vector | matrix | array

Final condition of filter, returned as a vector, matrix, or multi-dimensional array. The final condition is
returned as the same size as the initialCondition.
Data Types: single | double

Algorithms
The delta of an audio feature x is a least-squares approximation of the local slope of a region centered
on sample x(k), which includes M samples before the current sample and M samples after the current
sample.

delta =
∑

k = −M

M
k x(k)

∑
k = −M

M
k2

The delta window length defines the length of the region from –M to M.

For more information, see [1].

Version History
Introduced in R2020b

References
[1] Rabiner, Lawrence R., and Ronald W. Schafer. Theory and Applications of Digital Speech

Processing. Upper Saddle River, NJ: Pearson, 2010.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

 audioDelta

2-205

See Also
Functions
mfcc | gtcc | cepstralCoefficients | designAuditoryFilterBank | stft

Blocks
Audio Delta | Cepstral Coefficients | MFCC

Objects
audioFeatureExtractor

Live Editor Tasks
Extract Audio Features

2 Functions

2-206

showaudioblockdatatypetable
Simulink block data type support table

Syntax
showaudioblockdatatypetable

Description
showaudioblockdatatypetable shows a table of characteristics for Audio Toolbox blocks. The
table lists capabilities and limitations about blocks, such as support for code generation and variable-
sized input.

Examples

Show Block Characteristics for Audio Toolbox™

Show a table of Audio Toolbox™ block characteristics. The table opens in a separate window.

showaudioblockdatatypetable

Loading Audio Toolbox Library.

Version History
Introduced in R2016a

See Also
Topics
“Real-Time Audio in Simulink”

 showaudioblockdatatypetable

2-207

audioPluginGridLayout
Specify layout for audio plugin UI

Syntax
gridLayout = audioPluginGridLayout
gridLayout = audioPluginGridLayout(Name,Value)

Description
gridLayout = audioPluginGridLayout creates an object that specifies the layout grid for an
audio plugin graphical user interface. Use the plugin grid layout object, gridLayout, as an
argument to audioPluginInterface in your plugin class definition. audioPluginGridLayout
specifies only the grid. The placement of individual graphical elements is specified using
audioPluginParameter.

To learn how to design a graphic user interface, see “Design User Interface for Audio Plugin”.

For example plugins, see “Audio Plugin Example Gallery”.

gridLayout = audioPluginGridLayout(Name,Value) specifies audioPluginGridLayout
properties using one or more Name,Value pair arguments.

Examples

Use Default Audio Plugin Grid Layout

The default audio plugin grid layout specifies a 2-by-2 grid. Call audioPluginGridLayout with no
arguments to view the default settings.

audioPluginGridLayout

ans =

 audioPluginGridLayout with properties:

 RowHeight: [100 100]
 ColumnWidth: [100 100]
 RowSpacing: 10
 ColumnSpacing: 10
 Padding: [10 10 10 10]

noisifyClassic uses a default grid layout by passing audioPluginGridLayout, without any
arguments, to audioPluginInterface. When you use audioPluginGridLayout, you must
specify the position of each audioPluginParameter on the grid using Layout. Display names
corresponding to parameters occupy cells on the grid also. The default grid contains only four cells
and noisifyClassic has four parameters, so you must set DisplayNameLocation to none to fit

2 Functions

2-208

all elements on the grid. audioPluginGridLayout is passed to the audioPluginInterface. Save
noisifyClassic to your current folder.

classdef noisifyClassic < audioPlugin
 properties
 DropoutLeft = false
 DropoutRight = false
 NoiseLeftGain = 0
 NoiseRightGain = 0
 end
 properties (Constant)
 PluginInterface = audioPluginInterface(...
 audioPluginParameter('DropoutLeft', ...
 'Layout',[2,1], ...
 'DisplayNameLocation','none'), ...
 audioPluginParameter('DropoutRight', ...
 'Layout',[2,2], ...
 'DisplayNameLocation','none'), ...
 audioPluginParameter('NoiseLeftGain', ...
 'Layout',[1,1], ...
 'DisplayNameLocation','none'), ...
 audioPluginParameter('NoiseRightGain', ...
 'Layout',[1,2], ...
 'DisplayNameLocation','none'), ...
 ...
 audioPluginGridLayout)
 end
 methods
 function out = process(plugin,in)
 r = size(in,1);
 dropRate = 0.1;

 if plugin.DropoutLeft
 idx = randperm(r,round(r*dropRate));
 in(idx,1) = 0;
 end
 if plugin.DropoutRight
 idx = randperm(r,round(r*dropRate));
 in(idx,2) = 0;
 end

 in(:,1) = in(:,1) + plugin.NoiseLeftGain*(2*rand(r,1,'like',in)-1);
 in(:,2) = in(:,2) + plugin.NoiseRightGain*(2*rand(r,1,'like',in)-1);

 out = in;
 end
 end
end

You can quickly iterate on your UI design by using parameterTuner to visualize the plugin UI. Call
parameterTuner on noisifyClassic.

parameterTuner(noisifyClassic)

 audioPluginGridLayout

2-209

Design Audio Plugin Grid Layout

The example plugin, noisify, adds noise to your audio signal channel-wise at a specified gain (per
channel) and dropout rate.

classdef noisifyOriginal < audioPlugin
 properties
 DropoutLeft = false;
 DropoutRight = false;
 NoiseLeftGain = 0;
 NoiseRightGain = 0;
 DropoutRate = 0.1;
 end
 properties (Constant)
 PluginInterface = audioPluginInterface(...
 audioPluginParameter('DropoutLeft'), ...
 audioPluginParameter('DropoutRight'), ...
 audioPluginParameter('NoiseLeftGain'), ...
 audioPluginParameter('NoiseRightGain'), ...
 audioPluginParameter('DropoutRate'))
 end
 methods
 function out = process(plugin,in)
 r = size(in,1);

 if plugin.DropoutLeft
 idx = randperm(r,round(r*plugin.DropoutRate));
 in(idx,1) = 0;
 end
 if plugin.DropoutRight
 idx = randperm(r,round(r*plugin.DropoutRate));
 in(idx,2) = 0;
 end

 in(:,1) = in(:,1) + plugin.NoiseLeftGain*randn(r,1,'like',in);

2 Functions

2-210

 in(:,2) = in(:,2) + plugin.NoiseRightGain*randn(r,1,'like',in);

 out = in;
 end
 end
end

To see the corresponding UI for the plugin, call parameterTuner with the plugin. When you
generate an audio plugin and deploy it to a DAW, the DAW uses a default UI that is similar to the
default UI of parameterTuner.

parameterTuner(noisifyOriginal)

You can create a more intuitive and visually pleasing UI using audioPluginInterface,
audioPluginGridLayout, and audioPluginParameter. For example, to create a more intuitive
UI for noisyOriginal, you could update the audioPluginInterface as follows:

classdef noisify < audioPlugin
 properties
 DropoutLeft = false;
 DropoutRight = false;
 NoiseLeftGain = 0;
 NoiseRightGain = 0;
 DropoutRate = 0.1;
 end
 properties (Constant)
 PluginInterface = audioPluginInterface(...
 audioPluginParameter('DropoutLeft', ...
 'Layout',[4,1], ...
 'DisplayName','Dropout (L)', ...
 'DisplayNameLocation','above', ...
 'Style','vrocker'), ...
 audioPluginParameter('DropoutRight', ...
 'Layout',[4,4], ...
 'DisplayName','Dropout (R)', ...
 'DisplayNameLocation','above', ...

 audioPluginGridLayout

2-211

 'Style','vrocker'), ...
 audioPluginParameter('NoiseLeftGain', ...
 'DisplayName','Noise Gain (L)', ...
 'Layout',[2,1;2,2], ...
 'DisplayNameLocation','above', ...
 'Style','rotaryknob'), ...
 audioPluginParameter('NoiseRightGain', ...
 'Layout',[2,3;2,4], ...
 'DisplayName','Noise Gain (R)', ...
 'DisplayNameLocation','above', ...
 'Style','rotaryknob'), ...
 audioPluginParameter('DropoutRate', ...
 'Layout',[4,2;4,3], ...
 'DisplayName','Droput Rate', ...
 'DisplayNameLocation','below', ...
 'Style','vslider'), ...
 ...
 audioPluginGridLayout(...
 'RowHeight',[15,150,15,150,15], ...
 'ColumnWidth',[100,40,40,100], ...
 'RowSpacing',30))
 end
 methods
 function out = process(plugin,in)
 r = size(in,1);

 if plugin.DropoutLeft
 idx = randperm(r,round(r*plugin.DropoutRate));
 in(idx,1) = 0;
 end
 if plugin.DropoutRight
 idx = randperm(r,round(r*plugin.DropoutRate));
 in(idx,2) = 0;
 end

 in(:,1) = in(:,1) + plugin.NoiseLeftGain*randn(r,1,'like',in);
 in(:,2) = in(:,2) + plugin.NoiseRightGain*randn(r,1,'like',in);

 out = in;
 end
 end
end

You can quickly iterate on your UI design by using parameterTuner to visualize incremental
changes. Call parameterTuner on noisify. When you generate an audio plugin and deploy it to a
DAW, the DAW uses the enhanced UI.

parameterTuner(noisify)

2 Functions

2-212

Input Arguments
Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'RowHeight', [50,200,150] species a grid with three rows. The first row is 50 pixels
high, the second row is 200 pixels high, and the third row is 150 pixels high.

RowHeight — Height of each row (pixels)
[100, 100] (default) | row vector of positive integers

Height in pixels of each row in the grid, specified as a comma-separated pair consisting of
'RowHeight' and a row vector of positive integers.

 audioPluginGridLayout

2-213

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

ColumnWidth — Width of each column (pixels)
[100, 100] (default) | row vector of positive integers

Width in pixels of each column in the grid, specified as a comma-separated pair consisting of
'ColumnWidth' and a row vector of positive integers.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

RowSpacing — Distance between rows (pixels)
10 (default) | nonnegative integer

Distance between rows in pixels, specified as a comma-separated pair consisting of 'RowSpacing'
and a nonnegative integer.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

ColumnSpacing — Distance between columns (pixels)
10 (default) | nonnegative integer

Distance between columns in pixels, specified as a comma-separated pair consisting of
'ColumnSpacing' and a nonnegative integer.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Padding — Padding around the outer perimeter of grid (pixels)
[10, 10, 10, 10] (default) | [left, bottom, right, top]

Padding around the outer perimeter of the grid in pixels, specified as a comma-separated pair
consisting of 'Padding' and a four-element row vector of nonnegative integers. The elements of the
vector are interpreted as [left, bottom, right, top], where:

• left –– Distance in pixels from the left edge of the grid to the left edge of the parent container.
• bottom –– Distance in pixels from the bottom edge of the grid to the bottom edge of the parent

container.
• right –– Distance in pixels from the right edge of the grid to the right edge of the parent container.
• top –– Distance in pixels from the top edge of the grid to the top edge of the parent container.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Version History
Introduced in R2019b

See Also
audioPlugin | audioPluginSource | audioPluginInterface | validateAudioPlugin |
generateAudioPlugin | audioPluginParameter | Audio Test Bench | parameterTuner

Topics
“Design User Interface for Audio Plugin”
“Audio Plugin Example Gallery”
“Audio Plugins in MATLAB”

2 Functions

2-214

“Export a MATLAB Plugin to a DAW”

 audioPluginGridLayout

2-215

pinknoise
Generate pink noise

Syntax
X = pinknoise(n)
X = pinknoise(sz1,sz2)
X = pinknoise(sz)
X = pinknoise(___ ,typename)
X = pinknoise(___ ,'like',p)

Description
X = pinknoise(n) returns a pink noise column vector of length n.

X = pinknoise(sz1,sz2) returns a sz1-by-sz2 matrix. Each channel (column) of the output X is
an independent pink noise signal.

X = pinknoise(sz) returns a vector or matrix with dimensions defined by the elements of vector
sz. sz must be a one- or two-element row vector of positive integers. Each channel (column) of the
output X is an independent pink noise signal.

X = pinknoise(___ ,typename) returns an array of pink noise of data type typename. The
typename input can be either 'single' or 'double'. You can combine typename with any of the
input arguments in the previous syntaxes.

X = pinknoise(___ ,'like',p) returns an array of pink noise like p. You can specify either
typename or 'like', but not both.

Examples

Generate Pink Noise

Generate 100 seconds of pink noise with a sample rate of 44.1 kHz.

fs = 44.1e3;
duration = 100;

y = pinknoise(duration*fs);

Plot the average power spectral density (PSD) of the generated pink noise.

[~,freqVec,~,psd] = spectrogram(y,round(0.05*fs),[],[],fs);
meanPSD = mean(psd,2);

semilogx(freqVec,db(meanPSD,"power"))
xlabel('Frequency (Hz)')
ylabel('PSD (dB/Hz)')
title('Power Spectral Density of Pink Noise (Averaged)')
grid on

2 Functions

2-216

Amplitude Distribution of Pink Noise

Generate 500 seconds of pink noise with a sample rate of 16 kHz.

fs = 16e3;
duration = 500;

y = pinknoise(duration*fs);

Plot the relative probability of the pink noise amplitude. The amplitude is always bounded between −
1 and 1.

histogram(y,"Normalization","probability","EdgeColor","none")
xlabel("Amplitude")
ylabel("Probability")
title("Relative Probability of Pink Noise Amplitude")
grid on

 pinknoise

2-217

Generate Multiple Independent Channels of Pink Noise

Create a 5 second stereo pink noise signal with a 48 kHz sample rate.

fs = 48e3;
duration = 5;
numChan = 2;

pn = pinknoise(duration*fs,numChan);

Listen to the stereo pink noise signal.

sound(pn,fs)

Channels of the pink noise function are generated independently. Note that the off-diagonal
correlation coefficients are close to zero (uncorrelated).

R = corrcoef(pn(:,1),pn(:,2))

R = 2×2

 1.0000 -0.0190
 -0.0190 1.0000

2 Functions

2-218

Correlated and uncorrelated pink noise have different psychoacoustic effects. When the noise is
correlated, the sound is less ambient and more centralized. To listen to correlated pink noise, send a
single channel of the pink noise signal to your stereo device. The effect is most pronounced when
using headphones.

sound([pn(:,1),pn(:,1)],fs)

Add Pink Noise to Audio Signal

Read in an audio file.

[audioIn,fs] = audioread("MainStreetOne-16-16-mono-12secs.wav");

Create a pink noise signal of the same size and data type as audioIn.

noise = pinknoise(size(audioIn),'like',audioIn);

Add the pink noise to the audio signal and then listen to the first 5 seconds.

noisyMainStreet = noise + audioIn;
sound(noisyMainStreet(1:fs*5,:),fs)

The pinknoise function generates an approximate −29.5 dB signal level, which is close to the power
of the audio signal.

noisePower = sum(noise.^2,1)/size(noise,1);
signalPower = sum(audioIn.^2,1)/size(audioIn,1);
snr = 10*log10(signalPower./noisePower)

snr = 1.9791

noisePowerdB = 10*log10(noisePower)

noisePowerdB = -29.6665

signalPowerdB = 10*log10(signalPower)

signalPowerdB = -27.6874

Mix the input audio with the generated pink noise at an 8 dB SNR.

desiredSNR = 8;
scaleFactor = sqrt(signalPower./(noisePower*(10^(desiredSNR/10))));

noise = noise.*scaleFactor;

Verify the resulting SNR is 8 dB and then listen to the first 5 seconds.

noisePower = sum(noise.^2,1)/size(noise,1);
snr = 10*log10(signalPower./noisePower)

snr = 8.0000

noisyMainStreet = noise + audioIn;
sound(noisyMainStreet(1:fs*5,:),fs)

 pinknoise

2-219

Input Arguments
n — Number of rows of pink noise
nonnegative integer

Number of rows of pink noise, specified as a nonnegative integer.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

sz1,sz2 — Size of each dimension (as separate arguments)
nonnegative integers

Size of each dimension, specified as a nonnegative integer or two separate arguments of nonnegative
integers.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

sz — Size of each dimension (as a row vector)
one- or two-element row vector of nonnegative integers

Size of each dimension, specified as a one- or two-element row vector of nonnegative integers. Each
element of this vector indicates the size of the corresponding dimension.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

typename — Data type to create
'double' (default) | 'single'

Data type to create, specified as 'double' or 'single'.
Data Types: char | string

p — Prototype of array to create
numeric array

Prototype of array to create, specified as a numeric array. The generated pink noise is the same data
type as p.
Data Types: single | double

Output Arguments
X — Pink noise
column vector | matrix

Pink noise, returned as a column vector or matrix of independent channels.
Data Types: single | double

Tips
• The concatenation of multiple pink noise vectors does not result in pink noise. For streaming

applications, use dsp.ColoredNoise.

2 Functions

2-220

Algorithms
Pink noise is generated by passing uniformly distributed random numbers through a series of
randomly initiated SOS filters. The resulting pink noise amplitude distribution is quasi-Gaussian and
bounded between −1 and 1. The resulting pink noise power spectral density (PSD) is inversely
proportional to frequency:

S(f) ∝ 1
f

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
dsp.ColoredNoise | rng | rand

 pinknoise

2-221

stretchAudio
Time-stretch audio

Syntax
audioOut = stretchAudio(audioIn,alpha)
audioOut = stretchAudio(audioIn,alpha,Name,Value)

Description
audioOut = stretchAudio(audioIn,alpha) applies time scale modification (TSM) on the input
audio by the TSM factor alpha.

audioOut = stretchAudio(audioIn,alpha,Name,Value) specifies options using one or more
Name,Value pair arguments.

Examples

Apply TSM

Read in an audio signal. Listen to the audio signal and plot it over time.

[audioIn,fs] = audioread("Counting-16-44p1-mono-15secs.wav");

t = (0:size(audioIn,1)-1)/fs;
plot(t,audioIn)
xlabel('Time (s)')
ylabel('Amplitude')
title('Original Signal')
axis tight
grid on

2 Functions

2-222

sound(audioIn,fs)

Use stretchAudio to apply a 1.5 speedup factor. Listen to the modified audio signal and plot it over
time. The sample rate remains the same, but the duration of the signal has decreased.

audioOut = stretchAudio(audioIn,1.5);

t = (0:size(audioOut,1)-1)/fs;
plot(t,audioOut)
xlabel('Time (s)')
ylabel('Amplitude')
title('Modified Signal, Speedup Factor = 1.5')
axis tight
grid on

 stretchAudio

2-223

sound(audioOut,fs)

Slow down the original audio signal by a 0.75 factor. Listen to the modified audio signal and plot it
over time. The sample rate remains the same as the original audio, but the duration of the signal has
increased.

audioOut = stretchAudio(audioIn,0.75);

t = (0:size(audioOut,1)-1)/fs;
plot(t,audioOut)
xlabel('Time (s)')
ylabel('Amplitude')
title('Modified Signal, Speedup Factor = 0.75')
axis tight
grid on

2 Functions

2-224

sound(audioOut,fs)

Apply TSM to Frequency-Domain Audio

stretchAudio supports TSM on frequency-domain audio when using the default vocoder method.
Applying TSM to frequency-domain audio enables you to reuse your STFT computation for multiple
TSM factors.

Read in an audio signal. Listen to the audio signal and plot it over time.

[audioIn,fs] = audioread('FemaleSpeech-16-8-mono-3secs.wav');

sound(audioIn,fs)

t = (0:size(audioIn,1)-1)/fs;
plot(t,audioIn)
xlabel('Time (s)')
ylabel('Amplitude')
title('Original Signal')
axis tight
grid on

 stretchAudio

2-225

Convert the audio signal to the frequency domain.

win = sqrt(hann(256,'periodic'));
ovrlp = 192;
S = stft(audioIn,'Window',win,'OverlapLength',ovrlp,'Centered',false);

Speed up the audio signal by a factor of 1.4. Specify the window and overlap length used to create
the frequency-domain representation.

alpha = 1.4;
audioOut = stretchAudio(S,alpha,'Window',win,'OverlapLength',ovrlp);

sound(audioOut,fs)

t = (0:size(audioOut,1)-1)/fs;
plot(t,audioOut)
xlabel('Time (s)')
ylabel('Amplitude')
title('Modified Signal, TSM Factor = 1.4')
axis tight
grid on

2 Functions

2-226

Slow down the audio signal by a factor of 0.8. Specify the window and overlap length used to create
the frequency-domain representation.

alpha = 0.8;
audioOut = stretchAudio(S,alpha,'Window',win,'OverlapLength',ovrlp);

sound(audioOut,fs)

t = (0:size(audioOut,1)-1)/fs;
plot(t,audioOut)
xlabel('Time (s)')
ylabel('Amplitude')
title('Modified Signal, TSM Factor = 0.8')
axis tight
grid on

 stretchAudio

2-227

Increase Fidelity Using Phase-Locking

The default TSM method (vocoder) enables you to additionally apply phase-locking to increase the
fidelity to the original audio.

Read in an audio signal. Listen to the audio signal and plot it over time.

[audioIn,fs] = audioread("SpeechDFT-16-8-mono-5secs.wav");

sound(audioIn,fs)

t = (0:size(audioIn,1)-1)/fs;
plot(t,audioIn)
xlabel('Time (s)')
ylabel('Amplitude')
title('Original Signal')
axis tight
grid on

2 Functions

2-228

Phase-locking adds a nontrivial computational load to TSM and is not always required. By default,
phase-locking is disabled. Apply a speedup factor of 1.8 to the input audio signal. Listen to the audio
signal and plot it over time.

alpha = 1.8;

tic
audioOut = stretchAudio(audioIn,alpha);
processingTimeWithoutPhaseLocking = toc

processingTimeWithoutPhaseLocking = 0.0798

sound(audioOut,fs)

t = (0:size(audioOut,1)-1)/fs;
plot(t,audioOut)
xlabel('Time (s)')
ylabel('Amplitude')
title('Modified Signal, alpha = 1.8, LockPhase = false')
axis tight
grid on

 stretchAudio

2-229

Apply the same 1.8 speedup factor to the input audio signal, this time enabling phase-locking. Listen
to the audio signal and plot it over time.

tic
audioOut = stretchAudio(audioIn,alpha,"LockPhase",true);
processingTimeWithPhaseLocking = toc

processingTimeWithPhaseLocking = 0.1154

sound(audioOut,fs)

t = (0:size(audioOut,1)-1)/fs;
plot(t,audioOut)
xlabel('Time (s)')
ylabel('Amplitude')
title('Modified Signal, alpha = 1.8, LockPhase = true')
axis tight
grid on

2 Functions

2-230

Increase Fidelity Using WSOLA Delta

The waveform similarity overlap-add (WSOLA) TSM method enables you to specify the maximum
number of samples to search for the best signal alignment. By default, WSOLA delta is the number of
samples in the analysis window minus the number of samples overlapped between adjacent analysis
windows. Increasing the WSOLA delta increases the computational load but might also increase
fidelity.

Read in an audio signal. Listen to the first 10 seconds of the audio signal.

[audioIn,fs] = audioread('RockGuitar-16-96-stereo-72secs.flac');

sound(audioIn(1:10*fs,:),fs)

Apply a TSM factor of 0.75 to the input audio signal using the WSOLA method. Listen to the first 10
seconds of the resulting audio signal.

alpha = 0.75;
tic
audioOut = stretchAudio(audioIn,alpha,"Method","wsola");
processingTimeWithDefaultWSOLADelta = toc

processingTimeWithDefaultWSOLADelta = 19.4403

sound(audioOut(1:10*fs,:),fs)

 stretchAudio

2-231

Apply a TSM factor of 0.75 to the input audio signal, this time increasing the WSOLA delta to 1024.
Listen to the first 10 seconds of the resulting audio signal.

tic
audioOut = stretchAudio(audioIn,alpha,"Method","wsola","WSOLADelta",1024);
processingTimeWithIncreasedWSOLADelta = toc

processingTimeWithIncreasedWSOLADelta = 25.5306

sound(audioOut(1:10*fs,:),fs)

Input Arguments
audioIn — Input signal
column vector | matrix | 3-D array

Input signal, specified as a column vector, matrix, or 3-D array. How the function interprets audioIn
depends on the complexity of audioIn and the value of Method:

• If audioIn is real, audioIn is interpreted as a time-domain signal. In this case, audioIn must be
a column vector or matrix. Columns are interpreted as individual channels.

This syntax applies when Method is set to 'vocoder' or 'wsola'.
• If audioIn is complex, audioIn is interpreted as a frequency-domain signal. In this case,

audioIn must be an L-by-M-by-N array, where L is the FFT length, M is the number of individual
spectra, and N is the number of channels.

This syntax only applies when Method is set to 'vocoder'.

Data Types: single | double
Complex Number Support: Yes

alpha — TSM factor
positive scalar

TSM factor, specified as a positive scalar.
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Window',kbdwin(512)

Method — Method used to time-scale audio
'vocoder' (default) | 'wsola'

Method used to time-scale audio, specified as the comma-separated pair consisting of 'Method' and
'vocoder' or 'wsola'. Set 'Method' to 'vocoder' to use the phase vocoder method. Set
'Method' to 'wsola' to use the WSOLA method.

2 Functions

2-232

If 'Method' is set to 'vocoder', audioIn can be real or complex. If 'Method' is set to 'wsola',
audioIn must be real.
Data Types: single | double

Window — Window applied in time domain
sqrt(hann(1024,'periodic')) (default) | real vector

Window applied in the time domain, specified as the comma-separated pair consisting of 'Window'
and a real vector. The number of elements in the vector must be in the range [1, size(audioIn,1)].
The number of elements in the vector must also be greater than OverlapLength.

Note If using stretchAudio with frequency-domain input, you must specify Window as the same
window used to transform audioIn to the frequency domain.

Data Types: single | double

OverlapLength — Number of samples overlapped between adjacent windows
round(0.75*numel(Window)) (default) | scalar in the range [0 numel(Window))

Number of samples overlapped between adjacent windows, specified as the comma-separated pair
consisting of 'OverlapLength' and an integer in the range [0, numel(Window)).

Note If using stretchAudio with frequency-domain input, you must specify OverlapLength as the
same overlap length used to transform audioIn to a time-frequency representation.

Data Types: single | double

LockPhase — Apply identity phase-locking
false (default) | true

Apply identity phase-locking, specified as the comma-separated pair consisting of 'LockPhase' and
false or true.

Dependencies

To enable this name-value pair argument, set Method to 'vocoder'.
Data Types: logical

WSOLADelta — Maximum samples used to search for best signal alignment
numel(Window)-OverlapLength (default) | nonnegative scalar

Maximum number of samples used to search for the best signal alignment, specified as the comma-
separated pair consisting of 'WSOLADelta' and a nonnegative scalar.

Dependencies

To enable this name-value pair argument, set Method to 'wsola'.
Data Types: single | double

 stretchAudio

2-233

Output Arguments
audioOut — Time-scale modified audio
column vector | matrix

Time-scale modified audio, returned as a column vector or matrix of independent channels.

Algorithms
Phase Vocoder

The phase vocoder algorithm is a frequency-domain approach to TSM [1][2]. The basic steps of the
phase vocoder algorithm are:

1 The algorithm windows a time-domain signal at interval η, where η = numel(Window) -
OverlapLength. The windows are then converted to the frequency domain.

2 To preserve horizontal (across time) phase coherence, the algorithm treats each bin as an
independent sinusoid whose phase is computed by accumulating the estimates of its
instantaneous frequency.

3 To preserve vertical (across an individual spectrum) phase coherence, the algorithm locks the
phase advance of groups of bins to the phase advance of local peaks. This step only applies if
LockPhase is set to true.

4 The algorithm returns the modified spectrogram to the time domain, with windows spaced at
intervals of δ, where δ ≈ η/α. α is the speedup factor specified by the alpha input argument.

2 Functions

2-234

WSOLA

The WSOLA algorithm is a time-domain approach to TSM [1][2]. WSOLA is an extension of the
overlap and add (OLA) algorithm. In the OLA algorithm, a time-domain signal is windowed at interval

 stretchAudio

2-235

η, where η = numel(Window) - OverlapLength. To construct the time-scale modified output
audio, the windows are spaced at interval δ, where δ ≈ η/α. α is the TSM factor specified by the
alpha input argument.

The OLA algorithm does a good job of recreating the magnitude spectra but can introduce phase
jumps between windows. The WSOLA algorithm attempts to smooth the phase jumps by searching
WSOLADelta samples around the η interval for a window that minimizes phase jumps. The algorithm
searches for the best window iteratively, so that each successive window is chosen relative to the
previously selected window.

2 Functions

2-236

If WSOLADelta is set to 0, then the algorithm reduces to OLA.

 stretchAudio

2-237

Version History
Introduced in R2019b

References
[1] Driedger, Johnathan, and Meinard Müller. "A Review of Time-Scale Modification of Music Signals."

Applied Sciences. Vol. 6, Issue 2, 2016.

[2] Driedger, Johnathan. "Time-Scale Modification Algorithms for Music Audio Signals", Master's
thesis, Saarland University, Saarbrücken, Germany, 2011.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• Method must be set to 'vocoder'.
• LockPhase must be set to false.
• Using gpuArray (Parallel Computing Toolbox) input with stretchAudio is only recommended

for a GPU with compute capability 7.0 ("Volta") or above. Other hardware might not offer any
performance advantage. To check your GPU compute capability, see ComputeCompability in the
output from the gpuDevice (Parallel Computing Toolbox) function. For more information, see
“GPU Computing Requirements” (Parallel Computing Toolbox).

For an overview of GPU usage in MATLAB, see “Run MATLAB Functions on a GPU” (Parallel
Computing Toolbox).

See Also
shiftPitch | reverberator | audioTimeScaler | audioDataAugmenter

Topics
“Time-Frequency Masking for Harmonic-Percussive Source Separation”

2 Functions

2-238

shiftPitch
Shift audio pitch

Syntax
audioOut = shiftPitch(audioIn,nsemitones)
audioOut = shiftPitch(audioIn,nsemitones,Name,Value)

Description
audioOut = shiftPitch(audioIn,nsemitones) shifts the pitch of the audio input by the
specified number of semitones, nsemitones.

audioOut = shiftPitch(audioIn,nsemitones,Name,Value) specifies options using one or
more Name,Value pair arguments.

Examples

Apply Pitch-Shifting to Time-Domain Audio

Read in an audio file and listen to it.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');
sound(audioIn,fs)

Increase the pitch by 3 semitones and listen to the result.

nsemitones = 3;
audioOut = shiftPitch(audioIn,nsemitones);
sound(audioOut,fs)

Decrease the pitch of the original audio by 3 semitones and listen to the result.

nsemitones = -3;
audioOut = shiftPitch(audioIn,nsemitones);
sound(audioOut,fs)

Apply Pitch-Shifting to Frequency-Domain Audio

Read in an audio file and listen to it.

[audioIn,fs] = audioread("SpeechDFT-16-8-mono-5secs.wav");
sound(audioIn,fs)

Convert the audio signal to a time-frequency representation using stft. Use a 512-point kbdwin
with 75% overlap.

win = kbdwin(512);
overlapLength = 0.75*numel(win);

 shiftPitch

2-239

S = stft(audioIn, ...
 "Window",win, ...
 "OverlapLength",overlapLength, ...
 "Centered",false);

Increase the pitch by 8 semitones and listen to the result. Specify the window and overlap length you
used to compute the STFT.

nsemitones = ;

lockPhase = ;
audioOut = shiftPitch(S,nsemitones, ...
 "Window",win, ...
 "OverlapLength",overlapLength, ...
 "LockPhase",lockPhase);

sound(audioOut,fs)

Decrease the pitch of the original audio by 8 semitones and listen to the result. Specify the window
and overlap length you used to compute the STFT.

nsemitones = ;

lockPhase = ;
audioOut = shiftPitch(S,nsemitones, ...
 "Window",win, ...
 "OverlapLength",overlapLength, ...
 "LockPhase",lockPhase);

sound(audioOut,fs)

Increase Fidelity Using Phase Locking

Read in an audio file and listen to it.

[audioIn,fs] = audioread('FemaleSpeech-16-8-mono-3secs.wav');
sound(audioIn,fs)

Increase the pitch by 6 semitones and listen to the result.

nsemitones = 6;
lockPhase = false;
audioOut = shiftPitch(audioIn,nsemitones, ...
 'LockPhase',lockPhase);
sound(audioOut,fs)

To increase fidelity, set LockPhase to true. Apply pitch shifting, and listen to the results.

lockPhase = true;
audioOut = shiftPitch(audioIn,nsemitones, ...
 'LockPhase',lockPhase);
sound(audioOut,fs)

2 Functions

2-240

Increase Fidelity Using Formant Preservation

Read in the first 11.5 seconds of an audio file and listen to it.

[audioIn,fs] = audioread('Rainbow-16-8-mono-114secs.wav',[1,8e3*11.5]);
sound(audioIn,fs)

Increase the pitch by 4 semitones and apply phase locking. Listen to the results. The resulting audio
has a "chipmunk effect" that sounds unnatural.

nsemitones = ;

lockPhase = ;
audioOut = shiftPitch(audioIn,nsemitones, ...
 "LockPhase",lockPhase);

sound(audioOut,fs)

To increase fidelity, set PreserveFormants to true. Use the default cepstral order of 30. Listen to
the result.

cepstralOrder = ;
audioOut = shiftPitch(audioIn,nsemitones, ...
 "LockPhase",lockPhase, ...
 "PreserveFormants",true, ...
 "CepstralOrder",cepstralOrder);

sound(audioOut,fs)

Input Arguments
audioIn — Input signal
column vector | matrix | 3-D array

Input signal, specified as a column vector, matrix, or 3-D array. How the function interprets audioIn
depends on the complexity of audioIn:

• If audioIn is real, audioIn is interpreted as a time-domain signal. In this case, audioIn must be
a column vector or matrix. Columns are interpreted as individual channels.

• If audioIn is complex, audioIn is interpreted as a frequency-domain signal. In this case,
audioIn must be an L-by-M-by-N array, where L is the FFT length, M is the number of individual
spectra, and N is the number of channels.

Data Types: single | double
Complex Number Support: Yes

nsemitones — Number of semitones to shift audio by
real scalar

Number of semitones to shift the audio by, specified as a real scalar.

 shiftPitch

2-241

The range of nsemitones depends on the window length (numel(Window)) and the overlap length
(OverlapLength):

-12*log2(numel(Window)-OverlapLength) ≤ nsemitones ≤ -12*log2((numel(Window)-
OverlapLength)/numel(Window))

Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Window',kbdwin(512)

Window — Window applied in time domain
sqrt(hann(1024,'periodic')) (default) | real vector

Window applied in the time domain, specified as the comma-separated pair consisting of 'Window'
and a real vector. The number of elements in the vector must be in the range [1, size(audioIn,1)].
The number of elements in the vector must also be greater than OverlapLength.

Note If using shiftPitch with frequency-domain input, you must specify Window as the same
window used to transform audioIn to the frequency domain.

Data Types: single | double

OverlapLength — Number of samples overlapped between adjacent windows
round(0.75*numel(Window)) (default) | scalar in the range [0, numel(Window))

Number of samples overlapped between adjacent windows, specified as the comma-separated pair
consisting of 'OverlapLength' and an integer in the range [0, numel(Window)).

Note If using shiftPitch with frequency-domain input, you must specify OverlapLength as the
same overlap length used to transform audioIn to a time-frequency representation.

Data Types: single | double

LockPhase — Apply identity phase locking
false (default) | true

Apply identity phase locking, specified as the comma-separated pair consisting of 'LockPhase' and
false or true.
Data Types: logical

PreserveFormants — Preserve formants
false (default) | true

2 Functions

2-242

Preserves formants, specified as the comma-separated pair consisting of 'PreserveFormants' and
true or false. Formant preservation is attempted using spectral envelope estimation with cepstral
analysis.
Data Types: logical

CepstralOrder — Cepstral order used for formant preservation
30 (default) | nonnegative integer

Cepstral order used for formant preservation, specified as the comma-separated pair consisting of
'CepstralOrder' and a nonnegative integer.

Dependencies

To enable this name-value pair argument, set PreserveFormants to true.
Data Types: single | double

Output Arguments
audioOut — Pitch-shifted audio
column vector | matrix

Pitch-shifted audio, returned as a column vector or matrix of independent channels.

Algorithms
To apply pitch shifting, shiftPitch modifies the time-scale of audio using a phase vocoder and then
resamples the modified audio. The time scale modification algorithm is based on [1] and [2] and is
implemented as in stretchAudio.

After time-scale modification, shiftPitch performs sample rate conversion using an interpolation
factor equal to the analysis hop length and a decimation factor equal to the synthesis hop length. The
interpolation and decimation factors of the resampling stage are selected as follows: The analysis hop
length is determined as analysisHopLength = numel(Window)-OverlapLength. The
shiftPitch function assumes that there are 12 semitones in an octave, so the speedup factor used
to stretch the audio is speedupFactor = 2^(-nsemitones/12). The speedup factor and analysis
hop length determine the synthesis hop length for time-scale modification as synthesisHopLength
= round((1/SpeedupFactor)*analysisHopLength).

The achievable pitch shift is determined by the window length (numel(Window)) and
OverlapLength. To see the relationship, note that the equation for speedup factor can be rewritten
as: nsemitones = -12*log2(speedupFactor), and the equation for synthesis hop length can be
rewritten as speedupFactor = analysisHopLengh/synthesisHopLength. Using simple
substitution, nsemitones = -12*log2(analysisHopLength/synthesisHopLength). The
practical range of a synthesis hop length is [1, numel(Window)]. The range of achievable pitch shifts
is:

• Max number of semitones lowered: -12*log2(numel(Window)-OverlapLength)
• Max number of semitones raised: -12*log2((numel(Window)-OverlapLength)/

numel(Window))

 shiftPitch

2-243

Formant Preservation

Pitch shifting can alter the spectral envelope of the pitch-shifted signal. To diminish this effect, you
can set PreserveFormants to true. If PreserveFormants is set to true, the algorithm attempts
to estimate the spectral envelope using an iterative procedure in the cepstral domain, as described in
[3] and [4]. For both the original spectrum, X, and the pitch-shifted spectrum, Y, the algorithm
estimates the spectral envelope as follows.

For the first iteration, EnvXa is set to X. Then, the algorithm repeats these two steps in a loop:

1 Lowpass filters the cepstral representation of EnvXa to get a new estimate, EnvXb. The
CepstralOrder parameter controls the quefrency bandwidth.

2 To update the current best fit, the algorithm takes the element-by-element maximum of the
current spectral envelope estimate and the previous spectral envelope estimate:

EnvXa = max(EnvXa, EnvXb) .

The loop ends if either a maximum number of iterations (100) is reached, or if all bins of the
estimated log envelope are within a given tolerance of the original log spectrum. The tolerance is set
to log(10^(1/20)).

Finally, the algorithm scales the spectrum of the pitch-shifted audio by the ratio of estimated
envelopes, element-wise:

Y = Y ×
EnvXb
EnvYb

.

2 Functions

2-244

Version History
Introduced in R2019b

References
[1] Driedger, Johnathan, and Meinard Müller. "A Review of Time-Scale Modification of Music Signals."

Applied Sciences. Vol. 6, Issue 2, 2016.

[2] Driedger, Johnathan. "Time-Scale Modification Algorithms for Music Audio Signals." Master's
Thesis. Saarland University, Saarbrücken, Germany, 2011.

[3] Axel Roebel, and Xavier Rodet. "Efficient Spectral Envelope Estimation and its application to pitch
shifting and envelope preservation." International Conference on Digital Audio Effects, pp.
30–35. Madrid, Spain, September 2005. hal-01161334

[4] S. Imai, and Y. Abe. "Spectral envelope extraction by improved cepstral method." Electron. and
Commun. in Japan. Vol. 62-A, Issue 4, 1997, pp. 10–17.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• LockPhase must be set to false.
• Using gpuArray (Parallel Computing Toolbox) input with shiftPitch is only recommended for a

GPU with compute capability 7.0 ("Volta") or above. Other hardware might not offer any
performance advantage. To check your GPU compute capability, see ComputeCompability in the
output from the gpuDevice (Parallel Computing Toolbox) function. For more information, see
“GPU Computing Requirements” (Parallel Computing Toolbox).

For an overview of GPU usage in MATLAB, see “Run MATLAB Functions on a GPU” (Parallel
Computing Toolbox).

See Also
stretchAudio | reverberator | audioTimeScaler | audioDataAugmenter

 shiftPitch

2-245

designAuditoryFilterBank
Design auditory filter bank

Syntax
filterBank = designAuditoryFilterBank(fs)
filterBank = designAuditoryFilterBank(fs,Name,Value)
[filterBank,Fc,BW] = designAuditoryFilterBank(___)

Description
filterBank = designAuditoryFilterBank(fs) returns a frequency-domain auditory filter
bank, filterBank.

filterBank = designAuditoryFilterBank(fs,Name,Value) specifies options using one or
more Name,Value pair arguments.

[filterBank,Fc,BW] = designAuditoryFilterBank(___) returns the center frequency and
bandwidth of each filter in the filter bank. You can use this output syntax with any of the previous
input syntaxes.

Examples

Create Default Auditory Filter Bank

Call designAuditoryFilterBank with a specified sample rate to design the default auditory filter
bank.

fs = 44.1e3;
fb = designAuditoryFilterBank(fs);

The default filter bank consists of 32 triangular bandpass filters spaced evenly on the mel scale
between 0 and fs/2 Hz.

numBands = size(fb,1)

numBands = 32

designAuditoryFilterBank is intended for frequency-domain filtering. By default,
designAuditoryFilterBank assumes a 1024-point DFT and returns a half-sided frequency-domain
filter bank with 513 points.

numPoints = size(fb,2)

numPoints = 513

2 Functions

2-246

Design Mel-Based Auditory Filter Bank

Read in audio and convert it to a one-sided power spectrum.

[audioIn,fs] = audioread("Laughter-16-8-mono-4secs.wav");

win = hamming(1024,"periodic");
noverlap = 512;
fftLength = 1024;
[S,F,t] = stft(audioIn,fs, ...
 "Window",win, ...
 "OverlapLength",noverlap, ...
 "FFTLength",fftLength, ...
 "FrequencyRange","onesided");
PowerSpectrum = S.*conj(S);

Design a mel-based auditory filter bank. Plot the filter bank.

numBands = ;

range = [,];

normalization = ;

[fb,cf] = designAuditoryFilterBank(fs, ...
 "FFTLength",fftLength, ...
 "NumBands",numBands, ...
 "FrequencyRange",range, ...
 "Normalization",normalization);

plot(F,fb.')
grid on
title("Mel Filter Bank")
xlabel("Frequency (Hz)")

 designAuditoryFilterBank

2-247

To apply frequency domain filtering, perform a matrix multiplication of the filter bank and the power
spectrogram.

X = fb*PowerSpectrum;

Visualize the power-per-band in dB.

XdB = 10*log10(X);

surf(t,cf,XdB,"EdgeColor","none");
xlabel("Time (s)")
ylabel("Frequency (Hz)")
zlabel("Power (dB)")
view([45,60])
title('Mel-Based Spectrogram')
axis tight

2 Functions

2-248

Design Bark-Based Auditory Filter Bank

Read in audio and convert it to a one-sided power spectrum.

[audioIn,fs] = audioread("RockDrums-44p1-stereo-11secs.mp3");

win = hann(round(0.03*fs),"periodic");
noverlap = round(0.02*fs);
fftLength = 2048;

[S,F,t] = stft(audioIn,fs, ...
 "Window",win, ...
 "OverlapLength",noverlap, ...
 "FFTLength",fftLength, ...
 "FrequencyRange","onesided");
PowerSpectrum = S.*conj(S);

Design a Bark-based auditory filter bank. Plot the filter bank.

numBands = ;

range = [,];

normalization = ;

 designAuditoryFilterBank

2-249

designDomain = ;

[fb,cf] = designAuditoryFilterBank(fs, ...
 "FrequencyScale","bark", ...
 "FFTLength",fftLength, ...
 "NumBands",numBands, ...
 "FrequencyRange",range, ...
 "Normalization",normalization, ...
 "FilterBankDesignDomain",designDomain);

plot(F,fb.');
grid on
title("Bark Filter Bank")
xlabel("Frequency (Hz)")

To apply frequency domain filtering, perform a matrix multiplication of the filter bank and the left and
right power spectrograms.

X = pagemtimes(fb,PowerSpectrum);

Visualize the power-per-band in dB.

XLdB = 10*log10(X(:,:,1));
XRdB = 10*log10(X(:,:,2));

surf(t,cf,XLdB,"EdgeColor","none");
xlabel("Time (s)")

2 Functions

2-250

ylabel("Frequency (Hz)")
view([0,90])
title("Bark-Based Spectrogram (Left Channel)")
axis tight

surf(t,cf,XRdB,"EdgeColor","none");
xlabel("Time (s)")
ylabel("Frequency (Hz)")
view([0,90])
title("Bark-Based Spectrogram (Right Channel)")
axis tight

 designAuditoryFilterBank

2-251

Design ERB-Based Auditory Filter Bank

Read in audio and convert it to a one-sided power spectrum.

[audioIn,fs] = audioread("NoisySpeech-16-22p5-mono-5secs.wav");

win = hann(round(0.04*fs),"periodic");
noverlap = round(0.02*fs);
fftLength = 1024;

[S,F,t] = stft(audioIn,fs, ...
 "Window",win, ...
 "OverlapLength",noverlap, ...
 "FFTLength",fftLength, ...
 "FrequencyRange","onesided");
PowerSpectrum = S.*conj(S);

Design an ERB-based auditory filter bank. Plot the filter bank.

numBands = ;

range = [,];

normalization = ;

2 Functions

2-252

[fb,cf] = designAuditoryFilterBank(fs, ...
 "FrequencyScale","erb", ...
 "FFTLength",fftLength, ...
 "NumBands",numBands, ...
 "FrequencyRange",range, ...
 "Normalization",normalization);

plot(F,fb.');
grid on
title("ERB Filter Bank")
xlabel("Frequency (Hz)")

To apply frequency-domain filtering, perform a matrix multiplication of the filter bank and the power
spectrogram.

X = fb*PowerSpectrum;

Visualize the power-per-band in dB.

XdB = 10*log10(X);
surf(t,cf,XdB,"EdgeColor","none");
xlabel("Time (s)")
ylabel("Frequency (Hz)")
view([0,90])
title("ERB-Based Spectrogram")
axis tight

 designAuditoryFilterBank

2-253

Input Arguments
fs — Sample rate of filter design (Hz)
positive scalar

Sample rate of filter design in Hz, specified as a positive scalar.
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: "FrequencyScale","mel"

FrequencyScale — Frequency scale
"mel" (default) | "bark" | "erb"

Frequency scale used to design the auditory filter bank, specified as the comma-separated pair
consisting of 'FrequencyScale' and "mel", "bark", or "erb".
Data Types: char | string

2 Functions

2-254

FFTLength — Number of DFT points
1024 (default) | positive integer

Number of points used to calculate the DFT, specified as the comma-separated pair consisting of
'FFTLength' and a positive integer.
Data Types: single | double

NumBands — Number of bandpass filters
positive integer

Number of bandpass filters, specified as the comma-separated pair consisting of 'NumBands' and a
positive integer. The default number of bandpass filters depends on the FrequencyScale:

• If FrequencyScale is set to "bark" or "mel", then NumBands defaults to 32.
• If FrequencyScale is set to "erb", then NumBands defaults to

ceil(hz2erb(FrequencyRange(2))-hz2erb(FrequencyRange(1))).

Data Types: single | double

FrequencyRange — Frequency range over which to design auditory filter bank (Hz)
[0 fs/2] (default) | two-element row vector

Frequency range over which to design auditory filter bank in Hz, specified as the comma-separated
pair consisting of 'FrequencyRange' and a two-element row vector of monotonically increasing
values in the range [0, fs/2].
Data Types: single | double

Normalization — Normalize filter bank
"bandwidth" (default) | "area" | "none"

Normalization technique used on the weights of the filter bank:

• "bandwidth" –– The weights of each bandpass filter are normalized by the corresponding
bandwidth of the filter.

• "area" –– The weights of each bandpass filter are normalized by the corresponding area of the
bandpass filter.

• "none" –– The weights of the filters are not normalized.

Data Types: char | string

OneSided — Design one-sided or two-sided filter bank
true (default) | false

Design a one-sided or two-sided filter bank, specified as the comma-separated pair consisting of
'OneSided' and either true or false.
Data Types: logical

FilterBankDesignDomain — Domain in which filter bank is designed
"linear" (default) | "warped"

Domain in which filter bank is designed, specified as the comma-separated pair consisting of
'FilterBankDesignDomain' and either "linear" or "warped". Set the filter bank design domain

 designAuditoryFilterBank

2-255

to "linear" to design the bandpass filters in the linear (Hz) domain. Set the filter bank design
domain to "warped" to design the bandpass filters in the warped (mel or Bark) domain.

Dependencies

This parameter only applies if FrequencyScale is set to "mel" (default) or "bark".
Data Types: char | string

Output Arguments
filterBank — Auditory filter bank
column vector | matrix

Auditory filter bank, returned as an M-by-N matrix, where M is the number of bands (NumBands), and
N is the number of frequency points of a one-sided spectrum (ceil(FFTLength/2)).
Data Types: double

Fc — Center frequencies of bandpass filters (Hz)
row vector

Center frequencies of bandpass filters in Hz, returned as a row vector with NumBands elements.
Data Types: double

BW — Bandwidth of bandpass filters (Hz)
row vector

Bandwidth of bandpass filters in Hz, returned as a row vector with NumBands elements.
Data Types: double

Algorithms
The mel filter bank is designed as half-overlapped triangles equally spaced on the mel scale. [1]

The Bark filter bank is designed as half-overlapped triangles equally spaced on the Bark scale. [2]

The ERB filter bank is designed as gammatone filters [4] whose center frequencies are equally spaced
on the ERB scale. [3]

Version History
Introduced in R2019b

designAuditoryFilterBank scaling changed for ERB filter banks
Behavior changed in R2020b

The half-sided ERB filter bank returned from designAuditoryFilterBank is now scaled by 2. This
change provides consistent results when applying one-sided or two-sided filtering, without requiring
multiplications in the processing loop.

2 Functions

2-256

References
[1] O'Shaughnessy, Douglas. Speech Communication: Human and Machine. Reading, MA: Addison-

Wesley Publishing Company, 1987.

[2] Traunmüller, Hartmut. "Analytical Expressions for the Tonotopic Sensory Scale." Journal of the
Acoustical Society of America. Vol. 88, Issue 1, 1990, pp. 97–100.

[3] Glasberg, Brian R., and Brian C. J. Moore. "Derivation of Auditory Filter Shapes from Notched-
Noise Data." Hearing Research. Vol. 47, Issues 1–2, 1990, pp. 103–138.

[4] Slaney, Malcolm. "An Efficient Implementation of the Patterson-Holdsworth Auditory Filter Bank."
Apple Computer Technical Report 35, 1993.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
gammatoneFilterBank | melSpectrogram | hz2mel | hz2bark | hz2erb | erb2hz | bark2hz |
mel2hz

 designAuditoryFilterBank

2-257

melSpectrogram
Mel spectrogram

Syntax
S = melSpectrogram(audioIn,fs)
S = melSpectrogram(audioIn,fs,Name,Value)
[S,F,T] = melSpectrogram(___)
melSpectrogram(___)

Description
S = melSpectrogram(audioIn,fs) returns the mel spectrogram of the audio input at sample rate
fs. The function treats columns of the input as individual channels.

S = melSpectrogram(audioIn,fs,Name,Value) specifies options using one or more
Name,Value pair arguments.

[S,F,T] = melSpectrogram(___) returns the center frequencies of the bands in Hz and the
location of each window of data in seconds. The location corresponds to the center of each window.
You can use this output syntax with any of the previous input syntaxes.

melSpectrogram(___) plots the mel spectrogram on a surface in the current figure.

Examples

Calculate Mel Spectrogram

Use the default settings to calculate the mel spectrogram for an entire audio file. Print the number of
bandpass filters in the filter bank and the number of frames in the mel spectrogram.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');

S = melSpectrogram(audioIn,fs);

[numBands,numFrames] = size(S);
fprintf("Number of bandpass filters in filterbank: %d\n",numBands)

Number of bandpass filters in filterbank: 32

fprintf("Number of frames in spectrogram: %d\n",numFrames)

Number of frames in spectrogram: 1551

Plot the mel spectrogram.

melSpectrogram(audioIn,fs)

2 Functions

2-258

Calculate Mel Spectrums of 2048-Point Windows

Calculate the mel spectrums of 2048-point periodic Hann windows with 1024-point overlap. Convert
to the frequency domain using a 4096-point FFT. Pass the frequency-domain representation through
64 half-overlapped triangular bandpass filters that span the range 62.5 Hz to 8 kHz.

[audioIn,fs] = audioread('FunkyDrums-44p1-stereo-25secs.mp3');

S = melSpectrogram(audioIn,fs, ...
 'Window',hann(2048,'periodic'), ...
 'OverlapLength',1024, ...
 'FFTLength',4096, ...
 'NumBands',64, ...
 'FrequencyRange',[62.5,8e3]);

Call melSpectrogram again, this time with no output arguments so that you can visualize the mel
spectrogram. The input audio is a multichannel signal. If you call melSpectrogram with a
multichannel input and with no output arguments, only the first channel is plotted.

melSpectrogram(audioIn,fs, ...
 'Window',hann(2048,'periodic'), ...
 'OverlapLength',1024, ...
 'FFTLength',4096, ...
 'NumBands',64, ...
 'FrequencyRange',[62.5,8e3])

 melSpectrogram

2-259

Get Filter Bank Center Frequencies and Analysis Window Time Instants

melSpectrogram applies a frequency-domain filter bank to audio signals that are windowed in time.
You can get the center frequencies of the filters and the time instants corresponding to the analysis
windows as the second and third output arguments from melSpectrogram.

Get the mel spectrogram, filter bank center frequencies, and analysis window time instants of a
multichannel audio signal. Use the center frequencies and time instants to plot the mel spectrogram
for each channel.

[audioIn,fs] = audioread('AudioArray-16-16-4channels-20secs.wav');

[S,cF,t] = melSpectrogram(audioIn,fs);

S = 10*log10(S+eps); % Convert to dB for plotting

for i = 1:size(S,3)
 figure(i)
 surf(t,cF,S(:,:,i),'EdgeColor','none');
 xlabel('Time (s)')
 ylabel('Frequency (Hz)')
 view([0,90])
 title(sprintf('Channel %d',i))
 axis([t(1) t(end) cF(1) cF(end)])
end

2 Functions

2-260

 melSpectrogram

2-261

2 Functions

2-262

 melSpectrogram

2-263

Input Arguments
audioIn — Audio input
column vector | matrix

Audio input, specified as a column vector or matrix. If specified as a matrix, the function treats
columns as independent audio channels.
Data Types: single | double

fs — Input sample rate (Hz)
positive scalar

Input sample rate in Hz, specified as a positive scalar.
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'WindowLength',1024

2 Functions

2-264

Window — Window applied in time domain
hamming(round(fs*0.3),'periodic') (default) | vector

Window applied in time domain, specified as the comma-separated pair consisting of 'Window' and a
real vector. The number of elements in the vector must be in the range [1,size(audioIn,1)]. The
number of elements in the vector must also be greater than OverlapLength.
Data Types: single | double

OverlapLength — Analysis window overlap length (samples)
round(0.02*fs) (default) | integer in the range [0, (WindowLength - 1)]

Analysis window overlap length in samples, specified as the comma-separated pair consisting of
'OverlapLength' and an integer in the range [0, (WindowLength - 1)].
Data Types: single | double

FFTLength — Number of DFT points
WindowLength (default) | positive integer

Number of points used to calculate the DFT, specified as the comma-separated pair consisting of
'FFTLength' and a positive integer greater than or equal to WindowLength. If unspecified,
FFTLength defaults to WindowLength.
Data Types: single | double

NumBands — Number of mel bandpass filters
32 (default) | positive integer

Number of mel bandpass filters, specified as the comma-separated pair consisting of 'NumBands'
and a positive integer.
Data Types: single | double

FrequencyRange — Frequency range over which to compute mel spectrogram (Hz)
[0 fs/2] (default) | two-element row vector

Frequency range over which to compute the mel spectrogram in Hz, specified as the comma-
separated pair consisting of 'FrequencyRange' and a two-element row vector of monotonically
increasing values in the range [0, fs/2].
Data Types: single | double

SpectrumType — Type of mel spectrogram
'power' (default) | 'magnitude'

Type of mel spectrogram, specified as the comma-separated pair consisting of 'SpectrumType' and
'power' or 'magnitude'.
Data Types: char | string

WindowNormalization — Apply window normalization
true (default) | false

Apply window normalization, specified as the comma-separated pair consisting of
'WindowNormalization' and true or false. When WindowNormalization is set to true, the
power (or magnitude) in the mel spectrogram is normalized to remove the power (or magnitude) of
the time domain Window.

 melSpectrogram

2-265

Data Types: char | string

FilterBankNormalization — Type of filter bank normalization
'bandwidth' (default) | 'area' | 'none'

Type of filter bank normalization, specified as the comma-separated pair consisting of
'FilterBankNormalization' and 'bandwidth', 'area', or 'none'.
Data Types: char | string

Output Arguments
S — Mel spectrogram
column vector | matrix | 3-D array

Mel spectrogram, returned as a column vector, matrix, or 3-D array. The dimensions of S are L-by-M-
by-N, where:

• L is the number of frequency bins in each mel spectrum. NumBands and fs determine L.
• M is the number of frames the audio signal is partitioned into. size(audioIn,1),

WindowLength, and OverlapLength determine M.
• N is the number of channels such that N = size(audioIn,2).

Trailing singleton dimensions are removed from the output S.
Data Types: single | double

F — Center frequencies of mel bandpass filters (Hz)
row vector

Center frequencies of mel bandpass filters in Hz, returned as a row vector with length size(S,1).
Data Types: single | double

T — Location of each window of audio (s)
row vector

Location of each analysis window of audio in seconds, returned as a row vector length size(S,2).
The location corresponds to the center of each window.
Data Types: single | double

Algorithms
The melSpectrogram function follows the general algorithm to compute a mel spectrogram as
described in [1].

2 Functions

2-266

In this algorithm, the audio input is first buffered into frames of numel(Window) number of samples.
The frames are overlapped by OverlapLength number of samples. The specified Window is applied
to each frame, and then the frame is converted to frequency-domain representation with FFTLength
number of points. The frequency-domain representation can be either magnitude or power, specified
by SpectrumType. If WindowNormalization is set to true, the spectrum is normalized by the
window. Each frame of the frequency-domain representation passes through a mel filter bank. The
spectral values output from the mel filter bank are summed, and then the channels are concatenated
so that each frame is transformed to a NumBands-element column vector.

Filter Bank Design

The mel filter bank is designed as half-overlapped triangular filters equally spaced on the mel scale.
NumBands controls the number of mel bandpass filters. FrequencyRange controls the band edges of
the first and last filters in the mel filter bank. FilterBankNormalization specifies the type of
normalization applied to the individual bands.

 melSpectrogram

2-267

Version History
Introduced in R2019a

WindowLength will be removed in a future release
Behavior change in future release

The WindowLength parameter will be removed from the melSpectrogram function in a future
release. Use the Window parameter instead.

In releases prior to R2020b, you could only specify the length of a time-domain window. The window
was always designed as a periodic Hamming window. You can replace instances of the code

S = melSpectrogram(audioin,fs,'WindowLength',1024);

With this code:

S = melSpectrogram(audioIn,fs,'Window',hamming(1024,'periodic'));

References
[1] Rabiner, Lawrence R., and Ronald W. Schafer. Theory and Applications of Digital Speech

Processing. Upper Saddle River, NJ: Pearson, 2010.

2 Functions

2-268

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

See Also
spectrogram | mfcc | gtcc | mdct | audioFeatureExtractor

Topics
“Train Speech Command Recognition Model Using Deep Learning”

 melSpectrogram

2-269

kbdwin
Kaiser-Bessel-derived window

Syntax
wdw = kbdwin(N)
wdw = kbdwin(N,Beta)

Description
wdw = kbdwin(N) returns an N-point Kaiser-Bessel-derived (KBD) window.

wdw = kbdwin(N,Beta) specifies the tuning parameter, Beta.

Examples

Create Kaiser-Bessel-Derived Window

Create a 1024-point Kaiser-Bessel-derived (KBD) window. Visualize the KBD window in the time and
frequency domains using wvtool.

wdw = kbdwin(1024);
wvtool(wdw)

2 Functions

2-270

Effect of Tuning Parameter Beta

Create three 512-point KBD windows, with Beta set to 1, 10, and 100. Display the windows for
comparison using wvtool.

N = 512;
beta1 = kbdwin(N,1);
beta10 = kbdwin(N,10);
beta100 = kbdwin(N,100);

wvtool(beta1,beta10,beta100)

 kbdwin

2-271

Input Arguments
N — Number of points in KBD window
even positive integer scalar

Number of points in the KBD window, specified as an even positive integer scalar.
Data Types: single | double

Beta — Tuning parameter
5 (default) | nonnegative real scalar

Tuning parameter, specified as a nonnegative real scalar. If unspecified, Beta defaults to 5.
Data Types: single | double

Output Arguments
wdw — Kaiser-Bessel-derived window
N-point column vector

Kaiser-Bessel-derived window, returned as an N-point column vector.

2 Functions

2-272

Algorithms
The coefficients of a Kaiser-Bessel-derived window are computed using the equation:

wdw[n] =

∑i = 1
n w[i]

∑i = 1
N 2 + 1w[i]

if 1 ≤ n < N 2

∑i = 1
N − nw[i]

∑i = 1
N 2 + 1w[i]

if N 2 + 1 ≤ n < N

where w is a Kaiser window designed using the kaiser function:

w = kaiser(N/2+1,Beta*pi)

where N is the number of points in the KBD window and Beta is the tuning parameter.

Version History
Introduced in R2019a

References
[1] Bosi, Marina, and Richard E. Goldberg. Introduction to Digital Audio Coding and Standards.

Dordrecht: Kluwer, 2003.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
kaiser | window | mdct

 kbdwin

2-273

mdct
Modified discrete cosine transform

Syntax
Y = mdct(X,win)
Y = mdct(X,win,Name,Value)
[Y,S,Z] = mdct(___)

Description
Y = mdct(X,win) returns the modified discrete cosine transform (MDCT) of X. Before the MDCT is
calculated, X is buffered into 50% overlapping frames that are each multiplied by the time window
win. The function treats each column of X as an independent channel.

Y = mdct(X,win,Name,Value) sets each property Name to the specified Value. Unspecified
properties have default values.

[Y,S,Z] = mdct(___) returns the modified discrete sine transform (MDST), S, and the odd
discrete Fourier transform (ODFT), Z.

Examples

Calculate MDCT

Read in an audio file and then calculate the MDCT using a 1024-point Kaiser-Bessel-derived window.

audioIn = audioread('Counting-16-44p1-mono-15secs.wav');

coef = mdct(audioIn,kbdwin(1024));

Plot the power of the MDCT coefficients over time.

surf(pow2db(coef.^2),'EdgeColor','none');
view([0 90])
xlabel('Frame')
ylabel('Frequency')
axis([0 size(coef,2) 0 size(coef,1)])
colorbar

2 Functions

2-274

Effect of Input Padding on Perfect Reconstruction

To enable perfect reconstruction, the mdct function zero-pads the front and back of the audio input
signal. The signal returned from imdct removes the zero padding added for perfect reconstruction.

Read in an audio file, create a 2048-point Kaiser-Bessel-derived window, and then clip the audio
signal so that its length is a multiple of 2048.

[x,fs] = audioread('Click-16-44p1-mono-0.2secs.wav');
win = kbdwin(2048);

xClipped = x(1:end - rem(size(x,1),numel(win)));

Convert the signal to the frequency domain, and then reconstruct it back in the time domain. Plot the
original and reconstructed signals and display the reconstruction error.

C = mdct(xClipped,win);
y = imdct(C,win);

figure(1)
t = (0:size(xClipped,1)-1)'/fs;
plot(t,xClipped,'bo',t,y,'r.')
legend('Original Signal','Reconstructed Signal')
title(strcat("Reconstruction Error = ",num2str(mean((xClipped-y).^2))))

 mdct

2-275

xlabel('Time (s)')
ylabel('Amplitude')

You can perform the MDCT and IMDCT without input padding using the PadInput name-value pair.
However, there will be a reconstruction error in the first half-frame and last half-frame of the signal.

C = mdct(xClipped,win,'PadInput',false);
y = imdct(C,win,'PadInput',false);

figure(2)
t = (0:size(xClipped,1)-1)'/fs;
plot(t,xClipped,'bo',t,y,'r.')
legend('Original Signal','Reconstructed Signal')
title(strcat("Reconstruction Error (Without Input Padding) = ",num2str(mean((xClipped-y).^2))))
xlabel('Time (s)')
ylabel('Amplitude')

2 Functions

2-276

If you specify an input signal to the mdct that is not a multiple of the window length, then the input
signal is padded with zeros. Pass the original unclipped signal through the transform pair and
compare the original signal and the reconstructed signal.

C = mdct(x,win);
y = imdct(C,win);

figure(3)

subplot(2,1,1)
plot(x)
title('Original Signal')
ylabel('Amplitude')
axis([0,max(size(y,1),size(x,1)),-0.5,0.5])

subplot(2,1,2)
plot(y)
title('Reconstructed Signal')
xlabel('Time (s)')
ylabel('Amplitude')
axis([0,max(size(y,1),size(x,1)),-0.5,0.5])

 mdct

2-277

The reconstructed signal is padded with zeros at the back end. Remove the zero-padding from the
reconstructed signal, plot the original and reconstructed signal, and then display the reconstruction
error.

figure(4)
y = y(1:size(x,1));
t = (0:size(x,1)-1)'/fs;
plot(t,x,'bo',t,y,'r.')
legend('Original Signal','Reconstructed Signal')
title(strcat("Reconstruction Error = ",num2str(mean((x-y).^2))))
xlabel('Time (s)')
ylabel('Amplitude')

2 Functions

2-278

MDCT and IMDCT for Streaming Audio

Create a dsp.AudioFileReader object to read in audio data frame-by-frame. Create a
dsp.SignalSink to log the reconstructed signal for comparison. Create a dsp.AsyncBuffer to
buffer the input stream.

fileReader = dsp.AudioFileReader('FunkyDrums-44p1-stereo-25secs.mp3');
logger = dsp.SignalSink;
buff = dsp.AsyncBuffer;

Create a 512-point Kaiser-Bessel-derived window.

N = 512;
win = kbdwin(N);

In an audio stream loop:

1 Read a frame of data from the file.
2 Write the frame of data to the async buffer.
3 If half a frame of data is present, read from the buffer and then perform the transform pair.

Overlap-add the current output from imdct with the previous output, and log the results. Update
the memory.

mem = zeros(N/2,2); % initialize an empty memory

 mdct

2-279

while ~isDone(fileReader)
 audioIn = fileReader();
 write(buff,audioIn);

 while buff.NumUnreadSamples >= N/2
 x = read(buff,N,N/2);
 C = mdct(x,win,'PadInput',false);
 y = imdct(C,win,'PadInput',false);

 logger(y(1:N/2,:)+mem)
 mem = y(N/2+1:end,:);
 end

end

% Perform the transform pair one last time with a zero-padded final signal.
x = read(buff,N,N/2);
C = mdct(x,win,'PadInput',false);
y = imdct(C,win,'PadInput',false);
logger(y(1:N/2,:)+mem)

reconstructedSignal = logger.Buffer;

Read in the entire original audio signal. Trim the front and back zero padding from the reconstructed
signal for comparison. Plot one channel of the original and reconstructed signals and display the
reconstruction error.

[originalSignal,fs] = audioread(fileReader.Filename);
signalLength = size(originalSignal,1);
reconstructedSignal = reconstructedSignal((N/2+1):(N/2+1)+signalLength-1,:);

t = (0:size(originalSignal,1)-1)'/fs;
plot(t,originalSignal(:,1),'bo',t,reconstructedSignal(:,1),'r.')
legend('Original Signal','Reconstructed Signal')
title(strcat("Reconstruction Error = ", ...
 num2str(mean((originalSignal-reconstructedSignal).^2,'all'))))
xlabel('Time (s)')
ylabel('Amplitude')

2 Functions

2-280

Input Arguments
X — Input array
column vector | matrix

Input array, specified as a column vector or matrix. If specified as a matrix, the columns are treated
as independent audio channels.
Data Types: single | double

win — Window applied in time domain
even-length vector

Window applied in the time domain, specified as an even-length vector. The transform performed by
mdct has the same number of points as win. To enable perfect reconstruction, use a window that
satisfies the Princen-Bradley condition (wn

2 + wn + N
2 = 1), such as a sine window or kbdwin.

Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

 mdct

2-281

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'PadInput',false

PadInput — Flag to pad input array
true (default) | false

Flag to pad input array, specified as the comma-separated pair consisting of 'PadInput' and true or
false. If set to true, zero-padding is added to the input X at both ends to enable perfect
reconstruction. The number of zeros at each end is numel(win)/2.
Data Types: logical

Output Arguments
Y — Modified discrete cosine transform
vector | matrix | 3-D array

Modified discrete cosine transform (MDCT), returned as a vector, matrix, or 3-D array. The
dimensions of Y are L-by-M-by-N, where:

• L –– Number of points in the frequency-domain representation of each frame, equal to
numel(win)/2.

• M –– Number of frames the input array is partitioned into.

• If PadInput is set to true, M = ceil(2*size(X,1)/numel(win))+1.
• If PadInput is set to false, M = ceil(2*size(X,1)/numel(win))-1.

• N –– Number of channels, equal to size(X,2).

Trailing singleton dimensions are removed from the output Y.
Data Types: single | double

S — Modified discrete sine transform
vector | matrix | 3-D array

Modified discrete sine transform (MDST), returned as a vector, matrix, or 3-D array. The dimensions
of S are the same as the MDCT output, Y.
Data Types: single | double

Z — Half-sided odd discrete Fourier transform
vector | matrix | 3-D array

Half-sided odd discrete Fourier transform (ODFT), returned as a vector, matrix, or 3-D array of
complex numbers. The dimensions of Z are the same as the MDCT output, Y.

To construct the complete (two-sided) ODFT, mirror the half-sided ODFT:
cat(1,Z,conj(flip(Z,1))).
Data Types: single | double
Complex Number Support: Yes

2 Functions

2-282

Algorithms
The modified discrete cosine transform is a time-frequency transform. Given an input signal X and
window win, the mdct function performs the following steps for each independent channel:

1 The frame size is the number of elements in the specified window, N = numel(win). By default,
PadInput is set to true, so the input signal X is padded with N/2 zeros on the front and back. If
the input signal is not divisible by N, additional padding is added on the back. After padding, the
input signal is buffered into 50% overlapped frames.

2 Each frame of the buffered and padded input signal is multiplied by the window, win.
3 The input is converted into a frequency representation using the modified discrete cosine

transform:

Y(k) = ∑
n = 0

N − 1
X n cos π

N 2
n +

N 2 + 1
2 k + 1

2 , k = 0, 1, ..., N 2 − 1

To take advantage of the FFT algorithm, the MDCT is calculated by first calculating the odd DFT:

YO(k) = ∑
n = 0

N − 1
X n e− jπn

N 2k + 1 , k = 0, 1, ..., N − 1

and then calculating the MDCT:

Y(k) = ℜe Yo(k) cos π
N k + 1

2 1 + N
2 , k = 0, 1, ..., N 2 − 1

If a second argument is requested from the mdct function, the modified discrete sine transform
(MDST) is also computed and returned:

X(k) = ℑm Xo(k) sin π
N k + 1

2 1 + N
2 , k = 0, 1, ..., N 2 − 1

Version History
Introduced in R2019a

References
[1] Princen, J., A. Johnson, and A. Bradley. "Subband/Transform Coding Using Filter Bank Designs

Based on Time Domain Aliasing Cancellation." IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP). 1987, pp. 2161–2164.

[2] Princen, J., and A. Bradley. "Analysis/Synthesis Filter Bank Design Based on Time Domain Aliasing
Cancellation." IEEE Transactions on Acoustics, Speech, and Signal Processing. Vol. 34, Issue
5, 1986, pp. 1153–1161.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 mdct

2-283

See Also
imdct | kbdwin | spectrogram

Topics
“Vorbis Decoder”

2 Functions

2-284

imdct
Inverse modified discrete cosine transform

Syntax
X = imdct(Y,win)
X = imdct(Y,win,Name,Value)

Description
X = imdct(Y,win) returns the inverse modified discrete cosine transform (IMDCT) of Y, followed
by multiplication with time window win and overlap-addition of the frames with 50% overlap.

X = imdct(Y,win,Name,Value) sets each property Name to the specified Value. Unspecified
properties have default values.

Examples

Calculate IMDCT

Read in an audio file, convert it to mono, and then plot it.

audioIn = audioread('FunkyDrums-44p1-stereo-25secs.mp3');
audioIn = mean(audioIn,2);

figure(1)
plot(audioIn,'bo')
ylabel('Amplitude')
xlabel('Sample Number')

 imdct

2-285

Calculate the MDCT using a 4096-point sine window. Plot the power of the MDCT coefficients over
time.

N = 4096;
wdw = sin(pi*((1:N)-0.5)/N);

C = mdct(audioIn,wdw);

figure(2)
surf(pow2db(C.*conj(C)),'EdgeColor','none');
view([0 90])
xlabel('Frame')
ylabel('Frequency')
axis([0 size(C,2) 0 size(C,1)])
colorbar

2 Functions

2-286

Transform the representation back to the time domain. Verify the perfect reconstruction property by
computing the mean squared error. Plot the reconstructed signal over the original signal.

audioReconstructed = imdct(C,wdw);
err = mean((audioIn-audioReconstructed(1:size(audioIn,1),:)).^2)

err = 9.5889e-31

figure(1)
hold on
plot(audioReconstructed,'r.')
ylabel('Amplitude')
xlabel('Sample Number')

 imdct

2-287

Effect of Input Padding on Perfect Reconstruction

To enable perfect reconstruction, the mdct function zero-pads the front and back of the audio input
signal. The signal returned from imdct removes the zero padding added for perfect reconstruction.

Read in an audio file, create a 2048-point Kaiser-Bessel-derived window, and then clip the audio
signal so that its length is a multiple of 2048.

[x,fs] = audioread('Click-16-44p1-mono-0.2secs.wav');
win = kbdwin(2048);

xClipped = x(1:end - rem(size(x,1),numel(win)));

Convert the signal to the frequency domain, and then reconstruct it back in the time domain. Plot the
original and reconstructed signals and display the reconstruction error.

C = mdct(xClipped,win);
y = imdct(C,win);

figure(1)
t = (0:size(xClipped,1)-1)'/fs;
plot(t,xClipped,'bo',t,y,'r.')
legend('Original Signal','Reconstructed Signal')
title(strcat("Reconstruction Error = ",num2str(mean((xClipped-y).^2))))

2 Functions

2-288

xlabel('Time (s)')
ylabel('Amplitude')

You can perform the MDCT and IMDCT without input padding using the PadInput name-value pair.
However, there will be a reconstruction error in the first half-frame and last half-frame of the signal.

C = mdct(xClipped,win,'PadInput',false);
y = imdct(C,win,'PadInput',false);

figure(2)
t = (0:size(xClipped,1)-1)'/fs;
plot(t,xClipped,'bo',t,y,'r.')
legend('Original Signal','Reconstructed Signal')
title(strcat("Reconstruction Error (Without Input Padding) = ",num2str(mean((xClipped-y).^2))))
xlabel('Time (s)')
ylabel('Amplitude')

 imdct

2-289

If you specify an input signal to the mdct that is not a multiple of the window length, then the input
signal is padded with zeros. Pass the original unclipped signal through the transform pair and
compare the original signal and the reconstructed signal.

C = mdct(x,win);
y = imdct(C,win);

figure(3)

subplot(2,1,1)
plot(x)
title('Original Signal')
ylabel('Amplitude')
axis([0,max(size(y,1),size(x,1)),-0.5,0.5])

subplot(2,1,2)
plot(y)
title('Reconstructed Signal')
xlabel('Time (s)')
ylabel('Amplitude')
axis([0,max(size(y,1),size(x,1)),-0.5,0.5])

2 Functions

2-290

The reconstructed signal is padded with zeros at the back end. Remove the zero-padding from the
reconstructed signal, plot the original and reconstructed signal, and then display the reconstruction
error.

figure(4)
y = y(1:size(x,1));
t = (0:size(x,1)-1)'/fs;
plot(t,x,'bo',t,y,'r.')
legend('Original Signal','Reconstructed Signal')
title(strcat("Reconstruction Error = ",num2str(mean((x-y).^2))))
xlabel('Time (s)')
ylabel('Amplitude')

 imdct

2-291

MDCT and IMDCT for Streaming Audio

Create a dsp.AudioFileReader object to read in audio data frame-by-frame. Create a
dsp.SignalSink to log the reconstructed signal for comparison. Create a dsp.AsyncBuffer to
buffer the input stream.

fileReader = dsp.AudioFileReader('FunkyDrums-44p1-stereo-25secs.mp3');
logger = dsp.SignalSink;
buff = dsp.AsyncBuffer;

Create a 512-point Kaiser-Bessel-derived window.

N = 512;
win = kbdwin(N);

In an audio stream loop:

1 Read a frame of data from the file.
2 Write the frame of data to the async buffer.
3 If half a frame of data is present, read from the buffer and then perform the transform pair.

Overlap-add the current output from imdct with the previous output, and log the results. Update
the memory.

mem = zeros(N/2,2); % initialize an empty memory

2 Functions

2-292

while ~isDone(fileReader)
 audioIn = fileReader();
 write(buff,audioIn);

 while buff.NumUnreadSamples >= N/2
 x = read(buff,N,N/2);
 C = mdct(x,win,'PadInput',false);
 y = imdct(C,win,'PadInput',false);

 logger(y(1:N/2,:)+mem)
 mem = y(N/2+1:end,:);
 end

end

% Perform the transform pair one last time with a zero-padded final signal.
x = read(buff,N,N/2);
C = mdct(x,win,'PadInput',false);
y = imdct(C,win,'PadInput',false);
logger(y(1:N/2,:)+mem)

reconstructedSignal = logger.Buffer;

Read in the entire original audio signal. Trim the front and back zero padding from the reconstructed
signal for comparison. Plot one channel of the original and reconstructed signals and display the
reconstruction error.

[originalSignal,fs] = audioread(fileReader.Filename);
signalLength = size(originalSignal,1);
reconstructedSignal = reconstructedSignal((N/2+1):(N/2+1)+signalLength-1,:);

t = (0:size(originalSignal,1)-1)'/fs;
plot(t,originalSignal(:,1),'bo',t,reconstructedSignal(:,1),'r.')
legend('Original Signal','Reconstructed Signal')
title(strcat("Reconstruction Error = ", ...
 num2str(mean((originalSignal-reconstructedSignal).^2,'all'))))
xlabel('Time (s)')
ylabel('Amplitude')

 imdct

2-293

Input Arguments
Y — Modified discrete cosine transform
vector | matrix | 3-D array

Modified discrete cosine transform (MDCT), specified as a vector, matrix, or 3-D array. The
dimensions of Y are interpreted as output from the mdct function. If Y is an L-by-M-by-N array, the
dimensions are interpreted as:

• L –– Number of points in the frequency-domain representation of each frame. L must be half the
number of points in the window, win.

• M –– Number of frames.
• N –– Number of channels.

Data Types: single | double

win — Window applied in time domain
vector

Window applied in the time domain, specified as vector. The length of win must be twice the number
of rows of Y: numel(win)==2*size(Y,1). To enable perfect reconstruction, use the same window
used in the forward transformation mdct.
Data Types: single | double

2 Functions

2-294

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'PadInput',false

PadInput — Flag if input was padded
true (default) | false

Flag if input to the forward mdct was padded. If set to true, the output is truncated at both ends to
remove the zero-padding that the forward mdct added.
Data Types: logical

Output Arguments
X — Inverse modified discrete cosine transform
column vector | matrix

Inverse modified discrete cosine transform (IMDCT) of input array Y, returned as a column vector or
matrix of independent channels.
Data Types: single | double

Algorithms
The inverse modified discrete cosine transform is a time-frequency transform. Given a frequency
domain input signal Y and window win, the imdct function performs the follows steps for each
independent channel:

1 Each frame of the input is converted into a time-domain representation:

X(n) = ∑
k = 0

N
2 − 1

Y k cos π
N 2

n +
N 2 + 1

2 k + 1
2 , n = 0, 1, ..., N − 1

where N is the number of elements in win.
2 Each frame of the time-domain signal is multiplied by the window, win.
3 The frames are overlap-added with 50% overlap to construct a contiguous time-domain signal. If

PadInput is set to true, the imdct function assumes the original input signal in the forward
transform (mdct) was padded with N/2 zeros on the front and back and removes the padding. By
default, PadInput is set to true.

Version History
Introduced in R2019a

 imdct

2-295

References
[1] Princen, J., A. Johnson, and A. Bradley. "Subband/Transform Coding Using Filter Bank Designs

Based on Time Domain Aliasing Cancellation." IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP). 1987, pp. 2161–2164.

[2] Princen, J., and A. Bradley. "Analysis/Synthesis Filter Bank Design Based on Time Domain Aliasing
Cancellation." IEEE Transactions on Acoustics, Speech, and Signal Processing. Vol. 34, Issue
5, 1986, pp. 1153–1161.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
mdct | kbdwin | spectrogram

Topics
“Vorbis Decoder”

2 Functions

2-296

harmonicRatio
Harmonic ratio

Syntax
hr = harmonicRatio(audioIn,fs)
hr = harmonicRatio(audioIn,fs,Name=Value)
harmonicRatio(___)

Description
hr = harmonicRatio(audioIn,fs) returns the harmonic ratio of the signal, audioIn, over time.
Columns of the input are treated as individual channels.

hr = harmonicRatio(audioIn,fs,Name=Value) specifies options using one or more name-value
arguments.
Example: hr =
harmonicRatio(audioIn,fs,Window=rectwin(round(fs*0.1)),OverlapLength=round(fs
*0.05)) returns the harmonic ratio for the audio input signal sampled at fs Hz. The harmonic ratio
is calculated for 100 ms rectangular windows with 50 ms overlap.

harmonicRatio(___) with no output arguments plots the harmonic ratio against time. You can
specify an input combination from any of the previous syntaxes.

Examples

Calculate Harmonic Ratio

Read in an audio file and calculate the harmonic ratio using default parameters.

[audioIn,fs] = audioread("RandomOscThree-24-96-stereo-13secs.aif");
audioInMono = mean(audioIn,2);

hr = harmonicRatio(audioInMono,fs);

Plot the amplitude and the harmonic ratio of the signal against time.

t = (0:length(audioInMono)-1)/fs;
subplot(2,1,1)
plot(t,audioInMono)
ylabel("Amplitude")
grid minor
axis tight

subplot(2,1,2)
harmonicRatio(audioInMono,fs)

 harmonicRatio

2-297

Specify Nondefault Parameters

Read in an audio file.

[audioIn,fs] = audioread("Counting-16-44p1-mono-15secs.wav");

Calculate the harmonic ratio of the audio file using 50 ms Hann windows with 25 ms overlap.

hr = harmonicRatio(audioIn,fs, ...
 Window=hann(round(fs.*0.05),"periodic"), ...
 OverlapLength=round(fs.*0.025));

Plot the harmonic ratio.

harmonicRatio(audioIn,fs, ...
 Window=hann(round(fs.*0.05),"periodic"), ...
 OverlapLength=round(fs.*0.025))

2 Functions

2-298

The harmonic ratio indicates the ratio of energy in the harmonic portion of audio to the total energy
of the audio. Because the audio signal in this example has regions of near silence, where the total
energy is very low, the harmonic ratio does a poor job discriminating between regions of speech and
regions of silence. Add white noise to the audio signal and then calculate the harmonic ratio.

audioIn = audioIn + 0.1*randn(size(audioIn));
hr = harmonicRatio(audioIn,fs, ...
 Window=hann(round(fs.*0.05),"periodic"), ...
 OverlapLength=round(fs.*0.025));

Plot the new harmonic ratio of the audio signal combined with white noise.

harmonicRatio(audioIn,fs, ...
 Window=hann(round(fs.*0.05),"periodic"), ...
 OverlapLength=round(fs.*0.025))

 harmonicRatio

2-299

Calculate Harmonic Ratio of Streaming Audio

Create a dsp.AudioFileReader object to read in stereo audio data frame-by-frame. Create a
dsp.SignalSink object to log the harmonic ratio calculation.

fileReader = dsp.AudioFileReader('RandomOscThree-24-96-stereo-13secs.aif');
logger = dsp.SignalSink;

In an audio stream loop:

1 Read in a frame of audio data.
2 Calculate the harmonic ratio for each channel of the frame of audio.
3 Log the harmonic ratio for later plotting.

To calculate the harmonic ratio for only a given input frame, specify a window with the same number
of samples as the input, and set the overlap length to zero. Plot the logged data.

win = hamming(fileReader.SamplesPerFrame,'periodic');
while ~isDone(fileReader)
 audioIn = fileReader();

 hr = harmonicRatio(audioIn,fileReader.SampleRate, ...
 'Window',win, ...
 'OverlapLength',0);

2 Functions

2-300

 logger(hr)
end

plot(logger.Buffer)
ylabel('Harmonic Ratio')
legend('Left Channel','Right Channel')

If the input to your audio stream loop has a variable samples-per-frame, an inconsistent samples-per-
frame with the analysis window size of harmonicRatio, or if you want to calculate the harmonic
ratio of overlapped data, use dsp.AsyncBuffer.

Create a dsp.AsyncBuffer object, reset the logger, and release the file reader.

buff = dsp.AsyncBuffer;
reset(logger)
release(fileReader)

Calculate the harmonic ratio using 50 ms frames with a 25 ms overlap.

fs = fileReader.SampleRate;

samplesPerFrame = round(fs*0.05);
samplesOverlap = round(fs*0.025);

samplesPerHop = samplesPerFrame - samplesOverlap;

win = hamming(samplesPerFrame);

 harmonicRatio

2-301

while ~isDone(fileReader)
 audioIn = fileReader();
 write(buff,audioIn);

 while buff.NumUnreadSamples >= samplesPerHop
 audioBuffered = read(buff,samplesPerFrame,samplesOverlap);

 hr = harmonicRatio(audioBuffered,fs, ...
 'Window',win, ...
 'OverlapLength',0);
 logger(hr)
 end

end
release(fileReader)

Plot the logged data.

plot(logger.Buffer)
ylabel('Harmonic Ratio')
legend('Left Channel','Right Channel')

2 Functions

2-302

Harmonic Ratio of Tones and White Noise

The harmonic ratio measures the amount of energy in the tonal part of the signal compared to the
amount of energy in the total signal.

Harmonic Ratio of Pure Tone

Create a pure tone and then calculate the harmonic ratio using default parameters. By default, the
harmonic ratio is calculated for 30 ms Hamming windows with 10 ms hops. Plot the results. The
harmonic ratio is near 1, which is the theoretical maximum.

fs = 48e3;
osc = audioOscillator(Frequency=500,SamplesPerFrame=192e3,SampleRate=fs);
sinewave = osc();

hr = harmonicRatio(sinewave,fs);

Plot the harmonic ratio against time. The harmonic ratio is near 1, which is the theoretical maximum.

harmonicRatio(sinewave,fs)
title("Sinusoid - Default Parameters")

The short-time analysis required for windowing lowers the harmonic ratio from the theoretical value
of 1. To diminish the effect of windowing, you can increase the window size. Use a 100 ms Hamming
window and a 10 ms hop.

win = hamming(round(fs*0.1),"periodic");
overlap = round(fs*0.099);

 harmonicRatio

2-303

hr = harmonicRatio(sinewave,fs,Window=win,OverlapLength=overlap);

Plot the harmonic ratio and observe that it is closer to one than when using the default window
length.

harmonicRatio(sinewave,fs,Window=win,OverlapLength=overlap)
title("Sinusoid - 100 ms Window")

Harmonic Ratio of White Noise

Create 5 seconds of white noise and then calculate the harmonic ratio using default parameters. By
default, the harmonic ratio is calculated for 30 ms Hamming windows with 10 ms hops.

fs = 48e3;
noise = rand(fs*5,1);

hr = harmonicRatio(noise,fs);

Plot the results. The harmonic ratio is 0.

harmonicRatio(noise,fs)
title("Noise - Default Parameters")

2 Functions

2-304

Input Arguments
audioIn — Input signal
column vector | matrix

Input signal, specified as a column vector or matrix. If specified as a matrix, harmonicRatio treats
the columns of the matrix as individual audio channels.
Data Types: single | double

fs — Sample rate (Hz)
positive scalar

Sample rate of the input signal in Hz, specified as a positive scalar.
Data Types: single | double

Name-Value Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: Window=hamming(256)

 harmonicRatio

2-305

Window — Window applied in time domain
hamming(round(fs*0.03),"periodic") (default) | vector

Window applied in the time domain, specified as a real vector. The number of elements in the vector
must be in the range [1, size(audioIn,1)]. The number of elements in the vector must also be
greater than OverlapLength.
Data Types: single | double

OverlapLength — Number of samples overlapped between adjacent windows
round(fs*0.02) (default) | nonnegative integer scalar

Number of samples overlapped between adjacent windows, specified as an integer in the range [0,
size(Window,1)).
Data Types: single | double

Output Arguments
hr — Harmonic ratio
scalar | vector | matrix

Harmonic ratio, returned as a scalar, vector, or matrix. Each row of hr corresponds to the harmonic
ratio of a window of audioIn. The harmonic ratio is returned with values in the range [0,1]. A value
of 0 represents low harmonicity, and a value of 1 represents high harmonicity.
Data Types: single | double

Algorithms
The harmonic ratio is calculated as described in [1]. The following algorithm is applied independently
to each window of audio data. The normalized autocorrelation of the signal is determined as:

Γ(m) =
∑

n = 1

N
s n s n−m

∑
n = 1

N
s n 2 ∑

n = 0

N
s(n−m)2

for 1 ≤ m ≤ M

where

• s is a single frame of audio data with N elements.
• M is the maximum lag in the calculation. The maximum lag is 40 ms, which corresponds to a

minimum fundamental frequency of 25 Hz.

A first estimate of the harmonic ratio is determined as the maximum of the normalized
autocorrelation, within a given range:

βHR =
max

M0 ≤ m ≤ M Γ(m)

where M0 is the lower edge of the search range, determined as the first zero crossing of the
normalized autocorrelation.

Finally, the harmonic ratio estimate is improved using parabolic interpolation, as described in [2].

2 Functions

2-306

Version History
Introduced in R2019a

References
[1] Kim, Hyoung-Gook, Nicholas Moreau, and Thomas Sikora. MPEG-7 Audio and Beyond: Audio

Content Indexing and Retrieval. John Wiley & Sons, 2005.

[2] Quadratic Interpolation of Spectral Peaks. Accessed October 11, 2018. https://ccrma.stanford.edu/
~jos/sasp/Quadratic_Interpolation_Spectral_Peaks.html

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
pitch | spectralCentroid | voiceActivityDetector

 harmonicRatio

2-307

gtcc
Extract gammatone cepstral coefficients, log-energy, delta, and delta-delta

Syntax
coeffs = gtcc(audioIn,fs)
coeffs = gtcc(___ ,Name=Value)
[coeffs,delta,deltaDelta,loc] = gtcc(___)
gtcc(___)

Description
coeffs = gtcc(audioIn,fs) returns the gammatone cepstral coefficients (GTCCs) for the audio
input, sampled at a frequency of fs Hz.

coeffs = gtcc(___ ,Name=Value) specifies options using one or more name-value arguments.

[coeffs,delta,deltaDelta,loc] = gtcc(___) also returns the delta, delta-delta, and
location in samples corresponding to each window of data. You can specify an input combination from
any of the previous syntaxes.

gtcc(___) with no output arguments plots the gammatone cepstral coefficients. Before plotting,
the coefficients are normalized to have mean 0 and standard deviation 1.

• If the input is in the time domain, the coefficients are plotted against time.
• If the input is in the frequency domain, the coefficients are plotted against frame number.
• If the log-energy is extracted, then it is also plotted.

Examples

Extract GTCC from Audio Signal

Get the gammatone cepstral coefficients for an audio file using default settings.

[audioIn,fs] = audioread("Counting-16-44p1-mono-15secs.wav");

[coeffs,~,~,loc] = gtcc(audioIn,fs);

Plot the normalized coefficients.

gtcc(audioIn,fs)

2 Functions

2-308

Specify Nondefault Parameters

Read in an audio file.

[audioIn,fs] = audioread("Turbine-16-44p1-mono-22secs.wav");

Calculate 20 GTCCs using filters equally spaced on the ERB scale between hz2erb(62.5) and
hz2erb(12000). Calculate the coefficients using 50 ms periodic Hann windows with 25 ms overlap.
Replace the 0th coefficient with the log-energy. Use time-domain filtering.

[coeffs,~,~,loc] = gtcc(audioIn,fs, ...
 NumCoeffs=20, ...
 FrequencyRange=[62.5,12000], ...
 Window=hann(round(0.05*fs),"periodic"), ...
 OverlapLength=round(0.025*fs), ...
 LogEnergy="replace", ...
 FilterDomain="time");

Plot the normalized coefficients.

gtcc(audioIn,fs, ...
 NumCoeffs=20, ...
 FrequencyRange=[62.5,12000], ...
 Window=hann(round(0.05*fs),"periodic"), ...
 OverlapLength=round(0.025*fs), ...

 gtcc

2-309

 LogEnergy="replace", ...
 FilterDomain="time")

Extract GTCC from Frequency-Domain Audio

Read in an audio file and convert it to a frequency representation.

[audioIn,fs] = audioread("Rainbow-16-8-mono-114secs.wav");

win = hann(1024,"periodic");
S = stft(audioIn,"Window",win,"OverlapLength",512,"Centered",false);

To extract the gammatone cepstral coefficients, call gtcc with the frequency-domain audio. Ignore
the log-energy.

coeffs = gtcc(S,fs,"LogEnergy","Ignore");

In many applications, GTCC observations are converted to summary statistics for use in classification
tasks. Plot a probability density function for one of the gammatone cepstral coefficients to observe its
distributions.

nbins = 60;

coefficientToAnalyze = ;

2 Functions

2-310

histogram(coeffs(:,coefficientToAnalyze+1),nbins,'Normalization','pdf')
title(sprintf("Coefficient %d",coefficientToAnalyze))

Input Arguments
audioIn — Input signal
vector | matrix | 3-D array

Input signal, specified as a vector, matrix, or 3-D array.

If FilterDomain is set to "frequency" (default), then audioIn can be real or complex.

• If audioIn is real, it is interpreted as a time-domain signal and must be a column vector or a
matrix. Columns of the matrix are treated as independent audio channels.

• If audioIn is complex, it is interpreted as a frequency-domain signal. In this case, audioIn must
be an L-by-M-by-N array, where L is the number of DFT points, M is the number of individual
spectra, and N is the number of individual channels.

If FilterDomain is set to "time", then audioIn must be a real column vector or matrix. Columns
of the matrix are treated as independent audio channels.
Data Types: single | double
Complex Number Support: Yes

 gtcc

2-311

fs — Sample rate (Hz)
positive scalar

Sample rate of the input signal in Hz, specified as a positive scalar.
Data Types: single | double

Name-Value Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: coeffs = gtcc(audioIn,fs,LogEnergy="replace") returns gammatone cepstral
coefficients for the audio input signal sampled at fs Hz. For each analysis window, the first
coefficient in the coeffs vector is replaced with the log energy of the input signal.

Window — Window applied in time domain
hamming(round(0.03*fs),"periodic") (default) | vector

Window applied in time domain, specified as a real vector. The number of elements in the vector must
be in the range [1,size(audioIn,1)]. The number of elements in the vector must also be greater
than OverlapLength.
Data Types: single | double

OverlapLength — Number of samples overlapped between adjacent windows
round(0.02*fs) (default) | non-negative scalar

Number of samples overlapped between adjacent windows, specified as an integer in the range [0,
numel(Window)). If unspecified, OverlapLength defaults to round(0.02*fs).
Data Types: single | double

NumCoeffs — Number of coefficients returned
13 (default) | positive scalar integer

Number of coefficients returned for each window of data, specified as an integer in the range [2, v]. v
is the number of valid passbands. If unspecified, NumCoeffs defaults to 13.

The number of valid passbands is defined as the number of ERB steps (ERBN) in the frequency range
of the filter bank. The frequency range of the filter bank is specified by FrequencyRange.
Data Types: single | double

FilterDomain — Domain in which to apply filtering
"frequency" (default) | "time"

Domain in which to apply filtering, specified as "frequency" or "time". If unspecified,
FilterDomain defaults to "frequency".
Data Types: string | char

FrequencyRange — Frequency range of gammatone filter bank (Hz)
[50 fs/2] (default) | two-element row vector

2 Functions

2-312

Frequency range of gammatone filter bank in Hz, specified as a two-element row vector of increasing
values in the range [0, fs/2]. If unspecified, FrequencyRange defaults to [50, fs/2]
Data Types: single | double

FFTLength — Number of bins in DFT
numel(Window) (default) | positive scalar integer

Number of bins used to calculate the discrete Fourier transform (DFT) of windowed input samples.
The FFT length must be greater than or equal to the number of elements in the Window.
Data Types: single | double

Rectification — Type of nonlinear rectification
'log' (default) | 'cubic-root'

Type of nonlinear rectification applied prior to the discrete cosine transform, specified as 'log' or
'cubic-root'.
Data Types: char | string

DeltaWindowLength — Number of coefficients used to calculate delta and delta-delta
9 (default) | odd integer greater than two

Number of coefficients used to calculate the delta and the delta-delta values, specified as an odd
integer greater than two. If unspecified, DeltaWindowLength defaults to 9.

Deltas are computed using the audioDelta function.
Data Types: single | double

LogEnergy — Log energy usage
"append" (default) | "replace" | "ignore"

Log energy usage, specified as "append", "replace", or "ignore". If unspecified, LogEnergy
defaults to "append".

• "append" –– The function prepends the log energy to the coefficients vector. The length of the
coefficients vector is 1 + NumCoeffs.

• "replace" –– The function replaces the first coefficient with the log energy of the signal. The
length of the coefficients vector is NumCoeffs.

• "ignore" –– The function does not calculate or return the log energy.

Data Types: char | string

Output Arguments
coeffs — Gammatone cepstral coefficients
matrix | array

Gammatone cepstral coefficients, returned as an L-by-M matrix or an L-by-M-by-N array, where:

• L –– Number of analysis windows the audio signal is partitioned into. The input size, Window, and
OverlapLength control this dimension: L = floor((size(audioIn,1) −
numel(Window)))/(numel(Window) − OverlapLength) + 1.

 gtcc

2-313

• M –– Number of coefficients returned per frame. This value is determined by NumCoeffs and
LogEnergy.

When LogEnergy is set to:

• "append" –– The function prepends the log energy value to the coefficients vector. The length
of the coefficients vector is 1 + NumCoeffs.

• "replace" –– The function replaces the first coefficient with the log energy of the signal. The
length of the coefficients vector is NumCoeffs.

• "ignore" –– The function does not calculate or return the log energy. The length of the
coefficients vector is NumCoeffs.

• N –– Number of input channels (columns). This value is size(audioIn,2).

Data Types: single | double

delta — Change in coefficients
matrix | array

Change in coefficients from one analysis window to another, returned as an L-by-M matrix or an L-by-
M-by-N array. The delta array is the same size and data type as the coeffs array. See coeffs for
the definitions of L, M, and N.
Data Types: single | double

deltaDelta — Change in delta values
matrix | array

Change in delta values, returned as an L-by-M matrix or an L-by-M-by-N array. The deltaDelta
array is the same size and data type as the coeffs and delta arrays. See coeffs for the definitions
of L, M, and N.
Data Types: single | double

loc — Location of the last sample in each analysis window
column vector

Location of last sample in each analysis window, returned as a column vector with the same number
of rows as coeffs.
Data Types: single | double

Algorithms
The gtcc function splits the entire data into overlapping segments. The length of each analysis
window is determined by Window. The length of overlap between analysis windows is determined by
OverlapLength. The algorithm to determine the gammatone cepstral coefficients depends on the
filter domain, specified by FilterDomain. The default filter domain is frequency.

Frequency-Domain Filtering

Gammatone cepstrum coefficients are popular features extracted from speech signals for use in
recognition tasks. In the source-filter model of speech, cepstral coefficients are understood to
represent the filter (vocal tract). The vocal tract frequency response is relatively smooth, whereas the
source of voiced speech can be modeled as an impulse train. As a result, the vocal tract can be
estimated by the spectral envelope of a speech segment.

2 Functions

2-314

The motivating idea of gammatone cepstral coefficients is to compress information about the vocal
tract (smoothed spectrum) into a small number of coefficients based on an understanding of the
cochlea. Although there is no hard standard for calculating the coefficients, the basic steps are
outlined by the diagram.

The default gammatone filter bank is composed of gammatone filters spaced linearly on the ERB
scale between 50 and 8000 Hz. The filter bank is designed by designAuditoryFilterBank.

The information contained in the zeroth gammatone cepstral coefficient is often augmented with or
replaced by the log energy. The log energy calculation depends on the input domain.

If the input is a time-domain signal, the log energy is computed using the following equation:

logE = log(sum(x2))

If the input is a frequency-domain signal, the log energy is computed using the following equation:

logE = log sum x 2 /FFTLength

 gtcc

2-315

Time-Domain Filtering

If FilterDomain is specified as "time", the gtcc function uses the gammatoneFilterBank to
apply time-domain filtering. The basic steps of the gtcc algorithm are outlined by the diagram.

The FrequencyRange and sample rate (fs) parameters are set on the filter bank using the name-
value pairs input to the gtcc function. The number of filters in the gammatone filter bank is defined
as hz2erb(FrequencyRange(2)) − hz2erb(FrequencyRange(1)).This roughly corresponds to
placing a gammatone filter every 0.9 mm in the cochlea.

The output from the gammatone filter bank is a multichannel signal. Each channel output from the
gammatone filter bank is buffered into overlapped analysis windows, as specified by the Window and
OverlapLength parameters. The energy for each analysis window of data is calculated. The STE of
the channels are concatenated. The concatenated signal is then passed through a logarithm function
and transformed to the cepstral domain using a discrete cosine transform (DCT).

The log-energy is calculated on the original audio signal using the same buffering scheme applied to
the gammatone filter bank output.

Version History
Introduced in R2019a

Delta and delta-delta computation
Behavior changed in R2020b

The delta and delta-delta calculations are now computed using the audioDelta function, which has
a different startup behavior than the previous algorithm. The default value of the
DeltaWindowLength parameter has changed from 2 to 9. A delta window length of 2 is no longer
supported.

WindowLength will be removed in a future release
Behavior change in future release

The WindowLength parameter will be removed from the gtcc function in a future release. Use the
Window parameter instead.

2 Functions

2-316

In releases prior to R2020b, you could only specify the length of a time-domain window. The window
was always designed as a periodic Hamming window. You can replace instances of the code

coeffs = gtcc(audioin,fs,WindowLength=1024);

With this code:

coeffs = gtcc(audioIn,fs,Window=hamming(1024,"periodic"));

References
[1] Shao, Yang, Zhaozhang Jin, Deliang Wang, and Soundararajan Srinivasan. "An Auditory-Based

Feature for Robust Speech Recognition." IEEE International Conference on Acoustics, Speech
and Signal Processing. 2009.

[2] Valero, X., and F. Alias. "Gammatone Cepstral Coefficients: Biologically Inspired Features for Non-
Speech Audio Classification." IEEE Transactions on Multimedia. Vol. 14, Issue 6, 2012, pp.
1684–1689.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
mfcc | audioDelta | cepstralCoefficients | audioFeatureExtractor | detectSpeech |
MFCC | Cepstral Coefficients

Topics
“Speech Emotion Recognition”

 gtcc

2-317

spectralSpread
Spectral spread for audio signals and auditory spectrograms

Syntax
spread = spectralSpread(x,f)
spread = spectralSpread(x,f,Name=Value)
[spread,centroid] = spectralSpread(___)
spectralSpread(___)

Description
spread = spectralSpread(x,f) returns the spectral spread of the signal, x, over time. How the
function interprets x depends on the shape of f.

spread = spectralSpread(x,f,Name=Value) specifies options using one or more name-value
arguments.

[spread,centroid] = spectralSpread(___) returns the spectral centroid. You can specify an
input combination from any of the previous syntaxes.

spectralSpread(___) with no output arguments plots the spectral spread.

• If the input is in the time domain, the spectral spread is plotted against time.
• If the input is in the frequency domain, the spectral spread is plotted against frame number.

Examples

Spectral Spread of Time-Domain Audio

Read in an audio file, calculate the spread using default parameters.

[audioIn,fs] = audioread("Counting-16-44p1-mono-15secs.wav");
spread = spectralSpread(audioIn,fs);

Plot the spectral spread against time.

spectralSpread(audioIn,fs)

2 Functions

2-318

Spectral Spread of Frequency-Domain Audio Data

Read in an audio file and then calculate the mel spectrogram using the melSpectrogram function.
Calculate the spread of the mel spectrums over time.

[audioIn,fs] = audioread("Counting-16-44p1-mono-15secs.wav");

[s,cf,t] = melSpectrogram(audioIn,fs);

spread = spectralSpread(s,cf);

Plot spectral spread against the frame number.

spectralSpread(s,cf)

 spectralSpread

2-319

Specify Nondefault Parameters

Read in an audio file.

[audioIn,fs] = audioread("Counting-16-44p1-mono-15secs.wav");

Calculate the spread of the power spectrum over time. Calculate the spread for 50 ms Hamming
windows of data with 25 ms overlap. Use the range from 62.5 Hz to fs/2 for the spread calculation.

spread = spectralSpread(audioIn,fs, ...
 Window=hamming(round(0.05*fs)), ...
 OverlapLength=round(0.025*fs), ...
 Range=[62.5,fs/2]);

Plot the spectral spread.

spectralSpread(audioIn,fs, ...
 Window=hamming(round(0.05*fs)), ...
 OverlapLength=round(0.025*fs), ...
 Range=[62.5,fs/2]);

2 Functions

2-320

Calculate Spectral Spread of Streaming Audio

Create a dsp.AudioFileReader object to read in audio data frame-by-frame. Create a
dsp.SignalSink to log the spectral spread calculation.

fileReader = dsp.AudioFileReader('Counting-16-44p1-mono-15secs.wav');
logger = dsp.SignalSink;

In an audio stream loop:

1 Read in a frame of audio data.
2 Calculate the spectral spread for the frame of audio.
3 Log the spectral spread for later plotting.

To calculate the spectral spread for only a given input frame, specify a window with the same number
of samples as the input, and set the overlap length to zero. Plot the logged data.

win = hamming(fileReader.SamplesPerFrame);
while ~isDone(fileReader)
 audioIn = fileReader();
 spread = spectralSpread(audioIn,fileReader.SampleRate, ...
 'Window',win, ...
 'OverlapLength',0);
 logger(spread)

 spectralSpread

2-321

end

plot(logger.Buffer)
ylabel('Spread (Hz)')

Use dsp.AsyncBuffer if

• The input to your audio stream loop has a variable samples-per-frame.
• The input to your audio stream loop has an inconsistent samples-per-frame with the analysis

window of spectralSpread.
• You want to calculate the spectral spread for overlapped data.

Create a dsp.AsyncBuffer object, reset the logger, and release the file reader.

buff = dsp.AsyncBuffer;
reset(logger)
release(fileReader)

Specify that the spectral spread is calculated for 50 ms frames with a 25 ms overlap.

fs = fileReader.SampleRate;

samplesPerFrame = round(fs*0.05);
samplesOverlap = round(fs*0.025);

samplesPerHop = samplesPerFrame - samplesOverlap;

2 Functions

2-322

win = hamming(samplesPerFrame);

while ~isDone(fileReader)
 audioIn = fileReader();
 write(buff,audioIn);

 while buff.NumUnreadSamples >= samplesPerHop
 audioBuffered = read(buff,samplesPerFrame,samplesOverlap);

 spread = spectralSpread(audioBuffered,fs, ...
 'Window',win, ...
 'OverlapLength',0);
 logger(spread)
 end

end
release(fileReader)

Plot the logged data.

plot(logger.Buffer)
ylabel('Spread (Hz)')

 spectralSpread

2-323

Input Arguments
x — Input signal
column vector | matrix | 3-D array

Input signal, specified as a vector, matrix, or 3-D array. How the function interprets x depends on the
shape of f.
Data Types: single | double

f — Sample rate or frequency vector (Hz)
scalar | vector

Sample rate or frequency vector in Hz, specified as a scalar or vector, respectively. How the function
interprets x depends on the shape of f:

• If f is a scalar, x is interpreted as a time-domain signal, and f is interpreted as the sample rate. In
this case, x must be a real vector or matrix. If x is specified as a matrix, the columns are
interpreted as individual channels.

• If f is a vector, x is interpreted as a frequency-domain signal, and f is interpreted as the
frequencies, in Hz, corresponding to the rows of x. In this case, x must be a real L-by-M-by-N
array, where L is the number of spectral values at given frequencies of f, M is the number of
individual spectra, and N is the number of channels.

• The number of rows of x, L, must be equal to the number of elements of f.

Data Types: single | double

Name-Value Arguments

Note The following name-value arguments apply if x is a time-domain signal. If x is a frequency-
domain signal, name-value arguments are ignored.

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: Window=hamming(256)

Window — Window applied in time domain
rectwin(round(f*0.03)) (default) | vector

Window applied in the time domain, specified as a real vector. The number of elements in the vector
must be in the range [1, size(x,1)]. The number of elements in the vector must also be greater
than OverlapLength.
Data Types: single | double

OverlapLength — Number of samples overlapped between adjacent windows
round(f*0.02) (default) | non-negative scalar

Number of samples overlapped between adjacent windows, specified as an integer in the range [0,
size(Window,1)).

2 Functions

2-324

Data Types: single | double

FFTLength — Number of bins in DFT
numel(Window) (default) | positive scalar integer

Number of bins used to calculate the DFT of windowed input samples, specified as a positive scalar
integer. If unspecified, FFTLength defaults to the number of elements in the Window.
Data Types: single | double

Range — Frequency range (Hz)
[0,f/2] (default) | two-element row vector

Frequency range in Hz, specified as a two-element row vector of increasing real values in the range
[0, f/2].
Data Types: single | double

SpectrumType — Spectrum type
"power" (default) | "magnitude"

Spectrum type, specified as "power" or "magnitude":

• "power" –– The spectral spread is calculated for the one-sided power spectrum.
• "magnitude" –– The spectral spread is calculated for the one-sided magnitude spectrum.

Data Types: char | string

Output Arguments
spread — Spectral spread (Hz)
scalar | vector | matrix

Spectral spread in Hz, returned as a scalar, vector, or matrix. Each row of centroid corresponds to
the spectral spread of a window of x. Each column of spread corresponds to an independent
channel.

centroid — Spectral centroid (Hz)
scalar | vector | matrix

Spectral centroid in Hz, returned as a scalar, vector, or matrix. Each row of centroid corresponds to
the spectral centroid of a window of x. Each column of centroid corresponds to an independent
channel.

Algorithms
The spectral spread is calculated as described in [1]:

spread =
∑

k = b1

b2
fk− μ1

2sk

∑
k = b1

b2
sk

 spectralSpread

2-325

where

• fk is the frequency in Hz corresponding to bin k.
• sk is the spectral value at bin k.
• b1 and b2 are the band edges, in bins, over which to calculate the spectral spread.
• μ1 is the spectral centroid, calculated as described by the spectralCentroid function.

Version History
Introduced in R2019a

References
[1] Peeters, G. "A Large Set of Audio Features for Sound Description (Similarity and Classification) in

the CUIDADO Project." Technical Report; IRCAM: Paris, France, 2004.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

See Also
spectralCentroid | spectralSkewness | spectralKurtosis

Topics
“Spectral Descriptors”

2 Functions

2-326

spectralSlope
Spectral slope for audio signals and auditory spectrograms

Syntax
slope = spectralSlope(x,f)
slope = spectralSlope(x,f,Name=Value)
spectralSlope(___)

Description
slope = spectralSlope(x,f) returns the spectral slope of the signal, x, over time. How the
function interprets x depends on the shape of f.

slope = spectralSlope(x,f,Name=Value) specifies options using one or more name-value
arguments.

spectralSlope(___) with no output arguments plots the spectral slope. You can specify an input
combination from any of the previous syntaxes.

• If the input is in the time domain, the spectral slope is plotted against time.
• If the input is in the frequency domain, the spectral slope is plotted against frame number.

Examples

Spectral Slope of Time-Domain Audio

Read in an audio file, calculate the slope using default parameters.

[audioIn,fs] = audioread("Counting-16-44p1-mono-15secs.wav");
slope = spectralSlope(audioIn,fs);

Plot the spectral slope against time.

spectralSlope(audioIn,fs)

 spectralSlope

2-327

Spectral Slope of Frequency-Domain Audio Data

Read in an audio file and then calculate the mel spectrogram using the melSpectrogram function.
Calculate the slope of the mel spectrogram over time. Plot the results.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');

[s,cf,t] = melSpectrogram(audioIn,fs);

slope = spectralSlope(s,cf);

plot(t,slope)
xlabel('Time (s)')
ylabel('Slope')

2 Functions

2-328

Specify Nondefault Parameters

Read in an audio file.

[audioIn,fs] = audioread("Counting-16-44p1-mono-15secs.wav");

Calculate the slope of the magnitude spectrum over time. Calculate the slope for 50 ms Hamming
windows of data with 25 ms overlap. Use the range from 62.5 Hz to fs/2 for the slope calculation.

slope = spectralSlope(audioIn,fs, ...
 Window=hamming(round(0.05*fs)), ...
 OverlapLength=round(0.025*fs), ...
 Range=[62.5,fs/2]);

Plot the spectral slope against time.

spectralSlope(audioIn,fs, ...
 Window=hamming(round(0.05*fs)), ...
 OverlapLength=round(0.025*fs), ...
 Range=[62.5,fs/2]);

 spectralSlope

2-329

Calculate Spectral Slope of Streaming Audio

Create a dsp.AudioFileReader object to read in audio data frame-by-frame. Create a
dsp.SignalSink to log the spectral slope calculation.

fileReader = dsp.AudioFileReader('Counting-16-44p1-mono-15secs.wav');
logger = dsp.SignalSink;

In an audio stream loop:

1 Read in a frame of audio data.
2 Calculate the spectral slope for the frame of audio.
3 Log the spectral slope for later plotting.

To calculate the spectral slope for only a given input frame, specify a window with the same number
of samples as the input, and set the overlap length to zero. Plot the logged data.

win = hamming(fileReader.SamplesPerFrame);
while ~isDone(fileReader)
 audioIn = fileReader();
 slope = spectralSlope(audioIn,fileReader.SampleRate, ...
 'Window',win, ...
 'OverlapLength',0);
 logger(slope)

2 Functions

2-330

end

plot(logger.Buffer)
ylabel('Slope')

Use dsp.AsyncBuffer if

• The input to your audio stream loop has a variable samples-per-frame.
• The input to your audio stream loop has an inconsistent samples-per-frame with the analysis

window of spectralSlope.
• You want to calculate the spectral slope for overlapped data.

Create a dsp.AsyncBuffer object, reset the logger, and release the file reader.

buff = dsp.AsyncBuffer;
reset(logger)
release(fileReader)

Specify that the spectral slope is calculated for 50 ms frames with a 25 ms overlap.

fs = fileReader.SampleRate;

samplesPerFrame = round(fs*0.05);
samplesOverlap = round(fs*0.025);

samplesPerHop = samplesPerFrame - samplesOverlap;

 spectralSlope

2-331

win = hamming(samplesPerFrame);

while ~isDone(fileReader)
 audioIn = fileReader();
 write(buff,audioIn);

 while buff.NumUnreadSamples >= samplesPerHop
 audioBuffered = read(buff,samplesPerFrame,samplesOverlap);

 slope = spectralSlope(audioBuffered,fs, ...
 'Window',win, ...
 'OverlapLength',0);
 logger(slope)
 end

end
release(fileReader)

Plot the logged data.

plot(logger.Buffer)
ylabel('Slope')

2 Functions

2-332

Input Arguments
x — Input signal
column vector | matrix | 3-D array

Input signal, specified as a vector, matrix, or 3-D array. How the function interprets x depends on the
shape of f.
Data Types: single | double

f — Sample rate or frequency vector (Hz)
scalar | vector

Sample rate or frequency vector in Hz, specified as a scalar or vector, respectively. How the function
interprets x depends on the shape of f:

• If f is a scalar, x is interpreted as a time-domain signal, and f is interpreted as the sample rate. In
this case, x must be a real vector or matrix. If x is specified as a matrix, the columns are
interpreted as individual channels.

• If f is a vector, x is interpreted as a frequency-domain signal, and f is interpreted as the
frequencies, in Hz, corresponding to the rows of x. In this case, x must be a real L-by-M-by-N
array, where L is the number of spectral values at given frequencies of f, M is the number of
individual spectra, and N is the number of channels.

• The number of rows of x, L, must be equal to the number of elements of f.

Data Types: single | double

Name-Value Arguments

Note The following name-value arguments apply if x is a time-domain signal. If x is a frequency-
domain signal, name-value arguments are ignored.

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: Window=hamming(256)

Window — Window applied in time domain
rectwin(round(f*0.03)) (default) | vector

Window applied in the time domain, specified as a real vector. The number of elements in the vector
must be in the range [1, size(x,1)]. The number of elements in the vector must also be greater
than OverlapLength.
Data Types: single | double

OverlapLength — Number of samples overlapped between adjacent windows
round(f*0.02) (default) | non-negative scalar

Number of samples overlapped between adjacent windows, specified as an integer in the range [0,
size(Window,1)).

 spectralSlope

2-333

Data Types: single | double

FFTLength — Number of bins in DFT
numel(Window) (default) | positive scalar integer

Number of bins used to calculate the DFT of windowed input samples, specified as a positive scalar
integer. If unspecified, FFTLength defaults to the number of elements in the Window.
Data Types: single | double

Range — Frequency range (Hz)
[0,f/2] (default) | two-element row vector

Frequency range in Hz, specified as a two-element row vector of increasing real values in the range
[0, f/2].
Data Types: single | double

SpectrumType — Spectrum type
"magnitude" (default) | "power"

Spectrum type, specified as "power" or "magnitude":

• "power" –– The spectral slope is calculated for the one-sided power spectrum.
• "magnitude" –– The spectral slope is calculated for the one-sided magnitude spectrum.

Data Types: char | string

Output Arguments
slope — Spectral slope
scalar | vector | matrix

Spectral slope in Hz, returned as a scalar, vector, or matrix. Each row of slope corresponds to the
spectral slope of a window of x. Each column of slope corresponds to an independent channel.

Algorithms
The spectral slope is calculated as described in [1]:

slope =
∑

k = b1

b2
fk− μf sk− μS

∑
k = b1

b2
fk− μf

2

where

• fk is the frequency in Hz corresponding to bin k.
• μf is the mean frequency.
• sk is the spectral value at bin k.
• μs is the mean spectral value.

2 Functions

2-334

• b1 and b2 are the band edges, in bins, over which to calculate the spectral slope.

Version History
Introduced in R2019a

References
[1] Lerch, Alexander. An Introduction to Audio Content Analysis Applications in Signal Processing and

Music Informatics. Piscataway, NJ: IEEE Press, 2012.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

See Also
spectralCrest | spectralDecrease

Topics
“Spectral Descriptors”

 spectralSlope

2-335

spectralSkewness
Spectral skewness for audio signals and auditory spectrograms

Syntax
skewness = spectralSkewness(x,f)
skewness = spectralSkewness(x,f,Name=Value)
[skewness,spread,centroid] = spectralSkewness(___)
spectralSkewness(___)

Description
skewness = spectralSkewness(x,f) returns the spectral skewness of the signal, x, over time.
How the function interprets x depends on the shape of f.

skewness = spectralSkewness(x,f,Name=Value) specifies options using one or more name-
value arguments.

[skewness,spread,centroid] = spectralSkewness(___) returns the spectral spread and
spectral centroid. You can specify an input combination from any of the previous syntaxes.

spectralSkewness(___) with no output arguments plots the spectral skewness.

• If the input is in the time domain, the spectral skewness is plotted against time.
• If the input is in the frequency domain, the spectral skewness is plotted against frame number.

Examples

Spectral Skewness of Time-Domain Audio

Read in an audio file, calculate the skewness using default parameters.

[audioIn,fs] = audioread("Counting-16-44p1-mono-15secs.wav");
skewness = spectralSkewness(audioIn,fs);

Plot the spectral skewness against time.

spectralSkewness(audioIn,fs)

2 Functions

2-336

Spectral Skewness of Frequency-Domain Audio Data

Read in an audio file and then calculate the mel spectrogram using the melSpectrogram function.
Calculate the skewness of the mel spectrogram over time.

[audioIn,fs] = audioread("Counting-16-44p1-mono-15secs.wav");

[s,cf,t] = melSpectrogram(audioIn,fs);

skewness = spectralSkewness(s,cf);

Plot the spectral skewness against the frame number.

spectralSkewness(s,cf)

 spectralSkewness

2-337

Specify Nondefault Parameters

Read in an audio file.

[audioIn,fs] = audioread("Counting-16-44p1-mono-15secs.wav");

Calculate the skewness of the power spectrum over time. Calculate the skewness for 50 ms Hamming
windows of data with 25 ms overlap. Use the range from 62.5 Hz to fs/2 for the skewness
calculation.

skewness = spectralSkewness(audioIn,fs, ...
 Window=hamming(round(0.05*fs)), ...
 OverlapLength=round(0.025*fs), ...
 Range=[62.5,fs/2]);

Plot the spectral skewness.

spectralSkewness(audioIn,fs, ...
 Window=hamming(round(0.05*fs)), ...
 OverlapLength=round(0.025*fs), ...
 Range=[62.5,fs/2])

2 Functions

2-338

Calculate Spectral Skewness of Streaming Audio

Create a dsp.AudioFileReader object to read in audio data frame-by-frame. Create a
dsp.SignalSink to log the spectral skewness calculation.

fileReader = dsp.AudioFileReader('Counting-16-44p1-mono-15secs.wav');
logger = dsp.SignalSink;

In an audio stream loop:

1 Read in a frame of audio data.
2 Calculate the spectral skewness for the frame of audio.
3 Log the spectral skewness for later plotting.

To calculate the spectral skewness for only a given input frame, specify a window with the same
number of samples as the input, and set the overlap length to zero. Plot the logged data.

win = hamming(fileReader.SamplesPerFrame);
while ~isDone(fileReader)
 audioIn = fileReader();
 skewness = spectralSkewness(audioIn,fileReader.SampleRate, ...
 'Window',win, ...
 'OverlapLength',0);
 logger(skewness)

 spectralSkewness

2-339

end

plot(logger.Buffer)
ylabel('Skewness')

Use dsp.AsyncBuffer if

• The input to your audio stream loop has a variable samples-per-frame.
• The input to your audio stream loop has an inconsistent samples-per-frame with the analysis

window of spectralSkewness.
• You want to calculate the spectral skewness for overlapped data.

Create a dsp.AsyncBuffer object, reset the logger, and release the file reader.

buff = dsp.AsyncBuffer;
reset(logger)
release(fileReader)

Specify that the spectral skewness is calculated for 50 ms frames with a 25 ms overlap.

fs = fileReader.SampleRate;

samplesPerFrame = round(fs*0.05);
samplesOverlap = round(fs*0.025);

samplesPerHop = samplesPerFrame - samplesOverlap;

2 Functions

2-340

win = hamming(samplesPerFrame);

while ~isDone(fileReader)
 audioIn = fileReader();
 write(buff,audioIn);

 while buff.NumUnreadSamples >= samplesPerHop
 audioBuffered = read(buff,samplesPerFrame,samplesOverlap);

 skewness = spectralSkewness(audioBuffered,fs, ...
 'Window',win, ...
 'OverlapLength',0);
 logger(skewness)
 end

end
release(fileReader)

Plot the logged data.

plot(logger.Buffer)
ylabel('Skewness')

 spectralSkewness

2-341

Input Arguments
x — Input signal
column vector | matrix | 3-D array

Input signal, specified as a vector, matrix, or 3-D array. How the function interprets x depends on the
shape of f.
Data Types: single | double

f — Sample rate or frequency vector (Hz)
scalar | vector

Sample rate or frequency vector in Hz, specified as a scalar or vector, respectively. How the function
interprets x depends on the shape of f:

• If f is a scalar, x is interpreted as a time-domain signal, and f is interpreted as the sample rate. In
this case, x must be a real vector or matrix. If x is specified as a matrix, the columns are
interpreted as individual channels.

• If f is a vector, x is interpreted as a frequency-domain signal, and f is interpreted as the
frequencies, in Hz, corresponding to the rows of x. In this case, x must be a real L-by-M-by-N
array, where L is the number of spectral values at given frequencies of f, M is the number of
individual spectra, and N is the number of channels.

• The number of rows of x, L, must be equal to the number of elements of f.

Data Types: single | double

Name-Value Arguments

Note The following name-value arguments apply if x is a time-domain signal. If x is a frequency-
domain signal, name-value arguments are ignored.

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: Window=hamming(256)

Window — Window applied in time domain
rectwin(round(f*0.03)) (default) | vector

Window applied in the time domain, specified as a real vector. The number of elements in the vector
must be in the range [1, size(x,1)]. The number of elements in the vector must also be greater
than OverlapLength.
Data Types: single | double

OverlapLength — Number of samples overlapped between adjacent windows
round(f*0.02) (default) | non-negative scalar

Number of samples overlapped between adjacent windows, specified as an integer in the range [0,
size(Window,1)).

2 Functions

2-342

Data Types: single | double

FFTLength — Number of bins in DFT
numel(Window) (default) | positive scalar integer

Number of bins used to calculate the DFT of windowed input samples, specified as a positive scalar
integer. If unspecified, FFTLength defaults to the number of elements in the Window.
Data Types: single | double

Range — Frequency range (Hz)
[0,f/2] (default) | two-element row vector

Frequency range in Hz, specified as a two-element row vector of increasing real values in the range
[0, f/2].
Data Types: single | double

SpectrumType — Spectrum type
"power" (default) | "magnitude"

Spectrum type, specified as "power" or "magnitude":

• "power" –– The spectral skewness is calculated for the one-sided power spectrum.
• "magnitude" –– The spectral skewness is calculated for the one-sided magnitude spectrum.

Data Types: char | string

Output Arguments
skewness — Spectral skewness
scalar | vector | matrix

Spectral skewness, returned as a scalar, vector, or matrix. Each row of skewness corresponds to the
spectral skewness of a window of x. Each column of skewness corresponds to an independent
channel.

spread — Spectral spread
scalar | vector | matrix

Spectral spread, returned as a scalar, vector, or matrix. Each row of spread corresponds to the
spectral spread of a window of x. Each column of spread corresponds to an independent channel.

centroid — Spectral centroid (Hz)
scalar | vector | matrix

Spectral centroid in Hz, returned as a scalar, vector, or matrix. Each row of centroid corresponds to
the spectral centroid of a window of x. Each column of centroid corresponds to an independent
channel.

Algorithms
The spectral skewness is calculated as described in [1]:

 spectralSkewness

2-343

skewness =
∑

k = b1

b2
fk− μ1

3sk

μ2
3 ∑

k = b1

b2
sk

where

• fk is the frequency in Hz corresponding to bin k.
• sk is the spectral value at bin k.
• b1 and b2 are the band edges, in bins, over which to calculate the spectral skewness.
• μ1 is the spectral centroid, calculated as described by the spectralCentroid function.
• μ2 is the spectral spread, calculated as described by the spectralSpread function.

Version History
Introduced in R2019a

References
[1] Peeters, G. "A Large Set of Audio Features for Sound Description (Similarity and Classification) in

the CUIDADO Project." Technical Report; IRCAM: Paris, France, 2004.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

See Also
spectralCentroid | spectralSpread | spectralKurtosis

Topics
“Spectral Descriptors”

2 Functions

2-344

spectralRolloffPoint
Spectral rolloff point for audio signals and auditory spectrograms

Syntax
rolloffPoint = spectralRolloffPoint(x,f)
rolloffPoint = spectralRolloffPoint(x,f,Name=Value)
spectralRolloffPoint(___)

Description
rolloffPoint = spectralRolloffPoint(x,f) returns the spectral rolloff point of the signal, x,
over time. How the function interprets x depends on the shape of f.

rolloffPoint = spectralRolloffPoint(x,f,Name=Value) specifies options using one or
more name-value arguments.

spectralRolloffPoint(___) with no output arguments plots the spectral rolloff point. You can
specify an input combination from any of the previous syntaxes.

• If the input is in the time domain, the spectral rolloff point is plotted against time.
• If the input is in the frequency domain, the spectral rolloff point is plotted against frame number.

Examples

Spectral Rolloff Point of Time-Domain Audio

Read in an audio file. Calculate the rolloff point using default parameters.

[audioIn,fs] = audioread("Counting-16-44p1-mono-15secs.wav");
rolloffPoint = spectralRolloffPoint(audioIn,fs);

Plot the spectral rolloff point against time.

spectralRolloffPoint(audioIn,fs)

 spectralRolloffPoint

2-345

Spectral Rolloff Point of Frequency-Domain Audio Data

Read in an audio file and then calculate the mel spectrogram using the melSpectrogram function.
Calculate the rolloff point of the mel spectrogram over time.

[audioIn,fs] = audioread("Counting-16-44p1-mono-15secs.wav");

[s,cf,t] = melSpectrogram(audioIn,fs);

rolloffPoint = spectralRolloffPoint(s,cf);

Plot the spectral rolloff point against the frame number.

spectralRolloffPoint(s,cf)

2 Functions

2-346

Specify Nondefault Parameters

Read in an audio file.

[audioIn,fs] = audioread("Counting-16-44p1-mono-15secs.wav");

Calculate the rolloff point of the power spectrum over time. Calculate the rolloff point for 50 ms
Hamming windows of data with 25 ms overlap. Use the range from 62.5 Hz to fs/2 for the rolloff
point calculation.

rolloffPoint = spectralRolloffPoint(audioIn,fs, ...
 Window=hamming(round(0.05*fs)), ...
 OverlapLength=round(0.025*fs), ...
 Range=[62.5,fs/2]);

Plot the spectral rolloff point against time.

spectralRolloffPoint(audioIn,fs, ...
 Window=hamming(round(0.05*fs)), ...
 OverlapLength=round(0.025*fs), ...
 Range=[62.5,fs/2])

 spectralRolloffPoint

2-347

Calculate Spectral Rolloff Point of Streaming Audio

Create a dsp.AudioFileReader object to read in audio data frame-by-frame. Create a
dsp.SignalSink to log the spectral rolloff point calculation.

fileReader = dsp.AudioFileReader('Counting-16-44p1-mono-15secs.wav');
logger = dsp.SignalSink;

In an audio stream loop:

1 Read in a frame of audio data.
2 Calculate the spectral rolloff point for the frame of audio.
3 Log the spectral rolloff point for later plotting.

To calculate the spectral rolloff point for only a given input frame, specify a window with the same
number of samples as the input, and set the overlap length to zero. Plot the logged data.

win = hamming(fileReader.SamplesPerFrame);
while ~isDone(fileReader)
 audioIn = fileReader();
 rolloffPoint = spectralRolloffPoint(audioIn,fileReader.SampleRate, ...
 'Window',win, ...
 'OverlapLength',0);
 logger(rolloffPoint)

2 Functions

2-348

end

plot(logger.Buffer)
ylabel('Rolloff Point (Hz)')

Use dsp.AsyncBuffer if

• The input to your audio stream loop has a variable samples-per-frame.
• The input to your audio stream loop has an inconsistent samples-per-frame with the analysis

window of spectralRolloffPoint.
• You want to calculate the spectral rolloff point for overlapped data.

Create a dsp.AsyncBuffer object, reset the logger, and release the file reader.

buff = dsp.AsyncBuffer;
reset(logger)
release(fileReader)

Specify that the spectral rolloff point is calculated for 50 ms frames with a 25 ms overlap.

fs = fileReader.SampleRate;

samplesPerFrame = round(fs*0.05);
samplesOverlap = round(fs*0.025);

samplesPerHop = samplesPerFrame - samplesOverlap;

 spectralRolloffPoint

2-349

win = hamming(samplesPerFrame);

while ~isDone(fileReader)
 audioIn = fileReader();
 write(buff,audioIn);

 while buff.NumUnreadSamples >= samplesPerHop
 audioBuffered = read(buff,samplesPerFrame,samplesOverlap);

 rolloffPoint = spectralRolloffPoint(audioBuffered,fs, ...
 'Window',win, ...
 'OverlapLength',0);
 logger(rolloffPoint)
 end

end
release(fileReader)

Plot the logged data.

plot(logger.Buffer)
ylabel('Rolloff Point (Hz)')

2 Functions

2-350

Input Arguments
x — Input signal
column vector | matrix | 3-D array

Input signal, specified as a vector, matrix, or 3-D array. How the function interprets x depends on the
shape of f.
Data Types: single | double

f — Sample rate or frequency vector (Hz)
scalar | vector

Sample rate or frequency vector in Hz, specified as a scalar or vector, respectively. How the function
interprets x depends on the shape of f:

• If f is a scalar, x is interpreted as a time-domain signal, and f is interpreted as the sample rate. In
this case, x must be a real vector or matrix. If x is specified as a matrix, the columns are
interpreted as individual channels.

• If f is a vector, x is interpreted as a frequency-domain signal, and f is interpreted as the
frequencies, in Hz, corresponding to the rows of x. In this case, x must be a real L-by-M-by-N
array, where L is the number of spectral values at given frequencies of f, M is the number of
individual spectra, and N is the number of channels.

• The number of rows of x, L, must be equal to the number of elements of f.

Data Types: single | double

Name-Value Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: Window=hamming(256)

Threshold — Threshold of rolloff point
0.95 (default) | scalar in the range (0,1)

Threshold of rolloff point, specified as a scalar between zero and one, exclusive.
Data Types: single | double

Note The following name-value arguments apply if x is a time-domain signal. If x is a frequency-
domain signal, name-value arguments are ignored.

Window — Window applied in time domain
rectwin(round(f*0.03)) (default) | vector

Window applied in the time domain, specified as a real vector. The number of elements in the vector
must be in the range [1, size(x,1)]. The number of elements in the vector must also be greater
than OverlapLength.

 spectralRolloffPoint

2-351

Data Types: single | double

OverlapLength — Number of samples overlapped between adjacent windows
round(f*0.02) (default) | non-negative scalar

Number of samples overlapped between adjacent windows, specified as an integer in the range [0,
size(Window,1)).
Data Types: single | double

FFTLength — Number of bins in DFT
numel(Window) (default) | positive scalar integer

Number of bins used to calculate the DFT of windowed input samples, specified as a positive scalar
integer. If unspecified, FFTLength defaults to the number of elements in the Window.
Data Types: single | double

Range — Frequency range (Hz)
[0,f/2] (default) | two-element row vector

Frequency range in Hz, specified as a two-element row vector of increasing real values in the range
[0, f/2].
Data Types: single | double

SpectrumType — Spectrum type
"power" (default) | "magnitude"

Spectrum type, specified as "power" or "magnitude":

• "power" –– The spectral rolloff point is calculated for the one-sided power spectrum.
• "magnitude" –– The spectral rolloff point is calculated for the one-sided magnitude spectrum.

Data Types: char | string

Output Arguments
rolloffPoint — Spectral rolloff point (Hz)
scalar | vector | matrix

Spectral rolloff point in Hz, returned as a scalar, vector, or matrix. Each row of rolloffPoint
corresponds to the spectral rolloff point of a window of x. Each column of rolloffPoint
corresponds to an independent channel.

Algorithms
The spectral rolloff point is calculated as described in [1]:

rolloffPoint = i

such that

∑
k = b1

i
sk = κ ∑

k = b1

b2
sk

2 Functions

2-352

where

• sk is the spectral value at bin k.
• b1 and b2 are the band edges, in bins, over which to calculate the spectral spread.
• κ is the percentage of total energy contained between b1 and i. You can set κ using Threshold.

Version History
Introduced in R2019a

References
[1] Scheirer, E., and M. Slaney, "Construction and Evaluation of a Robust Multifeature Speech/Music

Discriminator," IEEE International Conference on Acoustics, Speech, and Signal Processing.
Volume 2, 1997, pp. 1221–1224.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

See Also
spectralSpread | spectralSkewness | spectralKurtosis

Topics
“Spectral Descriptors”

 spectralRolloffPoint

2-353

spectralKurtosis
Spectral kurtosis for audio signals and auditory spectrograms

Syntax
kurtosis = spectralKurtosis(x,f)
kurtosis = spectralKurtosis(x,f,Name=Value)
[kurtosis,spread,centroid] = spectralKurtosis(___)
spectralKurtosis(___)

Description
kurtosis = spectralKurtosis(x,f) returns the spectral kurtosis of the signal, x, over time.
How the function interprets x depends on the shape of f.

kurtosis = spectralKurtosis(x,f,Name=Value) specifies options using one or more name-
value arguments.

[kurtosis,spread,centroid] = spectralKurtosis(___) returns the spectral spread and
spectral centroid. You can specify an input combination from any of the previous syntaxes.

spectralKurtosis(___) with no output arguments plots the spectral kurtosis.

• If the input is in the time domain, the spectral kurtosis is plotted against time.
• If the input is in the frequency domain, the spectral kurtosis is plotted against frame number.

Examples

Spectral Kurtosis of Time-Domain Audio

Read in an audio file and calculate the kurtosis using default parameters.

[audioIn,fs] = audioread("Counting-16-44p1-mono-15secs.wav");
kurtosis = spectralKurtosis(audioIn,fs);

Plot the spectral kurtosis against time.

spectralKurtosis(audioIn,fs)

2 Functions

2-354

Spectral Kurtosis of Frequency-Domain Audio Data

Read in an audio file and then calculate the mel spectrogram using the melSpectrogram function.
Calculate the kurtosis of the mel spectrogram over time.

[audioIn,fs] = audioread("Counting-16-44p1-mono-15secs.wav");

[s,cf,t] = melSpectrogram(audioIn,fs);

kurtosis = spectralKurtosis(s,cf);

Plot the spectral kurtosis against the frame number.

spectralKurtosis(s,cf)

 spectralKurtosis

2-355

Specify Nondefault Parameters

Read in an audio file.

[audioIn,fs] = audioread("Counting-16-44p1-mono-15secs.wav");

Calculate the kurtosis of the power spectrum over time. Calculate the kurtosis for 50 ms Hamming
windows of data with 25 ms overlap. Use the range from 62.5 Hz to fs/2 for the kurtosis calculation.

kurtosis = spectralKurtosis(audioIn,fs, ...
 Window=hamming(round(0.05*fs)), ...
 OverlapLength=round(0.025*fs), ...
 Range=[62.5,fs/2]);

Plot the spectral kurtosis.

spectralKurtosis(audioIn,fs, ...
 Window=hamming(round(0.05*fs)), ...
 OverlapLength=round(0.025*fs), ...
 Range=[62.5,fs/2])

2 Functions

2-356

Calculate Spectral Kurtosis of Streaming Audio

Create a dsp.AudioFileReader object to read in audio data frame-by-frame. Create a
dsp.SignalSink to log the spectral kurtosis calculation.

fileReader = dsp.AudioFileReader('Counting-16-44p1-mono-15secs.wav');
logger = dsp.SignalSink;

In an audio stream loop:

1 Read in a frame of audio data.
2 Calculate the spectral kurtosis for the frame of audio.
3 Log the spectral kurtosis for later plotting.

To calculate the spectral kurtosis for only a given input frame, specify a window with the same
number of samples as the input, and set the overlap length to zero. Plot the logged data.

win = hamming(fileReader.SamplesPerFrame);
while ~isDone(fileReader)
 audioIn = fileReader();
 kurtosis = spectralKurtosis(audioIn,fileReader.SampleRate, ...
 'Window',win, ...
 'OverlapLength',0);
 logger(kurtosis)

 spectralKurtosis

2-357

end

plot(logger.Buffer)
ylabel('Kurtosis')

Use dsp.AsyncBuffer if

• The input to your audio stream loop has a variable samples-per-frame.
• The input to your audio stream loop has an inconsistent samples-per-frame with the analysis

window of spectralKurtosis.
• You want to calculate the spectral kurtosis for overlapped data.

Create a dsp.AsyncBuffer object, reset the logger, and release the file reader.

buff = dsp.AsyncBuffer;
reset(logger)
release(fileReader)

Specify that the spectral kurtosis is calculated for 50 ms frames with a 25 ms overlap.

fs = fileReader.SampleRate;

samplesPerFrame = round(fs*0.05);
samplesOverlap = round(fs*0.025);

samplesPerHop = samplesPerFrame - samplesOverlap;

2 Functions

2-358

win = hamming(samplesPerFrame);

while ~isDone(fileReader)
 audioIn = fileReader();
 write(buff,audioIn);

 while buff.NumUnreadSamples >= samplesPerHop
 audioBuffered = read(buff,samplesPerFrame,samplesOverlap);

 kurtosis = spectralKurtosis(audioBuffered,fs, ...
 'Window',win, ...
 'OverlapLength',0);
 logger(kurtosis)
 end

end
release(fileReader)

Plot the logged data.

plot(logger.Buffer)
ylabel('Kurtosis')

 spectralKurtosis

2-359

Input Arguments
x — Input signal
column vector | matrix | 3-D array

Input signal, specified as a vector, matrix, or 3-D array. How the function interprets x depends on the
shape of f.
Data Types: single | double

f — Sample rate or frequency vector (Hz)
scalar | vector

Sample rate or frequency vector in Hz, specified as a scalar or vector, respectively. How the function
interprets x depends on the shape of f:

• If f is a scalar, x is interpreted as a time-domain signal, and f is interpreted as the sample rate. In
this case, x must be a real vector or matrix. If x is specified as a matrix, the columns are
interpreted as individual channels.

• If f is a vector, x is interpreted as a frequency-domain signal, and f is interpreted as the
frequencies, in Hz, corresponding to the rows of x. In this case, x must be a real L-by-M-by-N
array, where L is the number of spectral values at given frequencies of f, M is the number of
individual spectra, and N is the number of channels.

• The number of rows of x, L, must be equal to the number of elements of f.

Data Types: single | double

Name-Value Arguments

Note The following name-value arguments apply if x is a time-domain signal. If x is a frequency-
domain signal, name-value arguments are ignored.

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: Window=hamming(256)

Window — Window applied in time domain
rectwin(round(f*0.03)) (default) | vector

Window applied in the time domain, specified as a real vector. The number of elements in the vector
must be in the range [1, size(x,1)]. The number of elements in the vector must also be greater
than OverlapLength.
Data Types: single | double

OverlapLength — Number of samples overlapped between adjacent windows
round(f*0.02) (default) | non-negative scalar

Number of samples overlapped between adjacent windows, specified as an integer in the range [0,
size(Window,1)).

2 Functions

2-360

Data Types: single | double

FFTLength — Number of bins in DFT
numel(Window) (default) | positive scalar integer

Number of bins used to calculate the DFT of windowed input samples, specified as a positive scalar
integer. If unspecified, FFTLength defaults to the number of elements in the Window.
Data Types: single | double

Range — Frequency range (Hz)
[0,f/2] (default) | two-element row vector

Frequency range in Hz, specified as a two-element row vector of increasing real values in the range
[0, f/2].
Data Types: single | double

SpectrumType — Spectrum type
"power" (default) | "magnitude"

Spectrum type, specified as "power" or "magnitude":

• "power" –– The spectral kurtosis is calculated for the one-sided power spectrum.
• "magnitude" –– The spectral kurtosis is calculated for the one-sided magnitude spectrum.

Data Types: char | string

Output Arguments
kurtosis — Spectral kurtosis
scalar | vector | matrix

Spectral kurtosis, returned as a scalar, vector, or matrix. Each row of kurtosis corresponds to the
spectral kurtosis of a window of x. Each column of kurtosis corresponds to an independent
channel.

spread — Spectral spread
scalar | vector | matrix

Spectral spread, returned as a scalar, vector, or matrix. Each row of spread corresponds to the
spectral spread of a window of x. Each column of spread corresponds to an independent channel.

centroid — Spectral centroid (Hz)
scalar | vector | matrix

Spectral centroid in Hz, returned as a scalar, vector, or matrix. Each row of centroid corresponds to
the spectral centroid of a window of x. Each column of centroid corresponds to an independent
channel.

Algorithms
The spectral kurtosis is calculated as described in [1]:

 spectralKurtosis

2-361

kurtosis =
∑

k = b1

b2
fk− μ1

4sk

μ2
4 ∑

k = b1

b2
sk

where

• fk is the frequency in Hz corresponding to bin k.
• sk is the spectral value at bin k.
• b1 and b2 are the band edges, in bins, over which to calculate the spectral skewness.
• μ1 is the spectral centroid, calculated as described by the spectralCentroid function.
• μ2 is the spectral spread, calculated as described by the spectralSpread function.

Version History
Introduced in R2019a

References
[1] Peeters, G. "A Large Set of Audio Features for Sound Description (Similarity and Classification) in

the CUIDADO Project." Technical Report; IRCAM: Paris, France, 2004.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

See Also
spectralCentroid | spectralSpread | spectralSkewness

Topics
“Spectral Descriptors”

2 Functions

2-362

spectralFlux
Spectral flux for audio signals and auditory spectrograms

Syntax
flux = spectralFlux(x,f)
flux = spectralFlux(x,f,initialCondition)
flux = spectralFlux(___ ,Name=Value)
[flux,finalCondition] = spectralFlux(___)
spectralFlux(___)

Description
flux = spectralFlux(x,f) returns the spectral flux of the signal, x, over time. Spectral flux is a
measure of the variability of the spectrum over time. How the function interprets x depends on the
shape of f.

flux = spectralFlux(x,f,initialCondition) specifies the previous spectral state. This
syntax is supported only for frequency-domain inputs.

flux = spectralFlux(___ ,Name=Value) specifies options using one or more name-value
arguments.

For example, flux = spectralFlux(x,f,NormType=1) calculates spectral flux using norm type
1.

[flux,finalCondition] = spectralFlux(___) also returns the final spectral state. You can
specify an input combination from any of the previous syntaxes.

spectralFlux(___) with no output arguments plots the spectral flux.

• If the input is in the time domain, the spectral flux is plotted against time.
• If the input is in the frequency domain, the spectral flux is plotted against frame number.

Examples

Spectral Flux of Time-Domain Audio

Read in an audio file and calculate the flux using default parameters.

[audioIn,fs] = audioread("Counting-16-44p1-mono-15secs.wav");
flux = spectralFlux(audioIn,fs);

Plot the spectral flux against time.

spectralFlux(audioIn,fs)

 spectralFlux

2-363

Spectral Flux of Frequency-Domain Audio Data

Read in an audio file and then calculate the mel spectrogram using the melSpectrogram function.
Calculate the flux of the mel spectrogram over time.

[audioIn,fs] = audioread("Counting-16-44p1-mono-15secs.wav");

[s,cf,t] = melSpectrogram(audioIn,fs);

flux = spectralFlux(s,cf);

Plot the spectral flux against the frame number.

spectralFlux(s,cf)

2 Functions

2-364

Specify Nondefault Parameters

Read in an audio file.

[audioIn,fs] = audioread("Counting-16-44p1-mono-15secs.wav");

Calculate the flux of the power spectrum over time. Calculate the flux for 50 ms Hamming windows of
data with 25 ms overlap. Use the range from 62.5 Hz to fs/2 for the flux calculation.

flux = spectralFlux(audioIn,fs, ...
 Window=hamming(round(0.05*fs)), ...
 OverlapLength=round(0.025*fs), ...
 Range=[62.5,fs/2]);

Plot the spectral flux.

spectralFlux(audioIn,fs, ...
 Window=hamming(round(0.05*fs)), ...
 OverlapLength=round(0.025*fs), ...
 Range=[62.5,fs/2])

 spectralFlux

2-365

Calculate Spectral Flux of Streaming Audio

Spectral flux measures the change in consecutive spectra. To calculate spectral flux of streaming
audio, you can pass the state in and out of the function.

Create a dsp.AudioFileReader object to read in audio data frame-by-frame. Create a
dsp.AsyncBuffer object to buffer the audio input into overlapped frames. Create a second
dsp.AsyncBuffer object to log the spectral flux calculation.

fileReader = dsp.AudioFileReader('Counting-16-44p1-mono-15secs.wav');
inputBuffer = dsp.AsyncBuffer;
logger = dsp.AsyncBuffer;

In an audio stream loop:

1 Read in a frame of audio data from your source.
2 Write the audio data to the input buffer.
3 If a hop of data is available from the buffer, read a frame of data with overlap.
4 Calculate the one-sided magnitude short time Fourier transform.
5 Calculate the spectral flux.
6 Log the spectral flux for later plotting.

2 Functions

2-366

fs = fileReader.SampleRate;

samplesPerFrame = round(fs*0.05);
samplesOverlap = round(fs*0.025);

samplesPerHop = samplesPerFrame - samplesOverlap;

win = hamming(samplesPerFrame,'periodic');

Sprev = [];
while ~isDone(fileReader)
 audioIn = fileReader();
 write(inputBuffer,audioIn);

 while inputBuffer.NumUnreadSamples >= samplesPerHop
 audioBuffered = read(inputBuffer,samplesPerFrame,samplesOverlap);
 [S,f] = stft(audioBuffered,fs,"Window",win,"OverlapLength",samplesOverlap,"FrequencyRange","onesided");
 [flux,Sprev] = spectralFlux(abs(S),f,Sprev);
 write(logger,flux);
 end

end
release(fileReader)

Plot the logged data.

plot(read(logger))
ylabel('Flux')

 spectralFlux

2-367

Input Arguments
x — Input signal
column vector | matrix | 3-D array

Input signal, specified as a vector, matrix, or 3-D array. How the function interprets x depends on the
shape of f.
Data Types: single | double

f — Sample rate or frequency vector (Hz)
scalar | vector

Sample rate or frequency vector in Hz, specified as a scalar or vector, respectively. How the function
interprets x depends on the shape of f:

• If f is a scalar, x is interpreted as a time-domain signal, and f is interpreted as the sample rate. In
this case, x must be a real vector or matrix. If x is specified as a matrix, the columns are
interpreted as individual channels.

• If f is a vector, x is interpreted as a frequency-domain signal, and f is interpreted as the
frequencies, in Hz, corresponding to the rows of x. In this case, x must be a real L-by-M-by-N
array, where L is the number of spectral values at given frequencies of f, M is the number of
individual spectra, and N is the number of channels.

Data Types: single | double

initialCondition — Previous spectral state
[] (default) | matrix

Previous spectral state, specified as an L-by-N matrix, where:

• L is the number of bins in the one-sided spectral representation, equal to numel(f).
• N is the number of channels of audio data, equal to size(x,3).

If initialCondition is unspecified, or specified as an empty, spectralFlux considers the first
spectrum as repeating. That is, the first flux output is zero.

Dependencies

This input argument is only valid if the input, x, is a frequency-domain representation of audio. The
spectralFlux function interprets the domain of the input x based on the size of f.
Data Types: single | double

Name-Value Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: Window=hamming(256)

2 Functions

2-368

NormType — Norm type
2 (default) | 1

Norm type used to calculate flux, specified as 2 or 1.
Data Types: single | double

Note The following name-value arguments apply if x is a time-domain signal. If x is a frequency-
domain signal, the following name-value arguments are ignored.

Window — Window applied in time domain
rectwin(round(f*0.03)) (default) | vector

Window applied in the time domain, specified as a real vector. The number of elements in the vector
must be in the range [1, size(x,1)]. The number of elements in the vector must also be greater
than OverlapLength.
Data Types: single | double

OverlapLength — Number of samples overlapped between adjacent windows
round(f*0.02) (default) | non-negative scalar

Number of samples overlapped between adjacent windows, specified as an integer in the range [0,
size(Window,1)).
Data Types: single | double

FFTLength — Number of bins in DFT
numel(Window) (default) | positive scalar integer

Number of bins used to calculate the DFT of windowed input samples, specified as a positive scalar
integer. If unspecified, FFTLength defaults to the number of elements in the Window.
Data Types: single | double

Range — Frequency range (Hz)
[0,f/2] (default) | two-element row vector

Frequency range in Hz, specified as a two-element row vector of increasing real values in the range
[0, f/2].
Data Types: single | double

SpectrumType — Spectrum type
"power" (default) | "magnitude"

Spectrum type, specified as "power" or "magnitude":

• "power" –– The spectral flux is calculated for the one-sided power spectrum.
• "magnitude" –– The spectral flux is calculated for the one-sided magnitude spectrum.

Data Types: char | string

 spectralFlux

2-369

Output Arguments
flux — Spectral flux (Hz)
scalar | vector | matrix

Spectral flux in Hz, returned as a scalar, vector, or matrix. Each row of flux corresponds to the
spectral flux of a window of x. Each column of flux corresponds to an independent channel.

finalCondition — Final spectral state
matrix

Final spectral state, returned as an L-by-N matrix, where:

• L is the number of bins in the one-sided spectral representation, equal to numel(f).
• N is the number of channels of audio data, equal to size(x,3).

Dependencies

This output argument is only valid if the input, x, is a frequency-domain representation of audio. The
spectralFlux function interprets the domain of the input x based on the size of f.

Algorithms
The spectral flux is calculated as described in [1]:

flux(t) = ∑
k = b1

b2
sk(t)− sk(t − 1) P

1 P

where

• sk is the spectral value at bin k.
• b1 and b2 are the band edges, in bins, over which to calculate the spectral flux.
• P is the norm type. You can specify the norm type using NormType.

Version History
Introduced in R2019a

References
[1] Scheirer, E., and M. Slaney. "Construction and Evaluation of a Robust Multifeature Speech/Music

Discriminator." IEEE International Conference on Acoustics, Speech, and Signal Processing.
Volume 2, 1997, pp. 1221–1224.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

2 Functions

2-370

See Also
spectralCentroid | integratedLoudness | splMeter | acousticFluctuation

Topics
“Spectral Descriptors”

 spectralFlux

2-371

spectralFlatness
Spectral flatness for audio signals and auditory spectrograms

Syntax
flatness = spectralFlatness(x,f)
flatness = spectralFlatness(x,f,Name=Value)
[flatness,arithmeticMean,geometricMean] = spectralFlatness(___)
spectralFlatness(___)

Description
flatness = spectralFlatness(x,f) returns the spectral flatness of the signal, x, over time.
How the function interprets x depends on the shape of f.

flatness = spectralFlatness(x,f,Name=Value) specifies options using one or more name-
value arguments.

[flatness,arithmeticMean,geometricMean] = spectralFlatness(___) returns the
spectral arithmetic mean and spectral geometric mean. You can specify an input combination from
any of the previous syntaxes.

spectralFlatness(___) with no output arguments plots the spectral flatness.

• If the input is in the time domain, the spectral flatness is plotted against time.
• If the input is in the frequency domain, the spectral flatness is plotted against frame number.

Examples

Spectral Flatness of Time-Domain Audio

Read in an audio file and calculate the flatness using default parameters.

[audioIn,fs] = audioread("Counting-16-44p1-mono-15secs.wav");
flatness = spectralFlatness(audioIn,fs);

Plot the spectral flatness against time.

spectralFlatness(audioIn,fs)

2 Functions

2-372

Spectral Flatness of Frequency-Domain Audio Data

Read in an audio file and then calculate the mel spectrogram using the melSpectrogram function.

[audioIn,fs] = audioread("Counting-16-44p1-mono-15secs.wav");
[s,cf,t] = melSpectrogram(audioIn,fs);

Calculate the flatness of the mel spectrogram over time.

flatness = spectralFlatness(s,cf);

Plot the spectral flatness against the frame number.

spectralFlatness(s,cf)

 spectralFlatness

2-373

Specify Nondefault Parameters

Read in an audio file.

[audioIn,fs] = audioread("Counting-16-44p1-mono-15secs.wav");

Calculate the flatness of the power spectrum over time. Calculate the flatness for 50 ms Hamming
windows of data with 25 ms overlap. Use the range from 62.5 Hz to fs/2 for the flatness calculation.

flatness = spectralFlatness(audioIn,fs, ...
 Window=hamming(round(0.05*fs)), ...
 OverlapLength=round(0.025*fs), ...
 Range=[62.5,fs/2]);

Plot the spectral flatness.

spectralFlatness(audioIn,fs, ...
 Window=hamming(round(0.05*fs)), ...
 OverlapLength=round(0.025*fs), ...
 Range=[62.5,fs/2]);

2 Functions

2-374

Calculate Spectral Flatness of Streaming Audio

Create a dsp.AudioFileReader object to read in audio data frame-by-frame. Create a
dsp.SignalSink to log the spectral flatness calculation.

fileReader = dsp.AudioFileReader('Counting-16-44p1-mono-15secs.wav');
logger = dsp.SignalSink;

In an audio stream loop:

1 Read in a frame of audio data.
2 Calculate the spectral flatness for the frame of audio.
3 Log the spectral flatness for later plotting.

To calculate the spectral flatness for only a given input frame, specify a window with the same
number of samples as the input, and set the overlap length to zero. Plot the logged data.

win = hamming(fileReader.SamplesPerFrame);
while ~isDone(fileReader)
 audioIn = fileReader();
 flatness = spectralFlatness(audioIn,fileReader.SampleRate, ...
 'Window',win, ...
 'OverlapLength',0);
 logger(flatness)

 spectralFlatness

2-375

end

plot(logger.Buffer)
ylabel('Flatness')

Use dsp.AsyncBuffer if

• The input to your audio stream loop has a variable samples-per-frame.
• The input to your audio stream loop has an inconsistent samples-per-frame with the analysis

window of spectralFlatness.
• You want to calculate the spectral flatness for overlapped data.

Create a dsp.AsyncBuffer object, reset the logger, and release the file reader.

buff = dsp.AsyncBuffer;
reset(logger)
release(fileReader)

Specify that the spectral flatness is calculated for 50 ms frames with a 25 ms overlap.

fs = fileReader.SampleRate;

samplesPerFrame = round(fs*0.05);
samplesOverlap = round(fs*0.025);

samplesPerHop = samplesPerFrame - samplesOverlap;

2 Functions

2-376

win = hamming(samplesPerFrame);

while ~isDone(fileReader)
 audioIn = fileReader();
 write(buff,audioIn);

 while buff.NumUnreadSamples >= samplesPerHop
 audioBuffered = read(buff,samplesPerFrame,samplesOverlap);

 flatness = spectralFlatness(audioBuffered,fs, ...
 'Window',win, ...
 'OverlapLength',0);
 logger(flatness)
 end

end
release(fileReader)

Plot the logged data.

plot(logger.Buffer)
ylabel('Flatness')

 spectralFlatness

2-377

Input Arguments
x — Input signal
column vector | matrix | 3-D array

Input signal, specified as a vector, matrix, or 3-D array. How the function interprets x depends on the
shape of f.
Data Types: single | double

f — Sample rate or frequency vector (Hz)
scalar | vector

Sample rate or frequency vector in Hz, specified as a scalar or vector, respectively. How the function
interprets x depends on the shape of f:

• If f is a scalar, x is interpreted as a time-domain signal, and f is interpreted as the sample rate. In
this case, x must be a real vector or matrix. If x is specified as a matrix, the columns are
interpreted as individual channels.

• If f is a vector, x is interpreted as a frequency-domain signal, and f is interpreted as the
frequencies, in Hz, corresponding to the rows of x. In this case, x must be a real L-by-M-by-N
array, where L is the number of spectral values at given frequencies of f, M is the number of
individual spectra, and N is the number of channels.

• The number of rows of x, L, must be equal to the number of elements of f.

Data Types: single | double

Name-Value Arguments

Note The following name-value arguments apply if x is a time-domain signal. If x is a frequency-
domain signal, name-value arguments are ignored.

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: Window=hamming(256)

Window — Window applied in time domain
rectwin(round(f*0.03)) (default) | vector

Window applied in the time domain, specified as a real vector. The number of elements in the vector
must be in the range [1, size(x,1)]. The number of elements in the vector must also be greater
than OverlapLength.
Data Types: single | double

OverlapLength — Number of samples overlapped between adjacent windows
round(f*0.02) (default) | non-negative scalar

Number of samples overlapped between adjacent windows, specified as an integer in the range [0,
size(Window,1)).

2 Functions

2-378

Data Types: single | double

FFTLength — Number of bins in DFT
numel(Window) (default) | positive scalar integer

Number of bins used to calculate the DFT of windowed input samples, specified as a positive scalar
integer. If unspecified, FFTLength defaults to the number of elements in the Window.
Data Types: single | double

Range — Frequency range (Hz)
[0,f/2] (default) | two-element row vector

Frequency range in Hz, specified as a two-element row vector of increasing real values in the range
[0, f/2].
Data Types: single | double

SpectrumType — Spectrum type
"power" (default) | "magnitude"

Spectrum type, specified as "power" or "magnitude":

• "power" –– The spectral flatness is calculated for the one-sided power spectrum.
• "magnitude" –– The spectral flatness is calculated for the one-sided magnitude spectrum.

Data Types: char | string

Output Arguments
flatness — Spectral flatness
scalar | vector | matrix

Spectral flatness, returned as a scalar, vector, or matrix. Each row of flatness corresponds to the
spectral flatness of a window of x. Each column of flatness corresponds to an independent channel.

arithmeticMean — Spectral arithmetic mean
scalar | vector | matrix

Spectral arithmetic mean, returned as a scalar, vector, or matrix. Each row of arithmeticMean
corresponds to the arithmetic mean of the spectrum of a window of x. Each column of
arithmeticMean corresponds to an independent channel.

geometricMean — Spectral geometric mean
scalar | vector | matrix

Spectral geometric mean, returned as a scalar, vector, or matrix. Each row of geometricMean
corresponds to the geometric mean of the spectrum of a window of x. Each column of
geometricMean corresponds to an independent channel.

Algorithms
The spectral flatness is calculated as described in [1]:

 spectralFlatness

2-379

flatness =
∏

k = b1

b2
sk

1
b2− b1

1
b2− b1 ∑k = b1

b2
sk

where

• sk is the spectral value at bin k.
• b1 and b2 are the band edges, in bins, over which to calculate the spectral spread.

Version History
Introduced in R2019a

References
[1] Johnston, J. D. "Transform Coding of Audio Signals Using Perceptual Noise Criteria." IEEE Journal

on Selected Areas in Communications. Vol. 6, Number 2, 1988, pp. 314–323.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

See Also
spectralCrest

Topics
“Spectral Descriptors”

2 Functions

2-380

spectralEntropy
Spectral entropy for audio signals and auditory spectrograms

Syntax
entropy = spectralEntropy(x,f)
entropy = spectralEntropy(x,f,Name=Value)
spectralEntropy(___)

Description
entropy = spectralEntropy(x,f) returns the spectral entropy of the signal, x, over time. How
the function interprets x depends on the shape of f.

entropy = spectralEntropy(x,f,Name=Value) specifies options using one or more name-value
arguments.

spectralEntropy(___) with no output arguments plots the spectral entropy. You can specify an
input combination from any of the previous syntaxes.

• If the input is in the time domain, the spectral entropy is plotted against time.
• If the input is in the frequency domain, the spectral entropy is plotted against frame number.

Examples

Spectral Entropy of Time-Domain Audio

Read in an audio file and calculate the entropy using default parameters.

[audioIn,fs] = audioread("Counting-16-44p1-mono-15secs.wav");
entropy = spectralEntropy(audioIn,fs);

Plot the spectral entropy against time

spectralEntropy(audioIn,fs)

 spectralEntropy

2-381

Spectral Entropy of Frequency-Domain Audio Data

Read in an audio file and then calculate the mel spectrogram using the melSpectrogram function.

[audioIn,fs] = audioread("Counting-16-44p1-mono-15secs.wav");
[s,cf,t] = melSpectrogram(audioIn,fs);

Calculate the entropy of the mel spectrogram over time.

entropy = spectralEntropy(s,cf);

Plot the spectral entropy against the frame number.

spectralEntropy(s,cf)

2 Functions

2-382

Specify Nondefault Parameters

Read in an audio file.

[audioIn,fs] = audioread("Counting-16-44p1-mono-15secs.wav");

Calculate the entropy of the power spectrum over time. Calculate the entropy for 50 ms Hamming
windows of data with 25 ms overlap. Use the range from 62.5 Hz to fs/2 for the entropy calculation.

entropy = spectralEntropy(audioIn,fs, ...
 Window=hamming(round(0.05*fs)), ...
 OverlapLength=round(0.025*fs), ...
 Range=[62.5,fs/2]);

Plot the spectral entropy against time.

spectralEntropy(audioIn,fs, ...
 Window=hamming(round(0.05*fs)), ...
 OverlapLength=round(0.025*fs), ...
 Range=[62.5,fs/2])

 spectralEntropy

2-383

Calculate Spectral Entropy of Streaming Audio

Create a dsp.AudioFileReader object to read in audio data frame-by-frame. Create a
dsp.SignalSink to log the spectral entropy calculation.

fileReader = dsp.AudioFileReader('Counting-16-44p1-mono-15secs.wav');
logger = dsp.SignalSink;

In an audio stream loop:

1 Read in a frame of audio data.
2 Calculate the spectral entropy for the frame of audio.
3 Log the spectral entropy for later plotting.

To calculate the spectral entropy for only a given input frame, specify a window with the same
number of samples as the input, and set the overlap length to zero. Plot the logged data.

while ~isDone(fileReader)
 audioIn = fileReader();
 entropy = spectralEntropy(audioIn,fileReader.SampleRate, ...
 'Window',hamming(size(audioIn,1)), ...
 'OverlapLength',0);
 logger(entropy)
end

2 Functions

2-384

plot(logger.Buffer)
ylabel('Entropy')

Use dsp.AsyncBuffer if

• The input to your audio stream loop has a variable samples-per-frame.
• The input to your audio stream loop has an inconsistent samples-per-frame with the analysis

window of spectralEntropy.
• You want to calculate the spectral entropy for overlapped data.

Create a dsp.AsyncBuffer object, reset the logger, and release the file reader.

buff = dsp.AsyncBuffer;
reset(logger)
release(fileReader)

Specify that the spectral entropy is calculated for 50 ms frames with a 25 ms overlap.

fs = fileReader.SampleRate;

samplesPerFrame = round(fs*0.05);
samplesOverlap = round(fs*0.025);

samplesPerHop = samplesPerFrame - samplesOverlap;

win = hamming(samplesPerFrame);

 spectralEntropy

2-385

while ~isDone(fileReader)
 audioIn = fileReader();
 write(buff,audioIn);

 while buff.NumUnreadSamples >= samplesPerHop
 audioBuffered = read(buff,samplesPerFrame,samplesOverlap);

 entropy = spectralEntropy(audioBuffered,fs, ...
 'Window',win, ...
 'OverlapLength',0);
 logger(entropy)
 end

end
release(fileReader)

Plot the logged data.

plot(logger.Buffer)
ylabel('Entropy')

Input Arguments
x — Input signal
column vector | matrix | 3-D array

2 Functions

2-386

Input signal, specified as a vector, matrix, or 3-D array. How the function interprets x depends on the
shape of f.
Data Types: single | double

f — Sample rate or frequency vector (Hz)
scalar | vector

Sample rate or frequency vector in Hz, specified as a scalar or vector, respectively. How the function
interprets x depends on the shape of f:

• If f is a scalar, x is interpreted as a time-domain signal, and f is interpreted as the sample rate. In
this case, x must be a real vector or matrix. If x is specified as a matrix, the columns are
interpreted as individual channels.

• If f is a vector, x is interpreted as a frequency-domain signal, and f is interpreted as the
frequencies, in Hz, corresponding to the rows of x. In this case, x must be a real L-by-M-by-N
array, where L is the number of spectral values at given frequencies of f, M is the number of
individual spectra, and N is the number of channels.

• The number of rows of x, L, must be equal to the number of elements of f.

Data Types: single | double

Name-Value Arguments

Note The following name-value arguments apply if x is a time-domain signal. If x is a frequency-
domain signal, name-value arguments are ignored.

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: Window=hamming(256)

Window — Window applied in time domain
rectwin(round(f*0.03)) (default) | vector

Window applied in the time domain, specified as a real vector. The number of elements in the vector
must be in the range [1, size(x,1)]. The number of elements in the vector must also be greater
than OverlapLength.
Data Types: single | double

OverlapLength — Number of samples overlapped between adjacent windows
round(f*0.02) (default) | non-negative scalar

Number of samples overlapped between adjacent windows, specified as an integer in the range [0,
size(Window,1)).
Data Types: single | double

FFTLength — Number of bins in DFT
numel(Window) (default) | positive scalar integer

 spectralEntropy

2-387

Number of bins used to calculate the DFT of windowed input samples, specified as a positive scalar
integer. If unspecified, FFTLength defaults to the number of elements in the Window.
Data Types: single | double

Range — Frequency range (Hz)
[0,f/2] (default) | two-element row vector

Frequency range in Hz, specified as a two-element row vector of increasing real values in the range
[0, f/2].
Data Types: single | double

SpectrumType — Spectrum type
"power" (default) | "magnitude"

Spectrum type, specified as "power" or "magnitude":

• "power" –– The spectral entropy is calculated for the one-sided power spectrum.
• "magnitude" –– The spectral entropy is calculated for the one-sided magnitude spectrum.

Data Types: char | string

Output Arguments
entropy — Spectral entropy
scalar | vector | matrix

Spectral entropy, returned as a scalar, vector, or matrix. Each row of entropy corresponds to the
spectral entropy of a window of x. Each column of entropy corresponds to an independent channel.

Algorithms
The spectral entropy is calculated as described in [1]:

entropy =
− ∑

k = b1

b2
sklog sk

log b2− b1

where

• sk is the spectral value at bin k.
• b1 and b2 are the band edges, in bins, over which to calculate the spectral entropy.

Version History
Introduced in R2019a

References
[1] Misra, H., S. Ikbal, H. Bourlard, and H. Hermansky. "Spectral Entropy Based Feature for Robust

ASR." 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing.

2 Functions

2-388

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

See Also
spectralSpread | spectralSkewness | spectralKurtosis

Topics
“Spectral Descriptors”

 spectralEntropy

2-389

spectralDecrease
Spectral decrease for audio signals and auditory spectrograms

Syntax
decrease = spectralDecrease(x,f)
decrease = spectralDecrease(x,f,Name=Value)
spectralDecrease(___)

Description
decrease = spectralDecrease(x,f) returns the spectral decrease of the signal, x, over time.
How the function interprets x depends on the shape of f.

decrease = spectralDecrease(x,f,Name=Value) specifies options using one or more name-
value arguments.

spectralDecrease(___) with no output arguments plots the spectral decrease. You can specify
an input combination from any of the previous syntaxes.

• If the input is in the time domain, the spectral decrease is plotted against time.
• If the input is in the frequency domain, the spectral decrease is plotted against frame number.

Examples

Spectral Decrease of Time-Domain Audio

Read in an audio file and calculate the decrease using default parameters.

[audioIn,fs] = audioread("Counting-16-44p1-mono-15secs.wav");
decrease = spectralDecrease(audioIn,fs);

Plot the spectral decrease against time.

spectralDecrease(audioIn,fs)

2 Functions

2-390

Spectral Decrease of Frequency-Domain Audio Data

Read in an audio file and then calculate the mel spectrogram using the melSpectrogram function.

[audioIn,fs] = audioread("Counting-16-44p1-mono-15secs.wav");
[s,cf] = melSpectrogram(audioIn,fs);

Calculate the decrease of the mel spectrogram over time.

decrease = spectralDecrease(s,cf);

Plot the spectral decrease against the frame number.

spectralDecrease(s,cf)

 spectralDecrease

2-391

Specify Nondefault Parameters

Read in an audio file.

[audioIn,fs] = audioread("Counting-16-44p1-mono-15secs.wav");

Calculate the decrease of the magnitude spectrum over time. Calculate the decrease for 50 ms
Hamming windows of data with 25 ms overlap. Use the range from 62.5 Hz to fs/2 for the decrease
calculation.

decrease = spectralDecrease(audioIn,fs, ...
 Window=hamming(round(0.05*fs)), ...
 OverlapLength=round(0.025*fs), ...
 Range=[62.5,fs/2]);

Plot the spectral decrease.

spectralDecrease(audioIn,fs, ...
 Window=hamming(round(0.05*fs)), ...
 OverlapLength=round(0.025*fs), ...
 Range=[62.5,fs/2])

2 Functions

2-392

Calculate Spectral Decrease of Streaming Audio

Create a dsp.AudioFileReader object to read in audio data frame-by-frame. Create a
dsp.SignalSink to log the spectral decrease calculation.

fileReader = dsp.AudioFileReader('Counting-16-44p1-mono-15secs.wav');
logger = dsp.SignalSink;

In an audio stream loop:

1 Read in a frame of audio data.
2 Calculate the spectral decrease for the frame of audio.
3 Log the spectral decrease for later plotting.

To calculate the spectral decrease for only a given input frame, specify a window with the same
number of samples as the input, and set the overlap length to zero. Plot the logged data.

while ~isDone(fileReader)
 audioIn = fileReader();
 decrease = spectralDecrease(audioIn,fileReader.SampleRate, ...
 'Window',hamming(size(audioIn,1)), ...
 'OverlapLength',0);
 logger(decrease)
end

 spectralDecrease

2-393

plot(logger.Buffer)
ylabel('Decrease')

Use dsp.AsyncBuffer if

• The input to your audio stream loop has a variable samples-per-frame.
• The input to your audio stream loop has an inconsistent samples-per-frame with the analysis

window of spectralDecrease.
• You want to calculate the spectral decrease for overlapped data.

Create a dsp.AsyncBuffer object, reset the logger, and release the file reader.

buff = dsp.AsyncBuffer;
reset(logger)
release(fileReader)

Specify that the spectral decrease is calculated for 50 ms frames with a 25 ms overlap.

fs = fileReader.SampleRate;

samplesPerFrame = round(fs*0.05);
samplesOverlap = round(fs*0.025);

samplesPerHop = samplesPerFrame - samplesOverlap;

win = hamming(samplesPerFrame);

2 Functions

2-394

while ~isDone(fileReader)
 audioIn = fileReader();
 write(buff,audioIn);

 while buff.NumUnreadSamples >= samplesPerHop
 audioBuffered = read(buff,samplesPerFrame,samplesOverlap);

 decrease = spectralDecrease(audioBuffered,fs, ...
 'Window',win, ...
 'OverlapLength',0);
 logger(decrease)
 end

end
release(fileReader)

Plot the logged data.

plot(logger.Buffer)
ylabel('Decrease')

Input Arguments
x — Input signal
column vector | matrix | 3-D array

 spectralDecrease

2-395

Input signal, specified as a vector, matrix, or 3-D array. How the function interprets x depends on the
shape of f.
Data Types: single | double

f — Sample rate or frequency vector (Hz)
scalar | vector

Sample rate or frequency vector in Hz, specified as a scalar or vector, respectively. How the function
interprets x depends on the shape of f:

• If f is a scalar, x is interpreted as a time-domain signal, and f is interpreted as the sample rate. In
this case, x must be a real vector or matrix. If x is specified as a matrix, the columns are
interpreted as individual channels.

• If f is a vector, x is interpreted as a frequency-domain signal, and f is interpreted as the
frequencies, in Hz, corresponding to the rows of x. In this case, x must be a real L-by-M-by-N
array, where L is the number of spectral values at given frequencies of f, M is the number of
individual spectra, and N is the number of channels.

• The number of rows of x, L, must be equal to the number of elements of f.

Data Types: single | double

Name-Value Arguments

Note The following name-value arguments apply if x is a time-domain signal. If x is a frequency-
domain signal, name-value arguments are ignored.

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: Window=hamming(256)

Window — Window applied in time domain
rectwin(round(f*0.03)) (default) | vector

Window applied in the time domain, specified as a real vector. The number of elements in the vector
must be in the range [1, size(x,1)]. The number of elements in the vector must also be greater
than OverlapLength.
Data Types: single | double

OverlapLength — Number of samples overlapped between adjacent windows
round(f*0.02) (default) | non-negative scalar

Number of samples overlapped between adjacent windows, specified as an integer in the range [0,
size(Window,1)).
Data Types: single | double

FFTLength — Number of bins in DFT
numel(Window) (default) | positive scalar integer

2 Functions

2-396

Number of bins used to calculate the DFT of windowed input samples, specified as a positive scalar
integer. If unspecified, FFTLength defaults to the number of elements in the Window.
Data Types: single | double

Range — Frequency range (Hz)
[0,f/2] (default) | two-element row vector

Frequency range in Hz, specified as a two-element row vector of increasing real values in the range
[0, f/2].
Data Types: single | double

SpectrumType — Spectrum type
"magnitude" (default) | "power"

Spectrum type, specified as "power" or "magnitude":

• "power" –– The spectral decrease is calculated for the one-sided power spectrum.
• "magnitude" –– The spectral decrease is calculated for the one-sided magnitude spectrum.

Data Types: char | string

Output Arguments
decrease — Spectral decrease
scalar | vector | matrix

Spectral decrease in Hz, returned as a scalar, vector, or matrix. Each row of decrease corresponds
to the spectral centroid of a window of x. Each column of decrease corresponds to an independent
channel.

Algorithms
The spectral decrease is calculated as described in [1]:

decrease =
∑

k = b1 + 1

b2 sk− sb1
k− 1

∑
k = b1 + 1

b2
sk

where

• sk is the spectral value at bin k.
• b1 and b2 are the band edges, in bins, over which to calculate the spectral decrease.

Version History
Introduced in R2019a

 spectralDecrease

2-397

References
[1] Peeters, G. "A Large Set of Audio Features for Sound Description (Similarity and Classification) in

the CUIDADO Project." Technical Report; IRCAM: Paris, France, 2004.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

See Also
spectralCrest | spectralSlope

Topics
“Spectral Descriptors”

2 Functions

2-398

spectralCrest
Spectral crest for audio signals and auditory spectrograms

Syntax
crest = spectralCrest(x,f)
crest = spectralCrest(x,f,Name=Value)
[crest,spectralPeak,spectralMean] = spectralCrest(___)
spectralCrest(___)

Description
crest = spectralCrest(x,f) returns the spectral crest of the signal, x, over time. How the
function interprets x depends on the shape of f.

crest = spectralCrest(x,f,Name=Value) specifies options using one or more name-value
arguments.

[crest,spectralPeak,spectralMean] = spectralCrest(___) returns the spectral peak and
spectral mean. You can specify an input combination from any of the previous syntaxes.

spectralCrest(___) with no output arguments plots the spectral crest.

• If the input is in the time domain, the spectral crest is plotted against time.
• If the input is in the frequency domain, the spectral crest is plotted against frame number.

Examples

Spectral Crest of Time-Domain Audio

Read in an audio file and calculate the crest using default parameters.

[audioIn,fs] = audioread("Counting-16-44p1-mono-15secs.wav");
crest = spectralCrest(audioIn,fs);

Plot the spectral crest against time.

spectralCrest(audioIn,fs)

 spectralCrest

2-399

Spectral Crest of Frequency-Domain Audio Data

Read in an audio file and then calculate the mel spectrogram using the melSpectrogram function.

[audioIn,fs] = audioread("Counting-16-44p1-mono-15secs.wav");
[s,cf] = melSpectrogram(audioIn,fs);

Calculate the crest of the mel spectrogram over time.

crest = spectralCrest(s,cf);

Plot the spectral crest against the frame number.

spectralCrest(s,cf)

2 Functions

2-400

Specify Nondefault Parameters

Read in an audio file.

[audioIn,fs] = audioread("Counting-16-44p1-mono-15secs.wav");

Calculate the crest of the power spectrum over time. Calculate the crest for 50 ms Hamming windows
of data with 25 ms overlap. Use the range from 62.5 Hz to fs/2 for the crest calculation.

crest = spectralCrest(audioIn,fs, ...
 Window=hamming(round(0.05*fs)), ...
 OverlapLength=round(0.025*fs), ...
 Range=[62.5,fs/2]);

Plot the crest against time.

spectralCrest(audioIn,fs, ...
 Window=hamming(round(0.05*fs)), ...
 OverlapLength=round(0.025*fs), ...
 Range=[62.5,fs/2])

 spectralCrest

2-401

Calculate Spectral Crest of Streaming Audio

Create a dsp.AudioFileReader object to read in audio data frame-by-frame. Create a
dsp.SignalSink to log the spectral crest calculation.

fileReader = dsp.AudioFileReader('Counting-16-44p1-mono-15secs.wav');
logger = dsp.SignalSink;

In an audio stream loop:

1 Read in a frame of audio data.
2 Calculate the spectral crest for the frame of audio.
3 Log the spectral crest for later plotting.

To calculate the spectral crest for only a given input frame, specify a window with the same number
of samples as the input, and set the overlap length to zero.

Plot the logged data.

while ~isDone(fileReader)
 audioIn = fileReader();
 crest = spectralCrest(audioIn,fileReader.SampleRate, ...
 'Window',hamming(size(audioIn,1)), ...
 'OverlapLength',0);

2 Functions

2-402

 logger(crest)
end

plot(logger.Buffer)
ylabel('Crest')

Use dsp.AsyncBuffer if

• The input to your audio stream loop has a variable samples-per-frame.
• The input to your audio stream loop has an inconsistent samples-per-frame with the analysis

window of spectralCrest.
• You want to calculate the spectral crest for overlapped data.

Create a dsp.AsyncBuffer object, reset the logger, and release the file reader.

buff = dsp.AsyncBuffer;
reset(logger)
release(fileReader)

Specify that the spectral crest is calculated for 50 ms frames with a 25 ms overlap.

fs = fileReader.SampleRate;

samplesPerFrame = round(fs*0.05);
samplesOverlap = round(fs*0.025);

samplesPerHop = samplesPerFrame - samplesOverlap;

 spectralCrest

2-403

win = hamming(samplesPerFrame);

while ~isDone(fileReader)
 audioIn = fileReader();
 write(buff,audioIn);

 while buff.NumUnreadSamples >= samplesPerHop
 audioBuffered = read(buff,samplesPerFrame,samplesOverlap);

 crest = spectralCrest(audioBuffered,fs, ...
 'Window',win, ...
 'OverlapLength',0);
 logger(crest)
 end

end
release(fileReader)

Plot the logged data.

plot(logger.Buffer)
ylabel('Crest (Hz)')

2 Functions

2-404

Input Arguments
x — Input signal
column vector | matrix | 3-D array

Input signal, specified as a vector, matrix, or 3-D array. How the function interprets x depends on the
shape of f.
Data Types: single | double

f — Sample rate or frequency vector (Hz)
scalar | vector

Sample rate or frequency vector in Hz, specified as a scalar or vector, respectively. How the function
interprets x depends on the shape of f:

• If f is a scalar, x is interpreted as a time-domain signal, and f is interpreted as the sample rate. In
this case, x must be a real vector or matrix. If x is specified as a matrix, the columns are
interpreted as individual channels.

• If f is a vector, x is interpreted as a frequency-domain signal, and f is interpreted as the
frequencies, in Hz, corresponding to the rows of x. In this case, x must be a real L-by-M-by-N
array, where L is the number of spectral values at given frequencies of f, M is the number of
individual spectra, and N is the number of channels.

• The number of rows of x, L, must be equal to the number of elements of f.

Data Types: single | double

Name-Value Arguments

Note The following name-value arguments apply if x is a time-domain signal. If x is a frequency-
domain signal, name-value arguments are ignored.

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: Window=hamming(256)

Window — Window applied in time domain
rectwin(round(f*0.03)) (default) | vector

Window applied in the time domain, specified as a real vector. The number of elements in the vector
must be in the range [1, size(x,1)]. The number of elements in the vector must also be greater
than OverlapLength.
Data Types: single | double

OverlapLength — Number of samples overlapped between adjacent windows
round(f*0.02) (default) | non-negative scalar

Number of samples overlapped between adjacent windows, specified as an integer in the range [0,
size(Window,1)).

 spectralCrest

2-405

Data Types: single | double

FFTLength — Number of bins in DFT
numel(Window) (default) | positive scalar integer

Number of bins used to calculate the DFT of windowed input samples, specified as a positive scalar
integer. If unspecified, FFTLength defaults to the number of elements in the Window.
Data Types: single | double

Range — Frequency range (Hz)
[0,f/2] (default) | two-element row vector

Frequency range in Hz, specified as a two-element row vector of increasing real values in the range
[0, f/2].
Data Types: single | double

SpectrumType — Spectrum type
"power" (default) | "magnitude"

Spectrum type, specified as "power" or "magnitude":

• "power" –– The spectral crest is calculated for the one-sided power spectrum.
• "magnitude" –– The spectral crest is calculated for the one-sided magnitude spectrum.

Data Types: char | string

Output Arguments
crest — Spectral crest
scalar | vector | matrix

Spectral crest, returned as a scalar, vector, or matrix. Each row of crest corresponds to the spectral
crest of a window of x. Each column of crest corresponds to an independent channel.

spectralPeak — Spectral peak
scalar | vector | matrix

Spectral peak, returned as a scalar, vector, or matrix. Each row of spectralPeak corresponds to the
spectral crest of a window of x. Each column of spectralPeak corresponds to an independent
channel.

spectralMean — Spectral mean
scalar | vector | matrix

Spectral mean, returned as a scalar, vector, or matrix. Each row of spectralMean corresponds to
the spectral crest of a window of x. Each column of spectralMean corresponds to an independent
channel.

Algorithms
The spectral crest is calculated as described in [1]:

2 Functions

2-406

crest =
max sk ∈ [b1, b2]

1
b2− b1 ∑k = b1

b2
sk

where

• sk is the spectral value at bin k.
• b1 and b2 are the band edges, in bins, over which to calculate the spectral crest.

Version History
Introduced in R2019a

References
[1] Peeters, G. "A Large Set of Audio Features for Sound Description (Similarity and Classification) in

the CUIDADO Project." Technical Report; IRCAM: Paris, France, 2004.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

See Also
spectralSpread | spectralFlatness | spectralSkewness

Topics
“Spectral Descriptors”

 spectralCrest

2-407

spectralCentroid
Spectral centroid for audio signals and auditory spectrograms

Syntax
centroid = spectralCentroid(x,f)
centroid = spectralCentroid(x,f,Name=Value)
spectralCentroid(___)

Description
centroid = spectralCentroid(x,f) returns the spectral centroid of the signal, x, over time.
How the function interprets x depends on the shape of f.

centroid = spectralCentroid(x,f,Name=Value) specifies options using one or more name-
value arguments.

spectralCentroid(___) with no output arguments plots the spectral centroid. You can specify an
input combination from any of the previous syntaxes.

• If the input is in the time domain, the spectral centroid is plotted against time.
• If the input is in the frequency domain, the spectral centroid is plotted against frame number.

Examples

Spectral Centroid of Time-Domain Audio

Read in an audio file and calculate the centroid using default parameters.

[audioIn,fs] = audioread("Counting-16-44p1-mono-15secs.wav");
centroid = spectralCentroid(audioIn,fs);

Plot the centroid against time.

spectralCentroid(audioIn,fs);

2 Functions

2-408

Spectral Centroid of Frequency-Domain Audio Data

Read in an audio file and then buffer the signal into 30 ms frames with 20 ms overlap. Calculate the
octave power spectrum using the poctave function.

[audioIn,fs] = audioread("Counting-16-44p1-mono-15secs.wav");
audioBuffered = buffer(audioIn,round(fs*0.03),round(fs*0.02),"nodelay");
[p,cf] = poctave(audioBuffered,fs);

Calculate the centroid of the octave power spectrum over time.

centroid = spectralCentroid(p,cf);

Plot the centroid against the frame number.

spectralCentroid(p,cf)

 spectralCentroid

2-409

Specify Nondefault Parameters

Read in an audio file.

[audioIn,fs] = audioread("Counting-16-44p1-mono-15secs.wav");

Calculate the centroid of the power spectrum over time. Calculate the centroid for 50 ms Hamming
windows of data with 25 ms overlap. Use the range from 62.5 Hz to fs/2 for the centroid calculation.

centroid = spectralCentroid(audioIn,fs, ...
 Window=hamming(round(0.05*fs)), ...
 OverlapLength=round(0.025*fs), ...
 Range=[62.5,fs/2]);

Plot the centroid against time.

spectralCentroid(audioIn,fs, ...
 Window=hamming(round(0.05*fs)), ...
 OverlapLength=round(0.025*fs), ...
 Range=[62.5,fs/2])

2 Functions

2-410

Calculate Spectral Centroid of Streaming Audio

Create a dsp.AudioFileReader object to read in audio data frame-by-frame. Create a
dsp.SignalSink to log the spectral centroid calculation.

fileReader = dsp.AudioFileReader('Counting-16-44p1-mono-15secs.wav');
logger = dsp.SignalSink;

In an audio stream loop:

1 Read in a frame of audio data.
2 Calculate the spectral centroid for the frame of audio.
3 Log the spectral centroid for later plotting.

To calculate the spectral centroid for only a given input frame, specify a window with the same
number of samples as the input, and set the overlap length to zero.

Plot the logged data.

while ~isDone(fileReader)
 audioIn = fileReader();
 centroid = spectralCentroid(audioIn,fileReader.SampleRate, ...
 'Window',hamming(size(audioIn,1)), ...
 'OverlapLength',0);

 spectralCentroid

2-411

 logger(centroid)
end

plot(logger.Buffer)
ylabel('Centroid (Hz)')

If the input to your audio stream loop has a variable samples-per-frame, an inconsistent samples-per-
frame with the analysis window size of spectralCentroid, or if you want to calculate the spectral
centroid for overlapped data, use dsp.AsyncBuffer.

Create a dsp.AsyncBuffer object, reset the logger, and release the file reader.

buff = dsp.AsyncBuffer;
reset(logger)
release(fileReader)

Specify that the spectral centroid is calculated for 50 ms frames with a 25 ms overlap.

fs = fileReader.SampleRate;

samplesPerFrame = round(fs*0.05);
samplesOverlap = round(fs*0.025);

samplesPerHop = samplesPerFrame - samplesOverlap;

win = hamming(samplesPerFrame);

while ~isDone(fileReader)

2 Functions

2-412

 audioIn = fileReader();
 write(buff,audioIn);

 while buff.NumUnreadSamples >= samplesPerHop
 audioBuffered = read(buff,samplesPerFrame,samplesOverlap);

 centroid = spectralCentroid(audioBuffered,fs, ...
 'Window',win, ...
 'OverlapLength',0);
 logger(centroid)
 end

end
release(fileReader)

Plot the logged data.

plot(logger.Buffer)
ylabel('Centroid (Hz)')

Input Arguments
x — Input signal
column vector | matrix | 3-D array

 spectralCentroid

2-413

Input signal, specified as a vector, matrix, or 3-D array. How the function interprets x depends on the
shape of f.
Data Types: single | double

f — Sample rate or frequency vector (Hz)
scalar | vector

Sample rate or frequency vector in Hz, specified as a scalar or vector, respectively. How the function
interprets x depends on the shape of f:

• If f is a scalar, x is interpreted as a time-domain signal, and f is interpreted as the sample rate. In
this case, x must be a real vector or matrix. If x is specified as a matrix, the columns are
interpreted as individual channels.

• If f is a vector, x is interpreted as a frequency-domain signal, and f is interpreted as the
frequencies, in Hz, corresponding to the rows of x. In this case, x must be a real L-by-M-by-N
array, where L is the number of spectral values at given frequencies of f, M is the number of
individual spectra, and N is the number of channels.

• The number of rows of x, L, must be equal to the number of elements of f.

Data Types: single | double

Name-Value Arguments

Note The following name-value arguments apply if x is a time-domain signal. If x is a frequency-
domain signal, name-value arguments are ignored.

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: Window=hamming(256)

Window — Window applied in time domain
rectwin(round(f*0.03)) (default) | vector

Window applied in the time domain, specified as a real vector. The number of elements in the vector
must be in the range [1, size(x,1)]. The number of elements in the vector must also be greater
than OverlapLength.
Data Types: single | double

OverlapLength — Number of samples overlapped between adjacent windows
round(f*0.02) (default) | non-negative scalar

Number of samples overlapped between adjacent windows, specified as an integer in the range [0,
size(Window,1)).
Data Types: single | double

FFTLength — Number of bins in DFT
numel(Window) (default) | positive scalar integer

2 Functions

2-414

Number of bins used to calculate the DFT of windowed input samples, specified as a positive scalar
integer. If unspecified, FFTLength defaults to the number of elements in the Window.
Data Types: single | double

Range — Frequency range (Hz)
[0,f/2] (default) | two-element row vector

Frequency range in Hz, specified as a two-element row vector of increasing real values in the range
[0, f/2].
Data Types: single | double

SpectrumType — Spectrum type
"power" (default) | "magnitude"

Spectrum type, specified as "power" or "magnitude":

• "power" –– The spectral centroid is calculated for the one-sided power spectrum.
• "magnitude" –– The spectral centroid is calculated for the one-sided magnitude spectrum.

Data Types: char | string

Output Arguments
centroid — Spectral centroid (Hz)
scalar | vector | matrix

Spectral centroid in Hz, returned as a scalar, vector, or matrix. Each row of centroid corresponds to
the spectral centroid of a window of x. Each column of centroid corresponds to an independent
channel.

Algorithms
The spectral centroid is calculated as described in [1]:

centroid =
∑

k = b1

b2
fksk

∑
k = b1

b2
sk

where

• fk is the frequency in Hz corresponding to bin k.
• sk is the spectral value at bin k.
• b1 and b2 are the band edges, in bins, over which to calculate the spectral centroid.

Version History
Introduced in R2019a

 spectralCentroid

2-415

References
[1] Peeters, G. "A Large Set of Audio Features for Sound Description (Similarity and Classification) in

the CUIDADO Project." Technical Report; IRCAM: Paris, France, 2004.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

See Also
spectralSkewness | spectralKurtosis | spectralSpread

Topics
“Spectral Descriptors”

2 Functions

2-416

hz2mel
Convert from hertz to mel scale

Syntax
mel = hz2mel(hz)

Description
mel = hz2mel(hz) converts values in hertz to values on the mel frequency scale.

Examples

Convert Between Mel Scale and Hz

Set two bounding frequencies in Hz and then convert them to the mel scale.

b = hz2mel([20,8000]);

Generate a row vector of 32 values uniformly spaced on the mel scale.

melVect = linspace(b(1),b(2),32);

Convert the row vector of values into equivalent frequencies in Hz.

hzVect = mel2hz(melVect);

Plot the two vectors for comparison. As mel values increase linearly, Hz values increase exponentially.

plot(melVect,hzVect,'o')
title('Mel vs Hz')
xlabel('Mel')
ylabel('Hz')
grid on

 hz2mel

2-417

Input Arguments
hz — Input frequency in Hz
scalar | vector | matrix | multidimensional array

Input frequency in Hz, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: single | double

Output Arguments
mel — Output frequency on mel scale
scalar | vector | matrix | multidimensional array

Output frequency on the mel scale, returned as a scalar, vector, matrix, or multidimensional array the
same size as hz.
Data Types: single | double

Algorithms
The frequency conversion from Hz to the mel scale uses the following formula:

mel = 2595log10 1 + hz
700

2 Functions

2-418

Version History
Introduced in R2019a

References
[1] O'Shaghnessy, Douglas. Speech Communication: Human and Machine. Reading, MA: Addison-

Wesley Publishing Company, 1987.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
mel2hz | hz2erb | erb2hz | hz2bark | bark2hz

 hz2mel

2-419

hz2bark
Convert from hertz to Bark scale

Syntax
bark = hz2bark(hz)

Description
bark = hz2bark(hz) converts values in hertz to values on the Bark frequency scale.

Examples

Convert Between Bark Scale and Hz

Set two bounding frequencies in Hz and then convert them to the Bark scale.

b = hz2bark([20,8000]);

Generate a row vector of 32 values uniformly spaced on the Bark scale.

barkVect = linspace(b(1),b(2),32);

Convert the row vector of values into equivalent frequencies in Hz.

hzVect = bark2hz(barkVect);

Plot the two vectors for comparison. As Bark values increase linearly, Hz values increase
exponentially.

plot(barkVect,hzVect,'o')
title('Bark vs Hz')
xlabel('Bark')
ylabel('Hz')
grid on

2 Functions

2-420

Input Arguments
hz — Input frequency in Hz
scalar | vector | matrix | multidimensional array

Input frequency in Hz, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: single | double

Output Arguments
bark — Output frequency on Bark scale
scalar | vector | matrix | multidimensional array

Output frequency on the Bark scale, returned as a scalar, vector, matrix, or multidimensional array
the same size as hz.
Data Types: single | double

Algorithms
The frequency conversion from Hz to the Bark scale uses the following formula:

 hz2bark

2-421

bark = 26.81 hz
1960 + hz − 0.53

if :bark < 2 bark = bark + 0.15 (2− bark)
if :bark > 20.1 bark = bark + 0.22 (bark− 20.1)

The Bark value correction occurs after the conversion from Hz to the Bark scale.

Version History
Introduced in R2019a

References
[1] Traunmüller, Hartmut. "Analytical Expressions for the Tonotopic Sensory Scale." Journal of the

Acoustical Society of America. Vol. 88, Issue 1, 1990, pp. 97–100.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
bark2hz | hz2mel | mel2hz | hz2erb | erb2hz

2 Functions

2-422

hz2erb
Convert from hertz to equivalent rectangular bandwidth (ERB) scale

Syntax
erb = hz2erb(hz)

Description
erb = hz2erb(hz) converts values in hertz to values on the ERB frequency scale.

Examples

Convert Between ERB Scale and Hz

Set two bounding frequencies in Hz and then convert them to the ERB scale.

b = hz2erb([20,8000]);

Generate a row vector of 32 values uniformly spaced on the ERB scale.

erbVect = linspace(b(1),b(2),32);

Convert the row vector of values into equivalent frequencies in Hz.

hzVect = erb2hz(erbVect);

Plot the two vectors for comparison. As ERB values increase linearly, Hz values increase
exponentially.

plot(erbVect,hzVect,'o')
title('ERB vs Hz')
xlabel('ERB')
ylabel('Hz')
grid on

 hz2erb

2-423

Input Arguments
hz — Input frequency in Hz
scalar | vector | matrix | multidimensional array

Input frequency in Hz, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: single | double

Output Arguments
erb — Output frequency on ERB scale
scalar | vector | matrix | multidimensional array

Output frequency on the ERB scale, returned as a scalar, vector, matrix, or multidimensional array
the same size as hz.
Data Types: single | double

Algorithms
The frequency conversion from Hz to the ERB scale uses the following formula:

2 Functions

2-424

erb = Alog10 1 + hz 0.00437
where

A =
1000loge(10)

24.7 4.37

Version History
Introduced in R2019a

References
[1] Glasberg, Brian R., and Brian C. J. Moore. "Derivation of Auditory Filter Shapes from Notched-

Noise Data." Hearing Research. Vol. 47, Issues 1–2, 1990, pp. 103–138.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
erb2hz | hz2mel | mel2hz | hz2bark | bark2hz

 hz2erb

2-425

mel2hz
Convert from mel scale to hertz

Syntax
hz = mel2hz(mel)

Description
hz = mel2hz(mel) converts values on the mel frequency scale to values in hertz.

Examples

Convert Between Mel Scale and Hz

Set two bounding frequencies in Hz and then convert them to the mel scale.

b = hz2mel([20,8000]);

Generate a row vector of 32 values uniformly spaced on the mel scale.

melVect = linspace(b(1),b(2),32);

Convert the row vector of values into equivalent frequencies in Hz.

hzVect = mel2hz(melVect);

Plot the two vectors for comparison. As mel values increase linearly, Hz values increase exponentially.

plot(melVect,hzVect,'o')
title('Mel vs Hz')
xlabel('Mel')
ylabel('Hz')
grid on

2 Functions

2-426

Input Arguments
mel — Input frequency on mel scale
scalar | vector | matrix | multidimensional array

Input frequency on the mel scale, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: single | double

Output Arguments
hz — Output frequency in Hz
scalar | vector | matrix | multidimensional array

Output frequency in Hz, returned as a scalar, vector, matrix, or multidimensional array the same size
as mel.
Data Types: single | double

Algorithms
The frequency conversion from the mel scale to Hz uses the following formula:

hz = 700 10
mel

2595 − 1

 mel2hz

2-427

Version History
Introduced in R2019a

References
[1] O'Shaughnessy, Douglas. Speech Communication: Human and Machine. Reading, MA: Addison-

Wesley Publishing Company, 1987.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
hz2mel | hz2erb | erb2hz | hz2bark | bark2hz

2 Functions

2-428

bark2hz
Convert from Bark scale to hertz

Syntax
hz = bark2hz(bark)

Description
hz = bark2hz(bark) converts values on the Bark frequency scale to values in hertz.

Examples

Convert Between Bark Scale and Hz

Set two bounding frequencies in Hz and then convert them to the Bark scale.

b = hz2bark([20,8000]);

Generate a row vector of 32 values uniformly spaced on the Bark scale.

barkVect = linspace(b(1),b(2),32);

Convert the row vector of values into equivalent frequencies in Hz.

hzVect = bark2hz(barkVect);

Plot the two vectors for comparison. As Bark values increase linearly, Hz values increase
exponentially.

plot(barkVect,hzVect,'o')
title('Bark vs Hz')
xlabel('Bark')
ylabel('Hz')
grid on

 bark2hz

2-429

Input Arguments
bark — Input frequency on Bark scale
scalar | vector | matrix | multidimensional array

Input frequency on the Bark scale, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: single | double

Output Arguments
hz — Output frequency in Hz
scalar | vector | matrix | multidimensional array

Output frequency in Hz, returned as a scalar, vector, matrix, or multidimensional array the same size
as bark.
Data Types: single | double

Algorithms
The frequency conversion from the Bark scale to Hz uses the following formula:

2 Functions

2-430

if :bark < 2 bark = bark− 0.3
0.85

if :bark > 20.1 bark = bark + 4.422
1.22

hz = 1960 bark + 0.53
26.28− bark

The Bark value correction occurs before the conversion from the Bark scale to Hz.

Version History
Introduced in R2019a

References
[1] Traunmüller, Hartmut. "Analytical Expressions for the Tonotopic Sensory Scale." Journal of the

Acoustical Society of America. Vol. 88, Issue 1, 1990, pp. 97–100.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
hz2bark | hz2mel | mel2hz | hz2erb | erb2hz

 bark2hz

2-431

erb2hz
Convert from equivalent rectangular bandwidth (ERB) scale to hertz

Syntax
hz = erb2hz(erb)

Description
hz = erb2hz(erb) converts values on the ERB frequency scale to values in hertz.

Examples

Convert Between ERB Scale and Hz

Set two bounding frequencies in Hz and then convert them to the ERB scale.

b = hz2erb([20,8000]);

Generate a row vector of 32 values uniformly spaced on the ERB scale.

erbVect = linspace(b(1),b(2),32);

Convert the row vector of values into equivalent frequencies in Hz.

hzVect = erb2hz(erbVect);

Plot the two vectors for comparison. As ERB values increase linearly, Hz values increase
exponentially.

plot(erbVect,hzVect,'o')
title('ERB vs Hz')
xlabel('ERB')
ylabel('Hz')
grid on

2 Functions

2-432

Input Arguments
erb — Input frequency on ERB scale
scalar | vector | matrix | multidimensional array

Input frequency on the equivalent rectangular band (ERB) scale, specified as a scalar, vector, matrix,
or multidimensional array.
Data Types: single | double

Output Arguments
hz — Output frequency in Hz
scalar | vector | matrix | multidimensional array

Output frequency in Hz, returned as a scalar, vector, matrix, or multidimensional array the same size
as erb.
Data Types: single | double

Algorithms
The frequency conversion from the ERB scale to Hz uses the following formula:

 erb2hz

2-433

hz = 10
erb
A − 1

0.00437
where

A =
1000loge(10)

24.7 4.37

Version History
Introduced in R2019a

References
[1] Glasberg, Brian R., and Brian C. J. Moore. "Derivation of Auditory Filter Shapes from Notched-

Noise Data." Hearing Research. Vol. 47, Issues 1–2, 1990, pp. 103–138.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
hz2erb | hz2mel | mel2hz | hz2bark | bark2hz

2 Functions

2-434

mls
Maximum length sequence

Syntax
excitation = mls
excitation = mls(L)
excitation = mls(L,Name,Value)

Description
excitation = mls returns an excitation signal generated using the maximum length sequence
(MLS) technique. This type of sequence is a pseudo-random binary sequence.

excitation = mls(L) specifies the output length L of the excitation signal.

excitation = mls(L,Name,Value) specifies options using one or more Name,Value pair
arguments, in addition to the input arguments in the previous syntaxes.

Examples

Estimate Impulse Response Using MLS Excitation

Use audioread to read in an impulse response recording. Create a
dsp.FrequencyDomainFIRFilter object to perform frequency domain filtering using the known
impulse response.

[irKnown,fs] = audioread('ChurchImpulseResponse-16-44p1-mono-5secs.wav');
systemModel = dsp.FrequencyDomainFIRFilter(irKnown');

Create an MLS excitation signal by using the mls function. The MLS excitation signal must be longer
than the impulse response. Note that the length of the MLS excitation is extended to the next power
of two minus one.

excitation = mls(numel(irKnown)+1);

plot(excitation)
title('Excitation')

 mls

2-435

Replicate the excitation signal four times to measure the average of three measurements. The
recording of the first MLS sequence does include all the impulse response information, so impzest
discards it as a warmup run. Pad the excitation signal with zeros to account for the filter latency.

numRuns = 4;
excrep = repmat(excitation,numRuns,1);
excrep = [excrep;zeros(numel(irKnown)+1,1)];

Pass the excitation signal through the known filter and then add noise to model a real-word recording
(system response). Cut the delay introduced at the beginning by the filter.

rec = systemModel(excrep);
rec = rec + 0.1*randn(size(rec));

rec = rec(numel(irKnown)+2:end,:);

plot(rec)
title('System Response')

2 Functions

2-436

In a real-world scenario, the MLS sequence is played back in the system under test while recording.
The recording would be cut so that it begins at the moment the MLS sequence is picked-up and
truncated to last the duration of the repeated sequence.

Pass the excitation signal and the system response to the impzest function to estimate the impulse
response. Plot the known impulse response and the simulation of the estimated impulse response for
comparison.

irEstimate = impzest(excitation,rec);

samples = 1:numel(irKnown);
plot(samples,irEstimate(samples),'bo', ...
 samples,irKnown(samples),'m.')

legend('Known impulse response','Simulation of estimated impulse response')

 mls

2-437

Generate MLS Signal

Generate an MLS signal that is 2^14-1 samples long and has a level of -5 dB.

L = 2^14-1;
level = -5;
excitation = mls(L,'ExcitationLevel',level);

Visualize the excitation in time and time-frequency. For the time-domain plot, plot only the first 200
samples for visibility. The pattern is constant.

plot(excitation(1:200))

2 Functions

2-438

spectrogram(excitation,512,0,1024,'yaxis')

 mls

2-439

Input Arguments
L — Length of excitation signal
32767 (default) | scalar in the range [3,229)

Length of excitation signal to generate, specified as a scalar in the range [3,229).

The requested output length L must be a power of two minus one. Otherwise, the output length
increases to the next valid length.

Note If you use the excitation signal generated by the mls function to record and estimate the
impulse response of a system, then the length of the excitation signal must be at least as long as the
impulse response that you want to estimate.

Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

2 Functions

2-440

Example: 'ExcitationLevel',-5

ExcitationLevel — Level of the excitation signal to generate (dB)
scalar in the range [-42,0]

Level of the excitation signal to generate in dB, specified as a scalar in the range [-42,0].
Data Types: single | double

Output Arguments
excitation — Excitation signal
column vector

Excitation signal generated using the maximum length sequence (MLS) technique, returned as a
column vector.
Data Types: single | double

Version History
Introduced in R2018b

References
[1] Guy-Bart, Stan, Jean-Jacques Embrechts, and Dominique Archambeau. "Comparison of Different

Impulse Response Measurement Techniques." Journal of Audio Engineering Society. Vol. 50,
Issue 4, 2002, pp. 246–262.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
impzest | sweeptone | Impulse Response Measurer

 mls

2-441

sweeptone
Exponential swept sine

Syntax
excitation = sweeptone()
excitation = sweeptone(swDur)
excitation = sweeptone(swDur,silDur)
excitation = sweeptone(swDur,silDur,fs)
excitation = sweeptone(___ ,Name=Value)

Description
excitation = sweeptone() returns an excitation signal generated using the exponential swept
sine (ESS) technique. By default, the signal has a 6-second duration, followed by 4 seconds of silence,
for a sample rate of 44100 Hz.

excitation = sweeptone(swDur) specifies the duration of the exponential swept sine signal.

excitation = sweeptone(swDur,silDur) specifies the duration of the silence following the
exponential swept sine signal.

excitation = sweeptone(swDur,silDur,fs) specifies the sample rate of the sweep tone as fs
Hz.

excitation = sweeptone(___ ,Name=Value) specifies options using one or more name-value
arguments, in addition to the input arguments in the previous syntaxes.

Examples

Estimate Impulse Response Using Sweep Tone Excitation

Create a sweep tone excitation signal by using the sweeptone function.

excitation = sweeptone(2,1,44100);

plot(excitation)
title('Excitation')

2 Functions

2-442

Pass the excitation signal through an infinite impulse response (IIR) filter and add noise to model a
real-world recording (system response).

[B,A] = butter(10,[.1 .7]);
rec = filter(B,A,excitation);
nrec = rec + 0.12*randn(size(rec));

plot(nrec)
title('System Response')

 sweeptone

2-443

Pass the excitation signal and the system response to the impzest function to estimate the impulse
response. Truncate the estimate to 100 points. Use impz to determine the true impulse response of
the system. Plot the true impulse response and the estimated impulse response for comparison.

irEstimate = impzest(excitation,nrec);
irEstimate = irEstimate(1:101);

irTrue = impz(B,A,101);
plot(0:100,irEstimate, ...
 0:100,irTrue,'ro')

legend('True impulse response','Estimated impulse response')

2 Functions

2-444

Generate ESS Signal

Generate an exponential swept sine (ESS) signal with a 3-second sweep that goes from 20 Hz to 20
kHz, and ends with a 2-second silence. Specify the sample rate as 48 kHz.

fs = 48e3;
excitation = sweeptone(3,2,fs,'SweepFrequencyRange',[20 20e3]);

Visualize the excitation in time and time-frequency.

t = (0:numel(excitation)-1)/fs;
plot(t,excitation)
xlabel('Time (s)')

 sweeptone

2-445

spectrogram(excitation,512,0,1024,fs,'yaxis')

2 Functions

2-446

Input Arguments
swDur — Duration of exponential swept sine signal (s)
6 (default) | scalar in the range [0.5,60]

Duration of exponential swept sine signal in seconds, specified as a scalar in the range [0.5,60].
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

silDur — Duration of silence after exponential swept sine signal (s)
4 (default) | positive scalar

Duration of silence after exponential swept sine, specified as a positive scalar.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

fs — Sample rate (Hz)
44100 (default) | positive scalar

Sample rate in Hz, specified as a positive scalar.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

 sweeptone

2-447

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'ExcitationLevel',-5

ExcitationLevel — Level of excitation signal to generate (dB)
-6 (default) | scalar in the range [-42,0]

Level of the excitation signal to generate in dB, specified as a scalar in the range [-42,0].
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

SweepFrequencyRange — Range of sweep frequency (Hz)
[10 22000] | two-element positive row vector

Range of sweep frequency in Hz, specified as a two-element row vector. The sweep frequency range
can be specified low to high or high to low. That is, [10 22000] and [22000 10] are both valid
inputs. The largest value of the sweep frequency range must be less than or equal to fs/2.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
excitation — Excitation signal
column vector

Excitation signal generated using the ESS technique, returned as a column vector. The length of the
column vector is approximately (swDur+silDur)*fs samples.
Data Types: double

Version History
Introduced in R2018b

Exponential swept sine supports longer duration
Behavior changed in R2022b

The duration of the exponential swept sine signal, specified by the swDur argument, can be a
maximum of 60 seconds. Previously, the combination of the exponential swept sine signal duration
and the duration of the following silence could not exceed 15 seconds.

References
[1] Farina, Angelo. "Advancements in Impulse Response Measurements by Sine Sweeps." Presented

at the Audio Engineering Society 122nd Convention, Vienna, Austria, 2007.

2 Functions

2-448

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
impzest | mls | Impulse Response Measurer

 sweeptone

2-449

interpolateHRTF
3-D head-related transfer function (HRTF) interpolation

Syntax
interpolatedHRTF = interpolateHRTF(HRTF,sourcePositions,
desiredSourcePositions)
interpolatedHRTF = interpolateHRTF(___ ,Name,Value)

Description
interpolatedHRTF = interpolateHRTF(HRTF,sourcePositions,
desiredSourcePositions) returns the interpolated head-related transfer function (HRTF) at the
desired position.

interpolatedHRTF = interpolateHRTF(___ ,Name,Value) specifies options using one or
more Name,Value pair arguments.

Examples

Render 3-D Audio on Headphones

Modify the 3-D audio image of a sound file by filtering it through a head-related transfer function
(HRTF). Set the location of the sound source by specifying the desired azimuth and elevation.

load 'ReferenceHRTF.mat' hrtfData sourcePosition

hrtfData = permute(double(hrtfData),[2,3,1]);

sourcePosition = sourcePosition(:,[1,2]);

Calculate the head-related impulse response (HRIR) using the VBAP algorithm at a desired source
position. Separate the output, interpolatedIR, into the impulse responses for the left and right
ears.

desiredAz = 110;
desiredEl = -45;
desiredPosition = [desiredAz desiredEl];

interpolatedIR = interpolateHRTF(hrtfData,sourcePosition,desiredPosition, ...
 "Algorithm","VBAP");

leftIR = squeeze(interpolatedIR(:,1,:))';
rightIR = squeeze(interpolatedIR(:,2,:))';

Create a dsp.AudioFileReader object to read in a file frame by frame. Create an
audioDeviceWriter object to play audio to your sound card frame by frame. Create two
dsp.FIRFilter objects and specify the filter coefficients using the head-related transfer function
interpolated impulse responses.

2 Functions

2-450

fileReader = dsp.AudioFileReader('RockDrums-48-stereo-11secs.mp3');
deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);

leftFilter = dsp.FIRFilter('Numerator',leftIR);
rightFilter = dsp.FIRFilter('Numerator',rightIR);

In an audio stream loop:

1 Read in a frame of audio data.
2 Feed the stereo audio data through the left and right HRIR filters, respectively.
3 Concatenate the left and right channels and write the audio to your output device.

while ~isDone(fileReader)
 audioIn = fileReader();

 leftChannel = leftFilter(audioIn(:,1));
 rightChannel = rightFilter(audioIn(:,2));

 deviceWriter([leftChannel,rightChannel]);
end

As a best practice, release your System objects when complete.

release(deviceWriter)
release(fileReader)

Model Moving Source Using HRIR Filtering

Create arrays of head-related impulse responses corresponding to desired source positions. Filter
mono input to model a moving source.

Load the ARI HRTF dataset. Cast the hrtfData to type double, and reshape it to the required
dimensions: (number of source positions)-by-2-by-(number of HRTF samples). Use the first two
columns of the sourcePosition matrix only, which correspond to the azimuth and elevation of the
source in degrees.

load 'ReferenceHRTF.mat' hrtfData sourcePosition

hrtfData = permute(double(hrtfData),[2,3,1]);

sourcePosition = sourcePosition(:,[1,2]);

Specify the desired source positions and then calculate the HRTF at these locations using the
interpolateHRTF function. Separate the output, interpolatedIR, into the impulse responses for
the left and right ears.

desiredAz = [-120;-60;0;60;120;0;-120;120];
desiredEl = [-90;90;45;0;-45;0;45;45];
desiredPosition = [desiredAz desiredEl];

interpolatedIR = interpolateHRTF(hrtfData,sourcePosition,desiredPosition);

leftIR = squeeze(interpolatedIR(:,1,:));
rightIR = squeeze(interpolatedIR(:,2,:));

 interpolateHRTF

2-451

Create an audio file sampled at 48 kHz for compatibility with the HRTF dataset.

desiredFs = 48e3;
[audio,fs] = audioread('Counting-16-44p1-mono-15secs.wav');
audio = 0.8*resample(audio,desiredFs,fs);
audiowrite('Counting-16-48-mono-15secs.wav',audio,desiredFs);

Create a dsp.AudioFileReader object to read in a file frame by frame. Create an
audioDeviceWriter object to play audio to your sound card frame by frame. Create two
dsp.FIRFilter objects with NumeratorSource set to Input port. Setting NumeratorSource to
Input port enables you to modify the filter coefficients while streaming.

fileReader = dsp.AudioFileReader('Counting-16-48-mono-15secs.wav');
deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);

leftFilter = dsp.FIRFilter('NumeratorSource','Input port');
rightFilter = dsp.FIRFilter('NumeratorSource','Input port');

In an audio stream loop:

1 Read in a frame of audio data.
2 Feed the audio data through the left and right HRIR filters.
3 Concatenate the left and right channels and write the audio to your output device. If you have a

stereo output hardware, such as headphones, you can hear the source shifting position over time.
4 Modify the desired source position in 2-second intervals by updating the filter coefficients.

durationPerPosition = 2;
samplesPerPosition = durationPerPosition*fileReader.SampleRate;
samplesPerPosition = samplesPerPosition - rem(samplesPerPosition,fileReader.SamplesPerFrame);

sourcePositionIndex = 1;
samplesRead = 0;
while ~isDone(fileReader)
 audioIn = fileReader();
 samplesRead = samplesRead + fileReader.SamplesPerFrame;

 leftChannel = leftFilter(audioIn,leftIR(sourcePositionIndex,:));
 rightChannel = rightFilter(audioIn,rightIR(sourcePositionIndex,:));

 deviceWriter([leftChannel,rightChannel]);

 if mod(samplesRead,samplesPerPosition) == 0
 sourcePositionIndex = sourcePositionIndex + 1;
 end
end

As a best practice, release your System objects when complete.

release(deviceWriter)
release(fileReader)

Input Arguments
HRTF — HRTF values measured at source positions
N-by-2-by-M array

2 Functions

2-452

HRTF values measured at the source positions, specified as a N-by-2-by-M array.

• N –– Number of known HRTF pairs
• M –– Number of samples in each known HRTF

If you specify HRTF with real numbers, the function assumes that the input represents an impulse
response, and M corresponds to the length of the impulse response. If you specify HRTF with complex
numbers, the function assumes that the input represents a transfer function, and M corresponds to
the number of bins in the frequency response. The output of the interpolateHRTF function has the
same complexity and interpretation as the input.
Data Types: single | double
Complex Number Support: Yes

sourcePositions — Source positions corresponding to measured HRTF values
N-by-2 matrix

Source positions corresponding to measured HRTF values, specified as a N-by-2 matrix. N is the
number of known HRTF pairs. The two columns correspond to the azimuth and elevation of the
source in degrees, respectively.

Azimuth must be in the range [−180,360]. You can use the −180 to 180 convention or the 0 to 360
convention.

Elevation must be in the range [−90,180]. You can use the −90 to 90 convention or the 0 to 180
convention.
Data Types: single | double

desiredSourcePositions — Desired source positions for HRTF interpolation
P-by-2 matrix

 interpolateHRTF

2-453

Desired source position for HRTF interpolation, specified as a P-by-2 matrix. P is the number of
desired source positions. The columns correspond to the desired azimuth and elevation of the source
in degrees, respectively.

Azimuth must be in the range [−180,360]. You can use the −180 to 180 convention or the 0 to 360
convention.

Elevation must be in the range [−90,180]. You can use the −90 to 90 convention or the 0 to 180
convention.

Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Algorithm','VBAP'

Algorithm — Interpolation algorithm
'Bilinear' (default) | 'VBAP'

Interpolation algorithm, specified as "Bilinear" or "VBAP".

• Bilinear –– 3-D bilinear interpolation, as specified by [1].
• VBAP –– Vector base amplitude panning interpolation, as specified by [2].

Data Types: char | string

2 Functions

2-454

Output Arguments
interpolatedHRTF — Interpolated HRTF
P-by-2-by-M

Interpolated HRTF, returned as a P-by-2-by-M array.

• P –– Number of desired source positions, specified by the number of rows in the
desiredSourcePositions input argument.

• M –– Number of samples in each known HRTF, specified by the number of pages in the HRTF input
argument.

interpolatedHRTF has the same complexity and interpretation as the input. If you specify the
input, HRTF, with real numbers, the function assumes that the input represents an impulse response.
If you specify the input with complex numbers, the function assumes that the input represents a
transfer function.
Data Types: single | double
Complex Number Support: Yes

Version History
Introduced in R2018b

 interpolateHRTF

2-455

References
[1] F.P. Freeland, L.W.P. Biscainho and P.S.R. Diniz, "Interpolation of Head-Related Transfer Functions

(HRTFS): A multi-source approach." 2004 12th European Signal Processing Conference.
Vienna, 2004, pp. 1761–1764.

[2] Pulkki, Ville. "Virtual Sound Source Positioning Using Vector Based Amplitude Panning." Journal of
Audio Engineering Society. Vol. 45. Issue 6, pp. 456–466.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
dsp.FIRFilter | dsp.FrequencyDomainFIRFilter

2 Functions

2-456

impzest
Estimate impulse response of audio system

Syntax
ir = impzest(excitation,response)
ir = impzest(excitation,response,Name,Value)

Description
ir = impzest(excitation,response) returns an estimate of the impulse response (IR) based on
the excitation and response.

ir = impzest(excitation,response,Name,Value) specifies options using one or more
Name,Value pair arguments.

Examples

Estimate Impulse Response Using Sweep Tone Excitation

Create a sweep tone excitation signal by using the sweeptone function.

excitation = sweeptone(2,1,44100);

plot(excitation)
title('Excitation')

 impzest

2-457

Pass the excitation signal through an infinite impulse response (IIR) filter and add noise to model a
real-world recording (system response).

[B,A] = butter(10,[.1 .7]);
rec = filter(B,A,excitation);
nrec = rec + 0.12*randn(size(rec));

plot(nrec)
title('System Response')

2 Functions

2-458

Pass the excitation signal and the system response to the impzest function to estimate the impulse
response. Truncate the estimate to 100 points. Use impz to determine the true impulse response of
the system. Plot the true impulse response and the estimated impulse response for comparison.

irEstimate = impzest(excitation,nrec);
irEstimate = irEstimate(1:101);

irTrue = impz(B,A,101);
plot(0:100,irEstimate, ...
 0:100,irTrue,'ro')

legend('True impulse response','Estimated impulse response')

 impzest

2-459

Estimate Impulse Response Using MLS Excitation

Use audioread to read in an impulse response recording. Create a
dsp.FrequencyDomainFIRFilter object to perform frequency domain filtering using the known
impulse response.

[irKnown,fs] = audioread('ChurchImpulseResponse-16-44p1-mono-5secs.wav');
systemModel = dsp.FrequencyDomainFIRFilter(irKnown');

Create an MLS excitation signal by using the mls function. The MLS excitation signal must be longer
than the impulse response. Note that the length of the MLS excitation is extended to the next power
of two minus one.

excitation = mls(numel(irKnown)+1);

plot(excitation)
title('Excitation')

2 Functions

2-460

Replicate the excitation signal four times to measure the average of three measurements. The
recording of the first MLS sequence does include all the impulse response information, so impzest
discards it as a warmup run. Pad the excitation signal with zeros to account for the filter latency.

numRuns = 4;
excrep = repmat(excitation,numRuns,1);
excrep = [excrep;zeros(numel(irKnown)+1,1)];

Pass the excitation signal through the known filter and then add noise to model a real-word recording
(system response). Cut the delay introduced at the beginning by the filter.

rec = systemModel(excrep);
rec = rec + 0.1*randn(size(rec));

rec = rec(numel(irKnown)+2:end,:);

plot(rec)
title('System Response')

 impzest

2-461

In a real-world scenario, the MLS sequence is played back in the system under test while recording.
The recording would be cut so that it begins at the moment the MLS sequence is picked-up and
truncated to last the duration of the repeated sequence.

Pass the excitation signal and the system response to the impzest function to estimate the impulse
response. Plot the known impulse response and the simulation of the estimated impulse response for
comparison.

irEstimate = impzest(excitation,rec);

samples = 1:numel(irKnown);
plot(samples,irEstimate(samples),'bo', ...
 samples,irKnown(samples),'m.')

legend('Known impulse response','Simulation of estimated impulse response')

2 Functions

2-462

Input Arguments
excitation — Single period of excitation signal input to audio system
column vector

Single period of excitation signal input to audio system, specified as a column vector.

You can generate excitation signals by using mls (maximum length sequence) or sweeptone
(exponential sine sweep).
Data Types: single | double

response — Recorded signal output from audio system
column vector | matrix

Recorded signal output from audio system, specified as a column vector or matrix. If specified as a
matrix, each column of the matrix is treated as an independent channel.
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

 impzest

2-463

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'WarmupRuns',2

WarmupRuns — Number of warmup runs in response
nonnegative integer

Number of warmup runs in the response, specified as a nonnegative integer. The impzest function
estimates the impulse response after discarding the specified number of warmup runs from the
response.

The default number of warmup runs depends on whether the excitation signal was generated using
the mls or sweeptone function:

• mls –– 1
• sweeptone –– 0

Data Types: single | double

Output Arguments
ir — Estimate of the impulse response of an audio system
column vector | matrix

Estimate of the impulse response of an audio system, returned as a column vector or matrix. The size
of ir is L-by-C, where:

• L –– MLS length or duration of sweep tone silence
• C –– Number of columns (channels) in the response signal

Data Types: single | double

Version History
Introduced in R2018b

References
[1] Farina, Angelo. "Advancements in Impulse Response Measurements by Sine Sweeps." Presented

at the Audio Engineering Society 122nd Convention, Vienna, Austria, 2007.

[2] Guy-Bart, Stan, Jean-Jacques Embrachts, and Dominique Archambeau. "Comparison of Different
Impulse Response Measurement Techniques." Journal of Audio Engineering Society. Vol. 50,
Issue 4, 2002, pp. 246–262.

[3] Armelloni, Enrico, Christian Giottoli, and Angelo Farina. "Implementation of Real-Time Partitioned
Convolution on a DSP Board." Application of Signal Processing to Audio and Acoustics, 2003
IEEE Workshop, pp. 71–74. IEEE, 2003.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

2 Functions

2-464

See Also
sweeptone | mls | Impulse Response Measurer

 impzest

2-465

mididevinfo
MIDI device information

Syntax
mididevinfo
deviceInformation = mididevinfo

Description
mididevinfo displays a table containing information about the MIDI devices attached to the system.

deviceInformation = mididevinfo returns a structure, deviceInformation, containing
information about the MIDI devices attached to the system.

Note Before starting MATLAB, connect your MIDI device to your computer and turn on the device.
For connection instructions, see the instructions for your MIDI device. If you start MATLAB before
connecting your device, MATLAB might not recognize your device when you connect it. To correct the
problem, restart MATLAB with the device already connected.

Examples

Display MIDI Device Connections

Call mididevinfo to display a table containing information about the MIDI devices attached to your
system.

mididevinfo

 MIDI devices available:
 ID Direction Interface Name
 0 output MMSystem 'Microsoft MIDI Mapper'
 1 input MMSystem 'BCF2000'
 2 input MMSystem 'MIDIIN2 (BCF2000)'
 3 output MMSystem 'Microsoft GS Wavetable Synth'
 4 output MMSystem 'BCF2000'
 5 output MMSystem 'MIDIOUT2 (BCF2000)'
 6 output MMSystem 'MIDIOUT3 (BCF2000)'

Return Structure of MIDI Device Connections

Call mididevinfo with an output argument to return a structure containing MIDI device
information.

deviceInformation = mididevinfo

2 Functions

2-466

deviceInformation = struct with fields:
 input: [0×0 struct]
 output: [1×2 struct]

The deviceInformation structure has two fields: input and output. Both input and output
contain arrays of structures. Each member has three fields: Name, Interface, and ID. Get the
device information for the output Microsoft GS Wavetable Synth device.

deviceInformation.output(2)

ans = struct with fields:
 Name: 'Microsoft GS Wavetable Synth'
 Interface: 'MMSystem'
 ID: 1

Output Arguments
deviceInformation — Description of available devices
struct

Description of available devices, returned as nested structures. The outer structure has two fields:
input and output. The input and output values are arrays of structures, and each member has three
fields: Name, Interface, and ID.
Data Types: struct

Version History
Introduced in R2018a

See Also
parameterTuner | Audio Test Bench | mididevice | midimsg | midireceive | midisend

Topics
“MIDI Device Interface”

External Websites
MIDI Manufacturers Association

 mididevinfo

2-467

https://www.midi.org/

pitch
Estimate fundamental frequency of audio signal

Syntax
f0 = pitch(audioIn,fs)
f0 = pitch(audioIn,fs,Name=Value)
[f0,loc] = pitch(___)
pitch(___)

Description
f0 = pitch(audioIn,fs) returns estimates of the fundamental frequency over time for the audio
input, audioIn, with sample rate fs. Columns of the input are treated as individual channels.

f0 = pitch(audioIn,fs,Name=Value) specifies options using one or more name-value
arguments.

[f0,loc] = pitch(___) returns the locations, loc, associated with fundamental frequency
estimates. You can specify an input combination from any of the previous syntaxes.

pitch(___) with no output arguments plots the estimated pitch against time.

Examples

Estimate Pitch

Read in an audio signal. Call pitch to estimate the fundamental frequency over time.

[audioIn,fs] = audioread("Hey-16-mono-6secs.ogg");

f0 = pitch(audioIn,fs);

Listen to the audio signal and plot the signal and pitch. The pitch function estimates the
fundamental frequency over time, but the estimate is only valid for regions that are harmonic.

sound(audioIn,fs)

tiledlayout(2,1)

nexttile
t = (0:length(audioIn)-1)/fs;
plot(t,audioIn)
xlabel("Time (s)")
ylabel("Amplitude")
grid minor
axis tight

nexttile
pitch(audioIn,fs)

2 Functions

2-468

Estimate Pitch For Singing Voice

Read in an audio signal and extract the pitch.

[x,fs] = audioread("SingingAMajor-16-mono-18secs.ogg");
t = (0:size(x,1)-1)/fs;

winLength = round(0.05*fs);
overlapLength = round(0.045*fs);
[f0,idx] = pitch(x,fs,Method="SRH",WindowLength=winLength,OverlapLength=overlapLength);
tf0 = idx/fs;

Listen to the audio and plot the audio and pitch estimations.

sound(x,fs)

figure
tiledlayout(2,1)

nexttile
plot(t,x)
ylabel("Amplitude")
title("Audio Signal")
axis tight

 pitch

2-469

nexttile
pitch(x,fs,Method="SRH",WindowLength=winLength,OverlapLength=overlapLength)
title("Pitch Estimations")

The pitch function estimates the pitch for overlapped analysis windows. The pitch estimates are
only valid if the analysis window has a harmonic component. Call the harmonicRatio function using
the same window and overlap length used for pitch detection. Plot the audio, pitch, and harmonic
ratio.

hr = harmonicRatio(x,fs,Window=hamming(winLength,"periodic"),OverlapLength=overlapLength);

figure
tiledlayout(3,1)

nexttile
plot(t,x)
ylabel("Amplitude")
title("Audio Signal")
axis tight

nexttile
pitch(x,fs,Method="SRH",WindowLength=winLength,OverlapLength=overlapLength)
title("Pitch Estimations")
xlabel("")

nexttile

2 Functions

2-470

harmonicRatio(x,fs,Window=hamming(winLength,"periodic"),OverlapLength=overlapLength)
title("Harmonic Ratio")

Use the harmonic ratio as the threshold for valid pitch decisions. If the harmonic ratio is less than the
threshold, set the pitch decision to NaN. Plot the results.

threshold = 0.9;
f0(hr < threshold) = nan;

figure
plot(tf0,f0)
xlabel("Time (s)")
ylabel("Pitch (Hz)")
title("Pitch Estimations")
grid on

 pitch

2-471

Compare Pitch of Two Voices

Read in an audio signal of a female voice saying "volume up" five times. Listen to the audio.

[femaleVoice,fs] = audioread("FemaleVolumeUp-16-mono-11secs.ogg");
sound(femaleVoice,fs)

Read in an audio signal of a male voice saying "volume up" five times. Listen to the audio.

maleVoice = audioread("MaleVolumeUp-16-mono-6secs.ogg");
sound(maleVoice,fs)

Extract the pitch from both the female and male recordings. Plot histograms of the pitch estimations
for the male and female audio recordings. The histograms have a similar shape. This is because the
pitch decisions contain results for unvoiced speech and regions of silence.

f0Female = pitch(femaleVoice,fs);
f0Male = pitch(maleVoice,fs);

figure
numBins = 20;
histogram(f0Female,numBins,Normalization="probability");
hold on
histogram(f0Male,numBins,Normalization="probability");
legend("Female Voice","Male Voice")

2 Functions

2-472

xlabel("Pitch (Hz)")
ylabel("Probability")
hold off

Use the detectSpeech function to isolate regions of speech in the audio signal and then extract
pitch from only those speech regions.

speechIndices = detectSpeech(femaleVoice,fs);
f0Female = [];
for ii = 1:size(speechIndices,1)
 speechSegment = femaleVoice(speechIndices(ii,1):speechIndices(ii,2));
 f0Female = [f0Female;pitch(speechSegment,fs)];
end

speechIndices = detectSpeech(maleVoice,fs);
f0Male = [];
for ii = 1:size(speechIndices,1)
 speechSegment = maleVoice(speechIndices(ii,1):speechIndices(ii,2));
 f0Male = [f0Male;pitch(speechSegment,fs)];
end

Plot histograms of the pitch estimations for the male and female audio recordings. The pitch
distributions now appear as expected.

figure
histogram(f0Female,numBins,Normalization="probability");
hold on
histogram(f0Male,numBins,Normalization="probability");

 pitch

2-473

legend("Female Voice","Male Voice")
xlabel("Pitch (Hz)")
ylabel("Probability")

Estimate Pitch of Musical Signal Using Nondefault Parameters

Load an audio file of the Für Elise introduction and the sample rate of the audio.

load FurElise.mat song fs
sound(song,fs)

Call the pitch function using the pitch estimate filter (PEF), a search range of 50 to 800 Hz, a
window duration of 80 ms, an overlap duration of 70 ms, and a median filter length of 10.

method = ;

range = [,]; % hertz

winDur = ; % seconds

overlapDur = ; % seconds

medFiltLength = ; % frames

2 Functions

2-474

winLength = round(winDur*fs);
overlapLength = round(overlapDur*fs);
[f0,loc] = pitch(song,fs, ...
 Method=method, ...
 Range=range, ...
 WindowLength=winLength, ...
 OverlapLength=overlapLength, ...
 MedianFilterLength=medFiltLength);

Plot the estimated pitch against time.

pitch(song,fs, ...
 Method=method, ...
 Range=range, ...
 WindowLength=winLength, ...
 OverlapLength=overlapLength, ...
 MedianFilterLength=medFiltLength);

Determine Pitch Contour of Streaming Audio

Create a dsp.AudioFileReader object to read in audio frame-by-frame.

fileReader = dsp.AudioFileReader("SingingAMajor-16-mono-18secs.ogg");

Create a voiceActivityDetector object to detect the presence of voice in streaming audio.

 pitch

2-475

VAD = voiceActivityDetector;

While there are unread samples, read from the file and determine the probability that the frame
contains voice activity. If the frame contains voice activity, call pitch to estimate the fundamental
frequency of the audio frame. If the frame does not contain voice activity, declare the fundamental
frequency as NaN.

f0 = [];
while ~isDone(fileReader)
 x = fileReader();

 if VAD(x) > 0.99
 decision = pitch(x,fileReader.SampleRate, ...
 WindowLength=size(x,1), ...
 OverlapLength=0, ...
 Range=[200,340]);
 else
 decision = NaN;
 end
 f0 = [f0;decision];
end

Plot the detected pitch contour over time.

t = linspace(0,(length(f0)*fileReader.SamplesPerFrame)/fileReader.SampleRate,length(f0));
plot(t,f0)
ylabel("Fundamental Frequency (Hz)")
xlabel("Time (s)")
grid on

2 Functions

2-476

Compare Pitch Detection Algorithms

The different methods of estimating pitch provide trade-offs in terms of noise robustness, accuracy,
optimal lag, and computation expense. In this example, you compare the performance of different
pitch detection algorithms in terms of gross pitch error (GPE) and computation time under different
noise conditions.

Prepare Test Signals

Load an audio file and determine the number of samples it has. Also load the true pitch
corresponding to the audio file. The true pitch was determined as an average of several third-party
algorithms on the clean speech file.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');
numSamples = size(audioIn,1);
load TruePitch.mat truePitch

Create test signals by adding noise to the audio signal at given SNRs. The mixSNR function is a
convenience function local to this example, which takes a signal, noise, and requested SNR and
returns a noisy signal at the request SNR.

testSignals = zeros(numSamples,4);

turbine = audioread('Turbine-16-44p1-mono-22secs.wav');

 pitch

2-477

testSignals(:,1) = mixSNR(audioIn,turbine,20);
testSignals(:,2) = mixSNR(audioIn,turbine,0);

whiteNoiseMaker = dsp.ColoredNoise('Color','white','SamplesPerFrame',size(audioIn,1));
testSignals(:,3) = mixSNR(audioIn,whiteNoiseMaker(),20);
testSignals(:,4) = mixSNR(audioIn,whiteNoiseMaker(),0);

Save the noise conditions and algorithm names as cell arrays for labeling and indexing.

noiseConditions = {'Turbine (20 dB)','Turbine (0 dB)','WhiteNoise (20 dB)','WhiteNoise (0 dB)'};
algorithms = {'NCF','PEF','CEP','LHS','SRH'};

Run Pitch Detection Algorithms

Preallocate arrays to hold pitch decisions for each algorithm and noise condition pair, and the timing
information. In a loop, call the pitch function on each combination of algorithm and noise condition.
Each algorithm has an optimal window length associated with it. In this example, for simplicity, you
use the default window length for all algorithms. Use a 3-element median filter to smooth the pitch
decisions.

f0 = zeros(numel(truePitch),numel(algorithms),numel(noiseConditions));
algorithmTimer = zeros(numel(noiseConditions),numel(algorithms));

for k = 1:numel(noiseConditions)
 x = testSignals(:,k);
 for i = 1:numel(algorithms)
 tic
 f0temp = pitch(x,fs, ...
 'Range',[50 300], ...
 'Method',algorithms{i}, ...
 'MedianFilterLength',3);
 algorithmTimer(k,i) = toc;
 f0(1:max(numel(f0temp),numel(truePitch)),i,k) = f0temp;
 end
end

Compare Gross Pitch Error

Gross pitch error (GPE) is a popular metric when comparing pitch detection algorithms. GPE is
defined as the proportion of pitch decisions for which the relative error is higher than a given
threshold, traditionally 20% in speech studies. Calculate the GPE and print it to the Command
Window.

idxToCompare = ~isnan(truePitch);
truePitch = truePitch(idxToCompare);
f0 = f0(idxToCompare,:,:);

p = 0.20;
GPE = mean(abs(f0(1:numel(truePitch),:,:) - truePitch) > truePitch.*p).*100;

for ik = 1:numel(noiseConditions)
 fprintf('\nGPE (p = %0.2f), Noise = %s.\n',p,noiseConditions{ik});
 for i = 1:size(GPE,2)
 fprintf('- %s : %0.1f %%\n',algorithms{i},GPE(1,i,ik))
 end
end

GPE (p = 0.20), Noise = Turbine (20 dB).

2 Functions

2-478

- NCF : 0.9 %
- PEF : 0.4 %
- CEP : 8.2 %
- LHS : 8.2 %
- SRH : 6.0 %

GPE (p = 0.20), Noise = Turbine (0 dB).

- NCF : 5.6 %
- PEF : 24.5 %
- CEP : 11.6 %
- LHS : 9.4 %
- SRH : 46.8 %

GPE (p = 0.20), Noise = WhiteNoise (20 dB).

- NCF : 0.9 %
- PEF : 0.0 %
- CEP : 12.9 %
- LHS : 6.9 %
- SRH : 2.6 %

GPE (p = 0.20), Noise = WhiteNoise (0 dB).

- NCF : 0.4 %
- PEF : 0.0 %
- CEP : 23.6 %
- LHS : 7.3 %
- SRH : 1.7 %

Calculate the average time it takes to process one second of data for each of the algorithms and print
the results.

aT = sum(algorithmTimer)./((numSamples/fs)*numel(noiseConditions));
for ik = 1:numel(algorithms)
 fprintf('- %s : %0.3f (s)\n',algorithms{ik},aT(ik))
end

- NCF : 0.031 (s)
- PEF : 0.095 (s)
- CEP : 0.030 (s)
- LHS : 0.039 (s)
- SRH : 0.102 (s)

Input Arguments
audioIn — Audio input signal
vector | matrix

Audio input signal, specified as a vector or matrix. The columns of the matrix are treated as individual
audio channels.
Data Types: single | double

fs — Sample rate (Hz)
positive scalar

Sample rate of the input signal in Hz, specified as a positive scalar.

 pitch

2-479

The sample rate must be greater than or equal to twice the upper bound of the search range. Specify
the search range using the Range name-value pair.
Data Types: single | double

Name-Value Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: pitch(audioIn,fs,Range=[50,150],Method="PEF")

Range — Search range for pitch estimates
[50,400] (default) | two-element row vector with increasing positive integer values

Search range for pitch estimates, specified as a two-element row vector with increasing positive
integer values. The function searches for a best estimate of the fundamental frequency within the
upper and lower band edges specified by the vector, according to the algorithm specified by Method.
The range is inclusive and units are in Hz.

Valid values for the search range depend on the sample rate, fs, and on the values of WindowLength
and Method:

Method Minimum Range Maximum Range
"NCF" fs/WindowLength <

Range(1)
Range(2) < fs/2

"PEF" 10 < Range(1) Range(2) <
min(4000,fs/2)

"CEP" fs/
(2^nextpow2(2*WindowLeng
th-1)) < Range(1)

Range(2) < fs/2

"LHS" 1 < Range(1) Range(2) < fs/5 - 1
"SRH" 1 < Range(1) Range(2) < fs/5 - 1

Data Types: single | double

WindowLength — Number of samples in analysis window
round(fs*0.052) (default) | integer

Number of samples in the analysis window, specified as an integer in the range [1,
min(size(audioIn,1), 192000)]. Typical analysis windows are in the range 20–100 ms. The default
window length is 52 ms.
Data Types: single | double

OverlapLength — Number of samples of overlap between adjacent analysis windows
round(fs*0.042) (default) | integer

Number of samples of overlap between adjacent analysis windows, specified as an integer in the
range (-inf,WindowLength). A negative overlap length indicates non-overlapping analysis windows.
Data Types: single | double

2 Functions

2-480

Method — Method used to estimate pitch
"NCF" (default) | "PEF" | "CEP" | "LHS" | "SRH"

Method used to estimate pitch, specified as "NCF", "PEF","CEP", "LHS", or "SRH". The different
methods of calculating pitch provide trade-offs in terms of noise robustness, accuracy, and
computation expense. The algorithms used to calculate pitch are based on the following papers:

• "NCF" –– Normalized Correlation Function [1]
• "PEF" –– Pitch Estimation Filter [2]. The function does not use the amplitude compression

described by the paper.
• "CEP" –– Cepstrum Pitch Determination [3]
• "LHS" –– Log-Harmonic Summation [4]
• "SRH" –– Summation of Residual Harmonics [5]

Data Types: char | string

MedianFilterLength — Median filter length used to smooth pitch estimates over time
1 (default) | positive integer

Median filter length used to smooth pitch estimates over time, specified as a positive integer. The
default, 1, corresponds to no median filtering. Median filtering is a postprocessing technique used to
remove outliers while estimating pitch. The function uses movmedian after estimating the pitch using
the specified Method.
Data Types: single | double

Output Arguments
f0 — Estimated fundamental frequency (Hz)
scalar | vector | matrix

Estimated fundamental frequency, in Hz, returned as a scalar, vector, or matrix. The number of rows
returned depends on the values of the WindowLength and OverlapLength name-value pairs, and on
the input signal size. The number of columns (channels) returned depends on the number of columns
of the input signal size.
Data Types: single | double

loc — Locations associated with fundamental frequency estimations
scalar | vector | matrix

Locations associated with fundamental frequency estimations, returned as a scalar, vector, or matrix
the same size as f0.

Fundamental frequency is estimated locally over a region of WindowLength samples. The values of
loc correspond to the most recent sample (largest sample number) used to estimate fundamental
frequency.
Data Types: single | double

 pitch

2-481

Algorithms
The pitch function segments the audio input according to the WindowLength and OverlapLength
arguments. The fundamental frequency is estimated for each frame. The locations output, loc
contains the most recent samples (largest sample numbers) of the corresponding frame.

For a description of the algorithms used to estimate the fundamental frequency, consult the
corresponding references:

• "NCF" –– Normalized Correlation Function [1]
• "PEF" –– Pitch Estimation Filter [2]. The function does not use the amplitude compression

described by the paper.
• "CEP" –– Cepstrum Pitch Determination [3]
• "LHS" –– Log-Harmonic Summation [4]
• "SRH" –– Summation of Residual Harmonics [5]

Version History
Introduced in R2018a

References
[1] Atal, B.S. "Automatic Speaker Recognition Based on Pitch Contours." The Journal of the Acoustical

Society of America. Vol. 52, No. 6B, 1972, pp. 1687–1697.

[2] Gonzalez, Sira, and Mike Brookes. "A Pitch Estimation Filter robust to high levels of noise
(PEFAC)." 19th European Signal Processing Conference. Barcelona, 2011, pp. 451–455.

[3] Noll, Michael A. "Cepstrum Pitch Determination." The Journal of the Acoustical Society of
America. Vol. 31, No. 2, 1967, pp. 293–309.

[4] Hermes, Dik J. "Measurement of Pitch by Subharmonic Summation." The Journal of the Acoustical
Society of America. Vol. 83, No. 1, 1988, pp. 257–264.

2 Functions

2-482

[5] Drugman, Thomas, and Abeer Alwan. "Joint Robust Voicing Detection and Pitch Estimation Based
on Residual Harmonics." Proceedings of the Annual Conference of the International Speech
Communication Association, INTERSPEECH. 2011, pp. 1973–1976.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
audioFeatureExtractor | mfcc | detectSpeech | harmonicRatio | shiftPitch

Topics
“Pitch Tracking Using Multiple Pitch Estimations and HMM”
“Speaker Identification Using Pitch and MFCC”
“Delay-Based Pitch Shifter”
“Pitch Shifting and Time Dilation Using a Phase Vocoder in MATLAB”

 pitch

2-483

mfcc
Extract MFCC, log energy, delta, and delta-delta of audio signal

Syntax
coeffs = mfcc(audioIn,fs)
coeffs = mfcc(___ ,Name=Value)
[coeffs,delta,deltaDelta,loc] = mfcc(___)
mfcc(___)

Description
coeffs = mfcc(audioIn,fs) returns the mel-frequency cepstral coefficients (MFCCs) for the
audio input, sampled at a frequency of fs Hz.

coeffs = mfcc(___ ,Name=Value) specifies options using one or more name-value arguments.
Example: coeffs = mfcc(audioIn,fs,LogEnergy="replace") returns mel-frequency cepstral
coefficients for the audio input signal sampled at fs Hz. The first coefficient in the coeffs vector is
replaced with the log energy value.

[coeffs,delta,deltaDelta,loc] = mfcc(___) also returns the delta, delta-delta, and
location of samples corresponding to each window of data. You can specify an input combination from
any of the previous syntaxes.

mfcc(___) with no output arguments plots the mel-frequency cepstral coefficients. Before plotting,
the coefficients are normalized to have mean 0 and standard deviation 1.

• If the input is in the time domain, the coefficients are plotted against time.
• If the input is in the frequency domain, the coefficients are plotted against frame number.
• If the log energy is extracted, then it is also plotted.

Examples

Compute Mel Frequency Cepstral Coefficients

Compute the mel frequency cepstral coefficients of a speech signal using the mfcc function. The
function returns delta, the change in coefficients, and deltaDelta, the change in delta values. The
log energy value that the function computes can prepend the coefficients vector or replace the first
element of the coefficients vector. This is done based on whether you set the LogEnergy argument to
"append" or "replace".

Read an audio signal from the Counting-16-44p1-mono-15secs.wav file using the audioread
function. The mfcc function processes the entire speech data in a batch. Based on the number of
input rows, the window length, and the overlap length, mfcc partitions the speech into 1551 frames
and computes the cepstral features for each frame. Each row in the coeffs matrix corresponds to
the log-energy value followed by the 13 mel-frequency cepstral coefficients for the corresponding
frame of the speech file. The function also computes loc, the location of the last sample in each input
frame.

2 Functions

2-484

[audioIn,fs] = audioread("Counting-16-44p1-mono-15secs.wav");
[coeffs,delta,deltaDelta,loc] = mfcc(audioIn,fs);

Plot the normalized coefficients.

mfcc(audioIn,fs)

Extract MFCC from Frequency-Domain Audio

Read in an audio file and convert it to a frequency representation.

[audioIn,fs] = audioread("Rainbow-16-8-mono-114secs.wav");

win = hann(1024,"periodic");
S = stft(audioIn,"Window",win,"OverlapLength",512,"Centered",false);

To extract the mel-frequency cepstral coefficients, call mfcc with the frequency-domain audio. Ignore
the log-energy.

coeffs = mfcc(S,fs,"LogEnergy","Ignore");

In many applications, MFCC observations are converted to summary statistics for use in classification
tasks. Plot a probability density function for one of the mel-frequency cepstral coefficients to observe
its distributions.

 mfcc

2-485

nbins = 60;

coefficientToAnalyze = ;

histogram(coeffs(:,coefficientToAnalyze+1),nbins,"Normalization","pdf")
title(sprintf("Coefficient %d",coefficientToAnalyze))

Input Arguments
audioIn — Input signal
vector | matrix | 3-D array

Input signal, specified as a vector, matrix, or 3-D array.

• If audioIn is real, it is interpreted as a time-domain signal and must be a column vector or a
matrix. Columns of the matrix are treated as independent audio channels.

• If audioIn is complex, it is interpreted as a frequency-domain signal. In this case, audioIn must
be an L-by-M-by-N array, where L is the number of DFT points, M is the number of individual
spectra, and N is the number of individual channels.

Data Types: single | double
Complex Number Support: Yes

fs — Sample rate (Hz)
positive scalar

2 Functions

2-486

Sample rate of the input signal in Hz, specified as a positive scalar.
Data Types: single | double

Name-Value Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [coeffs,delta,deltaDelta,loc] =
mfcc(audioIn,fs,LogEnergy="replace",DeltaWindowLength=5) returns mel frequency
cepstral coefficients for the audio input signal sampled at fs Hz. The first coefficient in the coeffs
vector is replaced with the log energy value. A set of 5 cepstral coefficients is used to compute the
delta and the delta-delta values.

Window — Window applied in time domain
hamming(round(0.03*fs),"periodic") (default) | vector

Window applied in time domain, specified as a real vector. The number of elements in the vector must
be in the range [1,size(audioIn,1)]. The number of elements in the vector must also be greater
than OverlapLength.
Data Types: single | double

OverlapLength — Number of overlapping samples between adjacent windows
round(fs*0.02) (default) | integer

Number of samples overlapped between adjacent windows, specified as an integer in the range [0,
numel(Window)). If unspecified, OverlapLength defaults to round(0.02*fs).
Data Types: single | double

NumCoeffs — Number of coefficients returned
13 (default) | positive scalar integer

Number of coefficients returned for each window of data, specified as an integer in the range [2 v],
where v is the number of valid passbands.

The number of valid passbands is defined as sum(BandEdges <= floor(fs/2))-2. A passband is
valid if its edges fall below fs/2, where fs is the sample rate of the input audio signal, specified as
the second argument, fs.
Data Types: single | double

BandEdges — Band edges of filter bank (Hz)
row vector

Band edges of the filter bank in Hz, specified as a nonnegative monotonically increasing row vector in
the range [0, fs/2]. The number of band edges must be in the range [4, 160]. The mfcc function
designs half-overlapped triangular filters based on BandEdges. This means that all band edges,
except for the first and last, are also center frequencies of the designed bandpass filters.

By default, BandEdges is a 42-element vector, which results in a 40-band filter bank that spans
approximately 133 Hz to 6864 Hz. The default bands are spaced as described in [2].

 mfcc

2-487

Data Types: single | double

FFTLength — Number of bins for calculating DFT
numel(Window) (default) | positive scalar integer

Number of bins used to calculate the discrete Fourier transform (DFT) of windowed input samples.
The FFT length must be greater than or equal to the number of elements in the Window.
Data Types: single | double

Rectification — Type of non-linear rectification
"log" (default) | "cubic-root"

Type of nonlinear rectification applied prior to the discrete cosine transform, specified as "log" or
"cubic-root".
Data Types: char | string

DeltaWindowLength — Number of coefficients for calculating delta and delta-delta
9 (default) | odd integer greater than 2

Number of coefficients used to calculate the delta and the delta-delta values, specified as an odd
integer greater than two. If unspecified, DeltaWindowLength defaults to 9.

Deltas are computed using the audioDelta function.
Data Types: single | double

LogEnergy — Specify how the log energy is shown
"append" (default) | "replace" | "ignore"

Specify how the log energy is shown in the coefficients vector output, specified as:

• "append" –– The function prepends the log energy to the coefficients vector. The length of the
coefficients vector is 1 + NumCoeffs.

• "replace" –– The function replaces the first coefficient with the log energy of the signal. The
length of the coefficients vector is NumCoeffs.

• "ignore" –– The object does not calculate or return the log energy.

Data Types: char | string

Output Arguments
coeffs — Mel-frequency cepstral coefficients (MFCCs)
matrix | 3-D array

Mel-frequency cepstral coefficients, returned as an L-by-M matrix or an L-by-M-by-N array, where:

• L –– Number of analysis windows the audio signal is partitioned into. The input size, Window, and
OverlapLength control this dimension: L = floor((size(audioIn,1) −
numel(Window)))/(numel(Window) − OverlapLength) + 1.

• M –– Number of coefficients returned per frame. This value is determined by NumCoeffs and
LogEnergy.

When LogEnergy is set to:

2 Functions

2-488

• "append" –– The function prepends the log energy value to the coefficients vector. The length
of the coefficients vector is 1 + NumCoeffs.

• "replace" –– The function replaces the first coefficient with the log energy of the signal. The
length of the coefficients vector is NumCoeffs.

• "ignore" –– The function does not calculate or return the log energy. The length of the
coefficients vector is NumCoeffs.

• N –– Number of input channels (columns). This value is size(audioIn,2).

Data Types: single | double

delta — Change in coefficients
matrix | array

Change in coefficients from one frame of data to another, returned as an L-by-M matrix or an L-by-M-
by-N array. The delta array is the same size and data type as the coeffs array.
Data Types: single | double

deltaDelta — Change in delta values
matrix | array

Change in delta values from one frame of data to another, returned as an L-by-M matrix or an L-by-
M-by-N array. The deltaDelta array is the same size and data type as the coeffs and delta
arrays.
Data Types: single | double

loc — Location of the last sample in each input frame
vector

Location of last sample in each analysis window, returned as a column vector with the same number
of rows as coeffs.
Data Types: single | double

Algorithms
MFCC

Mel-frequency cepstrum coefficients are popular features extracted from speech signals for use in
recognition tasks. In the source-filter model of speech, cepstral coefficients are understood to
represent the filter (vocal tract). The vocal tract frequency response is relatively smooth, whereas the
source of voiced speech can be modeled as an impulse train. As a result, the vocal tract can be
estimated by the spectral envelope of a speech segment.

The motivating idea of mel-frequency cepstral coefficients is to compress information about the vocal
tract (smoothed spectrum) into a small number of coefficients based on an understanding of the
cochlea. Although there is no hard standard for calculating the coefficients, the basic steps are
outlined by the diagram.

 mfcc

2-489

The default mel filter bank linearly spaces the first 10 triangular filters and logarithmically spaces the
remaining filters.

Log Energy

The information contained in the zeroth mel-frequency cepstral coefficient is often augmented with or
replaced by the log energy. The log energy calculation depends on the input domain.

If the input (audioIn) is a time-domain signal, the log energy is computed using the following
equation:

logE = log(sum(x2))

If the input (audioIn) is a frequency-domain signal, the log energy is computed using the following
equation:

logE = log sum x 2 /FFTLength

2 Functions

2-490

Version History
Introduced in R2018a

Delta and delta-delta computation
Behavior changed in R2020b

The delta and delta-delta calculations are now computed using the audioDelta function, which has
a different startup behavior than the previous algorithm. The default value of the
DeltaWindowLength parameter has changed from 2 to 9. A delta window length of 2 is no longer
supported.

WindowLength will be removed in a future release
Behavior change in future release

The WindowLength parameter will be removed from the mfcc function in a future release. Use the
Window parameter instead.

In releases prior to R2020b, you could only specify the length of a time-domain window. The window
was always designed as a periodic Hamming window. You can replace instances of the code

coeffs = mfcc(audioin,fs,WindowLength=1024);

With this code:

coeffs = mfcc(audioIn,fs,Window=hamming(1024,"periodic"));

References
[1] Rabiner, Lawrence R., and Ronald W. Schafer. Theory and Applications of Digital Speech

Processing. Upper Saddle River, NJ: Pearson, 2010.

[2] Auditory Toolbox. https://engineering.purdue.edu/~malcolm/interval/1998-010/
AuditoryToolboxTechReport.pdf

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

See Also
Functions
audioDelta | cepstralCoefficients | detectSpeech

Blocks
MFCC | Cepstral Coefficients | Audio Delta

 mfcc

2-491

https://engineering.purdue.edu/~malcolm/interval/1998-010/AuditoryToolboxTechReport.pdf
https://engineering.purdue.edu/~malcolm/interval/1998-010/AuditoryToolboxTechReport.pdf

Objects
audioFeatureExtractor

Topics
“Keyword Spotting in Noise Using MFCC and LSTM Networks”
“Speaker Identification Using Pitch and MFCC”

2 Functions

2-492

asiosettings
Open settings panel for ASIO driver

Syntax
asiosettings
asiosettings(deviceName)

Description
asiosettings opens the settings panel for the ASIO driver associated with the default audio device.

asiosettings(deviceName) opens the settings panel for the ASIO driver associated with the
audio device, deviceName.

Examples

Open ASIO Settings Panel for Specified Device

Create an audio I/O object, audioPlayerRecorder. Call asiosettings with the device associated
with audioPlayerRecorder as the argument.

playRec = audioPlayerRecorder;
asiosettings(playRec.Device)

Open ASIO Settings Panel for Default Device

Call the asiosettings function with no arguments.

asiosettings()

 asiosettings

2-493

Optimize Latency

To optimize latency when using an ASIO driver, set the buffer size of the ASIO driver to the buffer size
of your audio I/O object. In this example, assume the input to your audio device writer is 64 samples
per frame. This example requires a Windows machine and an ASIO driver.

Create an audioDeviceWriter System object™. Open the ASIO settings panel for an ASIO-
compatible device associated with your device writer.

deviceWriter = audioDeviceWriter('Driver','ASIO');
asiosettings(deviceWriter.Device)

On the machine in this example, the following dialog opens:

2 Functions

2-494

The dialog that opens is specific to your ASIO driver. Set the ASIO buffer size to the desired size, 64.

 asiosettings

2-495

The latency is now minimized for the frame size of 64 samples. If you want to measure the reduction
in latency specific to your system, follow the steps in the “Measure Audio Latency” example.

Input Arguments
deviceName — Name of ASIO-compatible device
default ASIO-compatible device (default) | character vector | string

Name of ASIO-compatible device, specified as a character vector or string. If deviceName is not
specified, the default ASIO-compatible device is used.

To view a list of valid ASIO device names on your machine, use getAudioDevices on an
audioPlayerRecorder, audioDeviceReader('Driver','ASIO'), or
audioDeviceWriter('Driver','ASIO') object.
Data Types: char | string

Tips
• asiosettings is compatible only on Windows machines with ASIO drivers. ASIO drivers do not

come pre-installed with Windows.
• asiosettings returns an error if called with a locked audio device. For example:

2 Functions

2-496

aDR = audioDeviceReader('Driver','ASIO');
aDR();
asiosettings(aDR.Device)

Error using audio_asiosettings
PortAudio Error: Device unavailable

Error in asiosettings (line 77)
 audio_asiosettings(ID);

Version History
Introduced in R2017b

See Also
audioDeviceReader | audioDeviceWriter | audioPlayerRecorder

Topics
“Audio I/O: Buffering, Latency, and Throughput”

 asiosettings

2-497

getAudioDevices
List available audio devices

Syntax
devices = getAudioDevices(obj)

Description
devices = getAudioDevices(obj) returns a list of audio devices that are available and
compatible with your audio I/O object, obj.

Examples

List Audio Devices Available to audioDeviceReader

Create an audioDeviceReader object and then call getAudioDevices on your object.

deviceReader = audioDeviceReader;
devices = getAudioDevices(deviceReader)

devices = 1×4 cell
 {'Default'} {'Primary Sound Capture Driver'} {'Headset Microphone (Plantronics C325-M)'} {'HP 4120 Microphone (2- HP 4120)'}

List Audio Devices Available to audioDeviceWriter

Create an audioDeviceWriter object, and then call getAudioDevices on your object.

deviceWriter = audioDeviceWriter;
devices = getAudioDevices(deviceWriter)

devices = 1×6 cell
 {'Default'} {'Primary Sound Driver'} {'Headset Earphone (Plantronics C325-M)'} {'LEN LT2452pwC (NVIDIA High Definition Audio)'} {'Speakers (Realtek High Definition Audio)'} {'HP 4120 (2- HP 4120)'}

List Audio Devices Available to audioPlayerRecorder

Create an audioPlayerRecorder object, and then call getAudioDevices on your object.

playRec = audioPlayerRecorder;
devices = getAudioDevices(playRec)

devices = 1×2 cell
 {'Default'} {'ASIO4ALL v2'}

2 Functions

2-498

Input Arguments
obj — Audio I/O object
audioDeviceReader object | audioDeviceWriter object | audioPlayerRecorder object

Audio I/O object, specified as an audioDeviceReader object, audioDeviceWriter object, or
audioPlayerRecorder object.
Data Types: object

Output Arguments
devices — List of available and compatible devices
array

List of available and compatible devices.

For audioDeviceReader and audioDeviceWriter, the list of audio devices depends on the
specified Driver property of your object.

For audioPlayerRecorder, the audio devices listed support full-duplex mode and have a platform-
appropriate driver:

• Windows® –– ASIO™
• Mac –– CoreAudio
• Linux® –– ALSA

Data Types: cell

Version History
Introduced in R2016a

See Also
audioDeviceWriter | audioDeviceReader | audioPlayerRecorder

Topics
“Audio I/O: Buffering, Latency, and Throughput”

 getAudioDevices

2-499

audioPluginInterface
Specify audio plugin interface

Syntax
PluginInterface = audioPluginInterface
PluginInterface = audioPluginInterface(pluginParameters)
PluginInterface = audioPluginInterface(pluginParameters,gridLayout)
PluginInterface = audioPluginInterface(___ ,Name,Value)

Description
PluginInterface = audioPluginInterface returns an object, PluginInterface, that
specifies the interface of an audio plugin in a digital audio workstation (DAW) environment. It also
specifies interface attributes, such as naming.

PluginInterface = audioPluginInterface(pluginParameters) specifies audio plugin
parameters, which are user-facing values associated with audio plugin properties. See
audioPluginParameter for more details.

PluginInterface = audioPluginInterface(pluginParameters,gridLayout) specifies a
grid layout for audio plugin parameter UI controls.

PluginInterface = audioPluginInterface(___ ,Name,Value) specifies
audioPluginInterface properties using one or more Name,Value pair arguments.

Examples

Specify Default Audio Plugin Interface

Create a basic audio plugin class definition file.

classdef myAudioPlugin < audioPlugin
 methods
 function out = process(~,in)
 out = in;
 end
 end
end

Add a constant property, PluginInterface, which is specified as an audioPluginInterface
object.

classdef myAudioPlugin < audioPlugin
 properties (Constant)
 PluginInterface = audioPluginInterface;
 end
 methods
 function out = process(~,in)
 out = in;

2 Functions

2-500

 end
 end
end

Associate Property with Parameter

Create a basic audio plugin class definition file. Specify a property, Gain, and a processing function
that multiplies input by Gain.

classdef myAudioPlugin < audioPlugin
 properties
 Gain = 1;
 end
 methods
 function out = process(plugin,in)
 out = in*plugin.Gain;
 end
 end
end

Add a constant property, PluginInterface, which is specified as an audioPluginInterface
object.

classdef myAudioPlugin < audioPlugin
 properties
 Gain = 1;
 end
 properties (Constant)
 PluginInterface = audioPluginInterface;
 end
 methods
 function out = process(plugin,in)
 out = in*plugin.Gain;
 end
 end
end

Pass audioPluginParameter to audioPluginInterface. To associate the plugin property, Gain,
to a plugin parameter, specify the first argument of audioPluginParameter as the property name,
'Gain'.

classdef myAudioPlugin < audioPlugin
 properties
 Gain = 1;
 end
 properties (Constant)
 PluginInterface = audioPluginInterface(...
 audioPluginParameter('Gain'));
 end
 methods
 function out = process(plugin,in)
 out = in*plugin.Gain;
 end
 end
end

 audioPluginInterface

2-501

If you generate and deploy myAudioPlugin to a digital audio workstation (DAW) environment, the
plugin property, Gain, synchronizes with a user-facing plugin parameter.

Specify Interface Properties

Create a basic audio plugin class definition file. Specify the plugin name, vendor name, vendor
version, unique identification, number of input channels, number of output channels, and a yellow
background.

classdef monoGain < audioPlugin
 properties
 Gain = 1;
 end
 properties (Constant)
 PluginInterface = audioPluginInterface(...
 audioPluginParameter('Gain'), ...
 'PluginName','Simple Gain', ...
 'VendorName','Cool Company', ...
 'VendorVersion','1.0.0', ...
 'UniqueId','1a1Z', ...
 'InputChannels',1, ...
 'OutputChannels',1, ...
 'BackgroundColor','y');
 end
 methods
 function out = process(plugin,in)
 out = in*plugin.Gain;
 end
 end
end

Input Arguments
pluginParameters — Audio plugin parameters
none (default) | one or more audioPluginParameter objects

Audio plugin parameters, specified as one or more audioPluginParameter objects.

To create an audio plugin parameter, use the audioPluginParameter function. In a digital audio
workstation (DAW) environment, audio plugin parameters synchronize plugin class properties with
user-facing parameters.

gridLayout — Layout for plugin UI
none (default) | audioPluginGridLayout object

Audio plugin grid layout, specified as an audioPluginGridLayout object.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

2 Functions

2-502

Example: 'PluginName','cool effect','VendorVersion','1.0.2' specifies the name of the
generated audio plugin as 'cool effect' and the vendor version as '1.0.2'.

PluginName — Name of generated plugin
name of plugin class (default) | character vector | string

Name of your generated plugin, as seen by a host audio application, specified as a comma-separated
pair consisting of 'PluginName' and a character vector or string of up to 127 characters. If
'PluginName' is not specified, the generated plugin is given the name of the audio plugin class it is
generated from.

VendorName — Vendor name of plugin creator
' ' (default) | character vector

Vendor name of the plugin creator, specified as the comma-separated pair 'VendorName' and a
character vector of up to 127 characters.

VendorVersion — Vendor version
'1.0.0' (default) | dot-separated character vector or string

Vendor version used to track plugin releases, specified as a comma-separated pair consisting of
'VendorVersion' and a dot-separated character vector or string of 1–3 integers in the range 0 to 9.
Example: '1'
Example: '1.4'
Example: '1.3.5'

UniqueId — Unique identifier of plugin
'MWap' (default) | four-element character vector or string

Unique identifier for your plugin, specified as a comma-separated pair consisting of 'UniqueID' and
a four-element character vector or string, used for recognition in certain digital audio workstation
(DAW) environments.

InputChannels — Input channels
2 (default) | integer | vector of integers

Input channels, specified as a comma-separated pair consisting of 'InputChannels' and an integer
or vector of integers. The input channels are the number of input data arguments and associated
channels (columns) passed to the processing function of your audio plugin.
Example: 'InputChannels',3 calls the processing function with one data argument containing 3
channels.
Example: 'InputChannels',[2,4,1,5] calls the processing function with 4 data arguments. The
first argument contains 2 channels, the second contains 4 channels, the third contains 1 channel, and
the fourth contains 5 channels.

Note This property is not applicable for audio source plugins, and must be omitted.

OutputChannels — Output channels
2 (default) | integer | vector of integers

 audioPluginInterface

2-503

Output channels, specified a comma-separated pair consisting of 'OutputChannels' and an integer
or vector of integers. The output channels are the number of input data arguments and associated
channels (columns) passed from the processing function of your audio plugin.
Example: 'OutputChannels',3 specifies the processing function to output one data argument
containing 3 channels.
Example: 'OutputChannels',[2,4,1,5] specifies the processing function to output 4 data
arguments. The first argument contains 2 channels, the second contains 4 channels, the third
contains 1 channel, and the fourth contains 5 channels.

BackgroundColor — Color used for GUI background
RGB triplet | short name | long name

Color used for GUI background, specified as short or long color name string, or an RGB triplet
Example: 'BackgroundColor',[1 1 0] specifies the GUI background to be yellow.
Example: 'BackgroundColor','y' specifies the GUI background to be yellow.
Example: 'BackgroundColor','yellow' specifies the GUI background to be yellow.

Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

"red" "r" [1 0 0] "#FF0000"
"green" "g" [0 1 0] "#00FF00"
"blue" "b" [0 0 1] "#0000FF"
"cyan" "c" [0 1 1] "#00FFFF"
"magenta" "m" [1 0 1] "#FF00FF"
"yellow" "y" [1 1 0] "#FFFF00"
"black" "k" [0 0 0] "#000000"
"white" "w" [1 1 1] "#FFFFFF"

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] "#0072BD"
[0.8500 0.3250 0.0980] "#D95319"
[0.9290 0.6940 0.1250] "#EDB120"
[0.4940 0.1840 0.5560] "#7E2F8E"
[0.4660 0.6740 0.1880] "#77AC30"
[0.3010 0.7450 0.9330] "#4DBEEE"
[0.6350 0.0780 0.1840] "#A2142F"

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | char | string

BackgroundImage — Image used for GUI background
char | string

2 Functions

2-504

Image used for GUI background, specified by its file name using either a character vector or string. If
the file is not on path, you must specify the full file path. Supported file types are PNG, GIF, and JPG.

The background image may include transparencies, in which case the BackgroundColor is used.
Example: 'BackgroundImage','Sunrise.png' specifies the GUI background image to be the
'Sunrise' image.
Example: 'BackgroundImage',fullfile(matlabroot,"mySkins","Sunset.jpg") specifies
the GUI background to be the 'Sunset' image.
Data Types: char | string

Version History
Introduced in R2016a

See Also
audioPlugin | audioPluginSource | audioPluginParameter | generateAudioPlugin |
validateAudioPlugin | audioPluginGridLayout

Topics
“Audio Plugins in MATLAB”

 audioPluginInterface

2-505

audioPluginParameter
Specify audio plugin parameters

Syntax
pluginParameter = audioPluginParameter(propertyName)
pluginParameter = audioPluginParameter(propertyName,Name,Value)

Description
pluginParameter = audioPluginParameter(propertyName) returns an object,
pluginParameter, that associates an audio plugin parameter to the audio plugin property specified
by propertyName. Use the plugin parameter object, pluginParameter, as an argument to
audioPluginInterface in your plugin class definition.

In a digital audio workstation (DAW) environment, or when using Audio Test Bench or
parameterTuner in the MATLAB environment, plugin parameters are tunable, user-facing values
with defined ranges mapped to controls. When you modify a parameter value using a control, the
associated plugin property is also modified. If the audio-processing algorithm of the plugin depends
on properties, the algorithm is also modified.

To visualize the relationship between plugin properties, parameters, and the environment in which a
plugin is run, see “Implementation of Audio Plugin Parameters” on page 2-520.

pluginParameter = audioPluginParameter(propertyName,Name,Value) specifies
audioPluginParameter properties using one or more Name,Value pair arguments.

Examples

Associate Property with Parameter

Create a basic audio plugin class definition file. Specify a property, Gain, and a processing function
that multiplies input by Gain.

classdef myAudioPlugin < audioPlugin
 properties
 Gain = 1;
 end
 methods
 function out = process(plugin,in)
 out = in*plugin.Gain;
 end
 end
end

Add a constant property, PluginInterface, which is specified as an audioPluginInterface
object.

classdef myAudioPlugin < audioPlugin
 properties

2 Functions

2-506

 Gain = 1;
 end
 properties (Constant)
 PluginInterface = audioPluginInterface;
 end
 methods
 function out = process(plugin,in)
 out = in*plugin.Gain;
 end
 end
end

Pass audioPluginParameter to audioPluginInterface. To associate the plugin property, Gain,
to a plugin parameter, specify the first argument of audioPluginParameter as the property name,
'Gain'.

classdef myAudioPlugin < audioPlugin
 properties
 Gain = 1;
 end
 properties (Constant)
 PluginInterface = audioPluginInterface(...
 audioPluginParameter('Gain'));
 end
 methods
 function out = process(plugin,in)
 out = in*plugin.Gain;
 end
 end
end

Specify Parameter Information

Create a basic plugin class definition file. Specify 'DisplayName' as 'Awesome Gain', 'Label' as
'linear', and 'Mapping' as {'lin',0,20}.

classdef myAudioPlugin < audioPlugin
 properties
 Gain = 1;
 end
 properties (Constant)
 PluginInterface = audioPluginInterface(...
 audioPluginParameter('Gain', ...
 'DisplayName','Awesome Gain', ...
 'Label','linear', ...
 'Mapping',{'lin',0,20}));
 end
 methods
 function out = process(plugin,in)
 out = in*plugin.Gain;
 end
 end
end

 audioPluginParameter

2-507

Integer Parameter Mapping

The following class definition uses integer parameter mapping to define the relationship between a
property and a parameter. You can use the plugin created from this class to tune the linear gain of an
audio signal in integer steps from 0 to 3.

classdef pluginWithIntegerMapping < audioPlugin
 properties
 Gain = 1;
 end
 properties (Constant)
 PluginInterface = audioPluginInterface(...
 audioPluginParameter('Gain', ...
 'Mapping',{'int',0,4}, ...
 'Layout',[1,1], ...
 'Style','vslider'), ...
 audioPluginGridLayout('RowHeight',[400,20]));
 end
 methods
 function out = process(plugin,in)
 out = in*plugin.Gain;
 end
 end
end

To run the plugin, save the class definition to a local folder and then call the Audio Test Bench.

audioTestBench(pluginWithIntegerMapping)

2 Functions

2-508

Power Parameter Mapping

The following class definition uses power parameter mapping to define the relationship between a
property and a parameter. You can use the plugin created from this class to tune the gain of an audio
signal in dB.

classdef pluginWithPowerMapping < audioPlugin
 properties
 Gain = 0;
 end
 properties (Constant)
 PluginInterface = audioPluginInterface(...
 audioPluginParameter('Gain', ...
 'Label','dB', ...
 'Mapping',{'pow', 1/3, -140, 12}, ...
 'Style','rotary', ...
 'Layout',[1,1]), ...
 audioPluginGridLayout);

 audioPluginParameter

2-509

 end
 methods
 function out = process(plugin,in)
 dBGain = 10^(plugin.Gain/20);
 out = in*dBGain;
 end
 end
end

To run the plugin, save the class definition to a local folder and then call the Audio Test Bench.

audioTestBench(pluginWithPowerMapping)

Logarithmic Parameter Mapping

The following class definition uses logarithmic parameter mapping to define the relationship between
a property and a parameter. You can use the plugin created from this class to tune the center
frequency of a single-band EQ filter from 100 to 10000.

classdef pluginWithLogMapping < audioPlugin
 properties
 EQ
 CenterFrequency = 1000;
 end
 properties (Constant)
 PluginInterface = audioPluginInterface(...
 audioPluginParameter('CenterFrequency', ...

2 Functions

2-510

 'Mapping', {'log',100,10000}));
 end
 methods
 function plugin = pluginWithLogMapping
 plugin.EQ = multibandParametricEQ('NumEQBands',1, ...
 'PeakGains',20, ...
 'Frequencies',plugin.CenterFrequency);
 end
 function out = process(plugin,in)
 out = plugin.EQ(in);
 end
 function set.CenterFrequency(plugin,val)
 plugin.CenterFrequency = val;
 plugin.EQ.Frequencies = val;
 end
 function reset(plugin)
 plugin.EQ.SampleRate = getSampleRate(plugin);
 end
 end
end

To run the plugin, save the class definition to a local folder and then call the Audio Test Bench.

audioTestBench(pluginWithLogMapping)

Enumeration for Logical Properties Parameter Mapping

The following class definition uses enumeration parameter mapping to define the relationship
between a property and a parameter. You can use the plugin created from this class to block or pass
through the audio signal by tuning the PassThrough parameter.

classdef pluginWithLogicalEnumMapping < audioPlugin
 properties

 audioPluginParameter

2-511

 PassThrough = true;
 end
 properties (Constant)
 PluginInterface = audioPluginInterface(...
 audioPluginParameter('PassThrough', ...
 'Mapping', {'enum','Block signal','Pass through'}, ...
 'Layout',[1,1], ...
 'Style','vtoggle', ...
 'DisplayNameLocation','none'), ...
 audioPluginGridLayout);
 end
 methods
 function out = process(plugin,in)
 if plugin.PassThrough
 out = in;
 else
 out = zeros(size(in));
 end
 end
 end
end

To run the plugin, save the class definition to a local folder and then create an audio I/O stream loop.

First, create objects to read from a file and write to your device.

fileReader = dsp.AudioFileReader('Engine-16-44p1-stereo-20sec.wav');
deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);

Create a plugin object and set the sample rate to the sample rate of the file.

passThrough = pluginWithLogicalEnumMapping;
setSampleRate(passThrough,fileReader.SampleRate)

Open a parameterTuner so that you can toggle the logical parameter of the plugin while stream
processing.

parameterTuner(passThrough)

While the file contains unread data:

1 Read a frame from the file.
2 Feed the frame through the plugin
3 Write the processed audio to your device.

While the audio stream runs, toggle the PassThrough parameter and listen to the effect.

while ~isDone(fileReader)
 audioIn = fileReader();

 audioOut = process(passThrough,audioIn);

 deviceWriter(audioOut);

 drawnow limitrate
end

2 Functions

2-512

'enum' for Enumeration Class Parameter Mapping

The following class definitions comprise a simple example of enumeration parameter mapping for
properties defined by an enumeration class. You can specify the operating mode of the plugin created
from this class by tuning the Mode parameter.

Plugin Class Definition

classdef pluginWithEnumMapping < audioPlugin
 properties
 Mode = OperatingMode.boost;
 end
 properties (Constant)
 PluginInterface = audioPluginInterface(...
 audioPluginParameter('Mode',...
 'Mapping',{'enum','+6 dB','-6 dB','silence','white noise'}));
 end
 methods
 function out = process(plugin,in)
 switch (plugin.Mode)
 case OperatingMode.boost
 out = in * 2;
 case OperatingMode.cut
 out = in / 2;
 case OperatingMode.mute
 out = zeros(size(in));
 case OperatingMode.noise
 out = rand(size(in)) - 0.5;
 otherwise
 out = in;
 end
 end
 end
end

 audioPluginParameter

2-513

Enumeration Class Definition

classdef OperatingMode < int8
 enumeration
 boost (0)
 cut (1)
 mute (2)
 noise (3)
 end
end

To run the plugin, save the plugin and enumeration class definition files to a local folder. Then call the
Audio Test Bench on the plugin class.

audioTestBench(pluginWithEnumMapping)

Input Arguments
propertyName — Name of audio plugin property
character vector | string

Name of the audio plugin property that you want to associate with a parameter, specified as a
character vector or string. Enter the property name exactly as it is defined in the property section of
your audio plugin class.
Data Types: char | string

2 Functions

2-514

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'DisplayName','Gain','Label','dB' specifies the display name of your parameter as
'Gain' and the display label for parameter value units as 'dB'.

Mappings

Mapping — Mapping between property and parameter range
cell array

Mapping between property and parameter range, specified as the comma-separated pair consisting of
'Mapping' and a cell array.

Parameter range mapping specifies a mapping between a property and the associated parameter
range.

The first element of the cell array is a character vector specifying the kind of mapping. The valid
values are 'lin', 'log', 'pow', 'int', and 'enum'. The subsequent elements of the cell array
depend on the kind of mapping. The valid mappings depend on the property data type.

Property Data Type Valid Mappings Default
double 'lin', 'log', 'pow', 'int' {'lin', 0, 1}
logical 'enum' {'enum', 'off', 'on'}
enumeration class 'enum' enumeration names

Mappin
g

Description Example

'lin' Specifies a linear relationship with given
minimum and maximum values.

property value = min + (max−min)
× parameter value

{'lin', 0, 24} specifies a linear
relationship with a minimum of 0 and
maximum of 24.

Example: “Specify Parameter Information”
on page 2-507

'log' Specifies a logarithmic relationship with
given minimum and maximum values, where
the control position maps to the logarithm of
the property value. The minimum value must
be greater than 0.

property value = min
× (max/min)(parameter value)

{'log', 1, 22050} specifies a logarithmic
relationship with a minimum of 1 and a
maximum of 22,050.

Example: “Logarithmic Parameter
Mapping” on page 2-510

 audioPluginParameter

2-515

Mappin
g

Description Example

'pow' Specifies a power law relationship with
given exponent, minimum, and maximum
values. The property value is related to the
control position raised to the exponent:

property value = min + (max−min)
× parameter value exp

{'pow', 1/3, -140, 12} specifies a power
law relationship with an exponent of 1/3, a
minimum of –140, and a maximum of 12.

Example: “Power Parameter Mapping” on
page 2-509

'int' Quantizes the control position and maps it to
the range of consecutive integers with given
minimum and maximum values.

property value = floor
0.5 + min + (max−min)

× parameter value

{'int', 0, 3} specifies a linear, quantized
relationship with a minimum of 0 and
maximum of 3. The property value is
mapped as an integer in the range [0, 3].

Example: “Integer Parameter Mapping” on
page 2-507

'enum'
(logical)

Optionally provides character vectors for
display on the plugin dialog box.

{'enum','Block
signal','Passthrough'} specifies the
character vector 'Block signal' if the
parameter value is false and
'Passthrough' if the parameter value is
true.

Example: “Enumeration for Logical
Properties Parameter Mapping” on page 2-
511

'enum'
(enumer
ation
class)

Optionally provides character vectors for the
members of the enumeration class.

{'enum', '+6 dB', '-6 dB', 'silence',
'white noise'} specifies the character
vectors '+6 dB', '-6 dB', 'silence',
and 'white noise'.

Example: “'enum' for Enumeration Class
Parameter Mapping” on page 2-513

Graphical User Interface

Layout — Grid cells occupied by parameter control
[row, column] (single-cell specification) | [upper, left; lower, right] (multi-cell specification)

Grid cells occupied by parameter control, specified as a comma-separated pair consisting of
'Layout' and a two-element row vector or 2-by-2 matrix. To use a single cell, specify [row, column]
of the cell. To span multiple cells, specify the upper left and lower right cells as [upper, left; lower,
right].
Example: 'Layout',[2,3]
Example: 'Layout',[2,3;3,6]
Dependencies

To enable this name-value pair, pass an audioPluginGridLayout object to
audioPluginInterface.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

2 Functions

2-516

DisplayName — Display name of parameter
associated property name (default) | character vector | string

Display name of your parameter, specified as a comma-separated pair consisting of 'DisplayName'
and a character vector or string. If 'DisplayName' is not specified, the name of the associated
property is used.
Data Types: char | string

DisplayNameLocation — Location of display name
"left" | "right" | "above" | "below" | "none"

Location of DisplayName relative to Layout, specified as "left", "right", "above", "below", or
"none".

• "left" –– The display name is located in the column to the left of Layout and spans the same
rows as Layout.

• "right" –– The display name is located in the column to the right of Layout and spans the same
rows as Layout.

• "above" –– The display name is located in the row above Layout and spans the same columns as
Layout

• "below" –– The display name is located in the row below Layout and spans the same columns as
Layout.

• "none" –– DisplayName is suppressed.

The DisplayName of the parameter does not occupy the same grid cells as the control for the
parameter.
Example: DisplayNameLocation="left"
Dependencies

To enable this name-value argument, pass an audioPluginGridLayout object to
audioPluginInterface.
Data Types: char | string

EditBoxLocation — Location of edit box
"left" | "right" | "above" | "below" | "none"

Location of edit box for the parameter relative to the control, specified as "left", "right",
"above", "below", or "none".

• "left" –– The edit box is located to the left of the control.
• "right" –– The edit box is located to the right of the control.
• "above" –– The edit box is located above the control.
• "below" –– The edit box is located below the control.
• "none" –– The edit box is suppressed.

The edit box exists so that users can directly enter a numeric value if the control Style is
"hslider", "vslider", or "rotaryknob".

The edit box occupies the same grid cells as the control for the parameter, which are the cells
specified by Layout.

 audioPluginParameter

2-517

Example: EditBoxLocation="right"

Dependencies

To enable this name-value argument, pass an audioPluginGridLayout object to
audioPluginInterface.

This argument only applies if Style is "hslider", "vslider", or "rotaryknob".
Data Types: char | string

Label — Display label for parameter value units
' ' (default) | character vector | string

Display label for parameter value units, specified as a comma-separated pair consisting of 'Label'
and a character vector or string.

The 'Label' name-value pair is ignored for nonnumeric parameters.
Data Types: char | string

Style — Visual control for plugin parameter
'hslider' | 'vslider' | 'rotaryknob' | 'checkbox' | 'vrocker' | 'vtoggle' | 'dropdown'

Visual control for plugin parameter, specified as a comma-separated pair consisting of 'Style' and a
string or character vector:

Style Description
'hslider' Horizontal slider
'vslider' Vertical slider
'rotaryknob

'
Rotary knob

'checkbox' Check box
'vrocker' Vertical rocker switch
'vtoggle' Vertical toggle switch
'dropdown' Dropdown

Default and valid styles depends on the plugin parameter Mapping and corresponding property class:

Mapping Property Class Default Style Additional Valid Styles
lin

log

pow

int

single

double

hslider vslider

rotaryknob

enum logical checkbox dropdown

vrocker

vtoggle

2 Functions

2-518

Mapping Property Class Default Style Additional Valid Styles
enum enumeration with 2 values vrocker dropdown

vtoggle
enum enumeration dropdown

Dependencies

To enable this name-value pair, pass an audioPluginGridLayout object to
audioPluginInterface.
Data Types: char | string

Filmstrip — Name of PNG, GIF, or JPG graphics file
character vector | string

Name of PNG, GIF, or JPG graphics file, specified as the comma-separated pair consisting of
'Filmstrip' and a character vector or string. The graphics file contains a sequence of images of
controls.

Filmstrips enable you to replace default control graphics with your own custom images. Filmstrips
support all control Style values except for dropdowns. A filmstrip is a single image created by
concatenating smaller images called frames. Each frame is an image of a control in a particular
position. For example, a filmstrip for a switch contains two frames: one depicting the "off" state and
another depicting the "on" state. Frames can be concatenated vertically or horizontally. Suppose that
the switch frames are 50 pixels wide by 100 pixels high. Then vertical concatenation produces a 50-
by-200 pixel filmstrip image, with the top frame used for the switch "off" state. Horizontal
concatenation produces a 100-by-100 pixel image, with the left frame used for the switch "off" state.
Filmstrips for sliders and knobs typically contain many more frames. The top/left frame corresponds
to the minimum control position, and the bottom/right frame corresponds to the maximum control
position. The relative control position determines which frame is displayed for a given parameter
value.

Dependencies

To enable this name-value pair, pass an audioPluginGridLayout object to
audioPluginInterface and specify 'FilmstripFrameSize'.
Data Types: char | string

FilmstripFrameSize — Size of individual frames (pixels)
[width, height]

Size of individual frames in the film strip in pixels, specified as the comma-separated pair consisting
of 'FilmstripFrameSize' and a two-element row vector of integers that specify [width, height].

Dependencies

To enable this name-value pair, pass an audioPluginGridLayout object to
audioPluginInterface and specify a 'Filmstrip'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

To learn how to design a graphic user interface, see “Design User Interface for Audio Plugin”.

 audioPluginParameter

2-519

More About
Implementation of Audio Plugin Parameters

Audio plugin parameters are visible and tunable in both the MATLAB and digital audio workstation
(DAW) environments. The different environments and corresponding renderings of the audio plugin
parameters are outlined here. For an example describing how your class definition maps to the UI,
see “Design User Interface for Audio Plugin”.

MATLAB Environment Using Audio Test Bench. Use Audio Test Bench to interact with
plugin parameters in the MATLAB environment in a complete GUI-based workflow. Using the Audio
Test Bench, you can specify audio input and output, analyze your plugin using time- and frequency-
domain scopes, connect to MIDI controls, and validate and generate your plugin. The Audio Test
Bench honors the graphical user interface you specified in audioPluginParameter,
audioPluginGridLayout, and audioPluginInterface (except for filmstrips).

MATLAB Environment Using parameterTuner. Use parameterTuner to interact with plugin
parameters in the MATLAB environment while developing, analyzing, or using your plugin in a
programmatic workflow. The parameterTuner honors the graphical user interface you specified in
audioPluginParameter, audioPluginGridLayout, and audioPluginInterface (except for
filmstrips).

2 Functions

2-520

DAW Environment. Use generateAudioPlugin to deploy your audio plugin to a DAW
environment. The DAW environment determines the exact layout of plugin parameters as seen by the
plugin user.

 audioPluginParameter

2-521

Version History
Introduced in R2016a

See Also
audioPlugin | audioPluginSource | audioPluginInterface | validateAudioPlugin |
generateAudioPlugin | Audio Test Bench | parameterTuner

Topics
“Design an Audio Plugin”
“Design User Interface for Audio Plugin”
“Export a MATLAB Plugin to a DAW”
“Audio Plugin Example Gallery”

2 Functions

2-522

configureMIDI
Configure MIDI connections between audio object and MIDI controller

Syntax
configureMIDI(audioObject)
configureMIDI(audioObject,propertyName)
configureMIDI(audioObject,propertyName,controlNumber)
configureMIDI(audioObject,propertyName,controlNumber,'DeviceName',
deviceNameValue)

Description
configureMIDI(audioObject) opens a MIDI configuration user interface (UI). Use the UI to
synchronize parameters of the plugin, audioObject, to MIDI controls on your default MIDI device.
You can also generate MATLAB code corresponding to the MIDI configuration developed using the
configureMIDI UI.

To set your default device, type this syntax in the command line:

setpref midi DefaultDevice deviceNameValue

deviceNameValue is the MIDI device name, assigned by the device manufacturer or host operating
system. Use midiid to get the device name corresponding to your MIDI device.

configureMIDI(audioObject,propertyName) makes the property, propertyName, respond to
any control on the default MIDI device.

configureMIDI(audioObject,propertyName,controlNumber) makes the property respond to
the MIDI control specified by controlNumber.

configureMIDI(audioObject,propertyName,controlNumber,'DeviceName',
deviceNameValue) makes the property respond to the MIDI control specified by controlNumber
on the device specified by deviceNameValue.

Examples

Synchronize Plugin Parameters to MIDI Controls

1 Open the MIDI configuration UI for a parametric equalizer plugin object.

parametricEQPlugin = audiopluginexample.ParametricEqualizerWithUDP;
configureMIDI(parametricEQPlugin)

2 In the UI, select a property to synchronize with your default MIDI device.

 configureMIDI

2-523

3 On your MIDI device, operate the control that you want to synchronize to the selected plugin
property. The control appears in the Operate MIDI control to synchronize box.

4 Repeat steps 2 and 3 as needed to synchronize multiple properties to multiple MIDI controls.

To disconnect the property and control currently displayed on your configureMIDI UI, click
Reset Control.

5 Click OK.

The specified MIDI controls and properties and now synchronized.

2 Functions

2-524

Generate MATLAB Code from configureMIDI UI

Generate MATLAB code corresponding to the MIDI configuration developed using the
configureMIDI UI. You can embed the MATLAB code in your simulation so that you do not need to
reopen the UI to restore your chosen MIDI connections.

1 Open the MIDI configuration UI for a parametric equalizer plugin object.

parametricEQPlugin = audiopluginexample.ParametricEqualizerWithUDP;
configureMIDI(parametricEQPlugin)

2 In the UI, select a property to synchronize with your default MIDI device.

3 On your MIDI device, operate the control that you want to synchronize to the selected plugin
property. The control appears in the Operate MIDI control to synchronize box.

4 Select the Generate MATLAB Code check box.

 configureMIDI

2-525

5 Click OK. The generated MATLAB code corresponds to the MIDI configuration that you
developed.

Make Plugin Property Respond to Any MIDI Control

Make a plugin property respond to any control on your default MIDI device.

2 Functions

2-526

parametricEQPlugin = audiopluginexample.ParametricEqualizerWithUDP;
configureMIDI(parametricEQPlugin,'CenterFrequency1');

Make Plugin Property Respond to Specific MIDI Control on Default MIDI Device

Make a plugin property respond to a specific MIDI control on your default MIDI device.

Create an object of the audio plugin example
audiopluginexample.ParametricEqualizerWithUDP.

parametricEQPlugin = audiopluginexample.ParametricEqualizerWithUDP;

Use midiid to identify a MIDI control to synchronize with your property.

[controlNumber,device] = midiid

Move the control you wish to identify; type ^C to abort.
Waiting for control message... done

controlNumber =

 1083

device =

 'BCF2000'

Use configureMIDI to synchronize your chosen MIDI control, specified by controlNumber, with a
property.

configureMIDI(parametricEQPlugin,'CenterFrequency1',controlNumber);

Make Plugin Property Respond to Specific MIDI Control on a Specific MIDI Device

Make a plugin property respond to any control on your default MIDI device.

Create an object of the audio plugin example,
audiopluginexample.ParametricEqualizerWithUDP.

parametricEQPlugin = audiopluginexample.ParametricEqualizerWithUDP;

Use midiid to identify a specific MIDI control on a specific MIDI device.

[controlNumber,device] = midiid

Move the control you wish to identify; type ^C to abort.
Waiting for control message... done

controlNumber =

 1087

device =

 configureMIDI

2-527

 'BCF2000'

Use configureMIDI to synchronize a property with your chosen MIDI control, specified by
controlNumber, on your chosen MIDI device, specified by device.
configureMIDI(parametricEQPlugin,'CenterFrequency1',controlNumber,'DeviceName',device)

Input Arguments
audioObject — Audio object
object

Audio plugin or compatible System object, specified as an object that inherits from the audioPlugin
class or an object of a compatible Audio Toolbox System object.

propertyName — Name of object property
character vector | string

Name of the object property, specified as a character vector. Enter the property name exactly as it is
defined in the property section of your audio plugin or Audio Toolbox System object.

controlNumber — MIDI device control number
integer

MIDI device control number, specified as an integer. The value is assigned to the control by the
device manufacturer. It is used for identification purposes.

deviceNameValue — MIDI device name
character vector | string

MIDI device name, assigned by the device manufacturer or host operating system, specified as a
character vector. If you do not specify a MIDI device name, the default MIDI device is used.

Limitations
For MIDI connections established by configureMIDI, moving a MIDI control sends a callback to
update the associated property values. To synchronize your MIDI device in an audio stream loop, you
might need to use the drawnow command for the callback to process immediately. For efficiency, use
the drawnow limitrate syntax.

For example, to synchronize your MIDI device and audio object, uncomment the drawnow
limitrate command from this code:

fileReader = dsp.AudioFileReader('Filename','RockDrums-44p1-stereo-11secs.mp3');
deviceWriter = audioDeviceWriter;
dRC = compressor;

configureMIDI(compressor,'Threshold')

while ~isDone(fileReader)
 input = fileReader();
 output = dRC(input);
 deviceWriter(output);
% drawnow limitrate;

2 Functions

2-528

end

release(fileReader);
release(deviceWriter);

If your audio stream loop includes visualizing data on a scope, such as spectrumAnalyzer,
timescope, or dsp.ArrayPlot, the drawnow command is not required.

Version History
Introduced in R2016a

See Also
audioPlugin | getMIDIConnections | midicontrols | midiread | midiid | midisync |
midicallback | disconnectMIDI

Topics
“MIDI Control for Audio Plugins”
“MIDI Control Surface Interface”

 configureMIDI

2-529

designParamEQ
Design parametric equalizer

Syntax
[B,A] = designParamEQ(N,gain,centerFreq,bandwidth)
[B,A] = designParamEQ(N,gain,centerFreq,bandwidth,mode)
[B,A] = designParamEQ(___ ,Name,Value)

Description
[B,A] = designParamEQ(N,gain,centerFreq,bandwidth) designs an Nth-order parametric
equalizer with specified gain, center frequency, and bandwidth. B and A are matrices of numerator
and denominator coefficients, with columns corresponding to cascaded second-order section (SOS)
filters.

[B,A] = designParamEQ(N,gain,centerFreq,bandwidth,mode) specifies whether the
parametric equalizer is implemented with second-order sections or fourth-order sections (FOS).

[B,A] = designParamEQ(___ ,Name,Value) specifies options using one or more Name,Value
pair arguments.

Examples

Design Two-Band Parametric Equalizer

Specify the filter order, peak gain in dB, normalized center frequencies, and normalized bandwidth of
the bands of your parametric equalizer.

N = [, ...

];

gain = [, ...

];

centerFreq = [, ...

];

bandwidth = [, ...

];

Generate the filter coefficients using the specified parameters.

[B,A] = designParamEQ(N,gain,centerFreq,bandwidth,"Orientation","row");

2 Functions

2-530

Visualize your filter design.

fvtool([B,A]);

Filter Audio Using SOS Parametric Equalizer

Design a second-order sections (SOS) parametric equalizer using designParamEQ and filter an audio
stream.

Create audio file reader and audio device writer System objects. Use the sample rate of the reader as
the sample rate of the writer.

frameSize = 256;

fileReader = dsp.AudioFileReader("RockGuitar-16-44p1-stereo-72secs.wav",SamplesPerFrame=frameSize);

sampleRate = fileReader.SampleRate;

deviceWriter = audioDeviceWriter(SampleRate=sampleRate);

Play the audio signal through your device.

count = 0;
while count < 2500
 audio = fileReader();

 designParamEQ

2-531

 deviceWriter(audio);
 count = count + 1;
end
reset(fileReader)

Design an SOS parametric equalizer suitable for use with dsp.BiquadFilter.

N = [4,4];
gain = [-25,35];
centerFreq = [0.01,0.5];
bandwidth = [0.35,0.5];
[B,A] = designParamEQ(N,gain,centerFreq,bandwidth);

Visualize your filter design. Call designParamEQ with the same design specifications. Specify the
output orientation as "row" so that it is suitable for use with fvtool.

[Bvisualize,Avisualize] = designParamEQ(N,gain,centerFreq,bandwidth,Orientation="row");
fvtool([Bvisualize,Avisualize], ...
 Fs=fileReader.SampleRate, ...
 FrequencyScale="Log");

Create a biquad filter.

myFilter = dsp.BiquadFilter(...
 SOSMatrixSource="Input port", ...
 ScaleValuesInputPort=false);

2 Functions

2-532

Create a spectrum analyzer to visualize the original audio signal and the audio signal passed through
your parametric equalizer.

scope = spectrumAnalyzer(...
 SampleRate=sampleRate, ...
 PlotAsTwoSidedSpectrum=false, ...
 FrequencyScale="log", ...
 Title="Original and Equalized Signals", ...
 ShowLegend=true, ...
 ChannelNames=["Original Signal","Equalized Signal"]);

Play the filtered audio signal and visualize the original and filtered spectrums.

count = 0;
while count < 2500
 originalSignal = fileReader();
 equalizedSignal = myFilter(originalSignal,B,A);
 scope([originalSignal(:,1),equalizedSignal(:,1)]);
 deviceWriter(equalizedSignal);
 count = count + 1;
end

As a best practice, release your objects once done.

release(deviceWriter)
release(fileReader)
release(scope)

 designParamEQ

2-533

Filter Audio Using FOS Parametric Equalizer

Design a fourth-order sections (FOS) parametric equalizer using designParamEQ and filter an audio
stream.

Construct audio file reader and audio device writer System objects. Use the sample rate of the reader
as the sample rate of the writer.

frameSize = 256;

fileReader = dsp.AudioFileReader(...
 "RockGuitar-16-44p1-stereo-72secs.wav", ...
 SamplesPerFrame=frameSize);

sampleRate = fileReader.SampleRate;

deviceWriter = audioDeviceWriter(...
 SampleRate=sampleRate);

Play the audio signal through your device.

count = 0;
while count < 2500
 x = fileReader();
 deviceWriter(x);
 count = count + 1;
end
reset(fileReader)

Design FOS parametric equalizer coefficients.

N = [2,4];
gain = [5,10];
centerFreq = [0.025,0.65];
bandwidth = [0.025,0.35];
mode = "fos";

[B,A] = designParamEQ(N,gain,centerFreq,bandwidth,mode,Orientation="row");

Construct FOS IIR filters.

myFilter = dsp.FourthOrderSectionFilter(B,A);

Visualize the frequency response of your parametric equalizer.

fvtool(myFilter)

2 Functions

2-534

Construct a spectrum analyzer to visualize the original audio signal and the audio signal passed
through your parametric equalizer.

scope = spectrumAnalyzer(...
 SampleRate=sampleRate, ...
 PlotAsTwoSidedSpectrum=false, ...
 FrequencyScale="log", ...
 Title="Original and Equalized Signals", ...
 ShowLegend=true, ...
 ChannelNames=["Original Signal","Equalized Signal"]);

Play the filtered audio signal and visualize the original and filtered spectra.

count = 0;
while count < 2500
 x = fileReader();
 y = myFilter(x);

 scope([x(:,1),y(:,1)]);

 deviceWriter(y);

 count = count + 1;
end

As a best practice, release your objects once done.

 designParamEQ

2-535

release(fileReader)
release(deviceWriter)
release(scope)

Input Arguments
N — Filter order
scalar | row vector

Filter order, specified as a scalar or row vector the same length as centerFreq. Elements of the
vector must be even integers.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

gain — Peak gain (dB)
scalar | row vector

Peak gain in dB, specified as a scalar or row vector the same length as centerFreq. Elements of the
vector must be real-valued.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

centerFreq — Normalized center frequency of equalizer bands
scalar | row vector

2 Functions

2-536

Normalized center frequency of equalizer bands, specified as a scalar or row vector of real values in
the range 0 to 1, where 1 corresponds to the Nyquist frequency (π rad/sample). If centerFreq is
specified as a row vector, separate equalizers are designed for each element of centerFreq.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

bandwidth — Normalized bandwidth
scalar | row vector

Normalized bandwidth, specified as a scalar or row vector the same length as centerFreq. Elements
of the vector are specified as real values in the range 0 to 1, where 1 corresponds to the Nyquist
frequency (π rad/sample).

Normalized bandwidth is measured at gain/2 dB. If gain is set to -Inf (notch filter), normalized
bandwidth is measured at the 3 dB attenuation point: 10 × log10 0.5 .

To convert octave bandwidth to normalized bandwidth, calculate the associated Q-factor as

Q = 2 octave bandwidth

2 octave bandwidth − 1
.

Then convert to bandwidth

bandwidth = centerFreq
Q .

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

mode — Design mode
'sos' (default) | 'fos'

Design mode, specified as 'sos' or 'fos'.

• 'sos' –– Implements your equalizer as cascaded second-order filters.
• 'fos' –– Implements your equalizer as cascaded fourth-order filters. Because fourth-order

sections do not require the computation of roots, they are generally more computationally
efficient.

Data Types: char | string

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Orientation',"row"

Orientation — Orientation of returned filter coefficients
"column" (default) | "row"

Orientation of returned filter coefficients, specified as the comma-separated pair consisting of
'Orientation' and "column" or "row":

 designParamEQ

2-537

• Set 'Orientation' to "row" for interoperability with FVTool,
dsp.DynamicFilterVisualizer, and dsp.FourthOrderSectionFilter.

• Set 'Orientation' to "column" for interoperability with dsp.BiquadFilter.

Data Types: char | string

Output Arguments
B — Numerator filter coefficients
matrix

Numerator filter coefficients, returned as a matrix. The size and interpretation of B depends on the
Orientation and mode:

• If 'Orientation' is set to "column" and mode is set to "sos", then B is returned as an L-by-3
matrix. Each column corresponds to the numerator coefficients of your cascaded second-order
sections.

• If 'Orientation' is set to "column" and mode is set to "fos", then B is returned as an L-by-5
matrix. Each column corresponds to the numerator coefficients of your cascaded fourth-order
sections.

• If 'Orientation' is set to "row" and mode is set to "sos", then B is returned as a 3-by-L
matrix. Each row corresponds to the numerator coefficients of your cascaded second-order
sections.

• If 'Orientation' is set to "row" and mode is set to "fos", then B is returned as a 5-by-L
matrix. Each row corresponds to the numerator coefficients of your cascaded fourth-order
sections.

A — Denominator filter coefficients
matrix

Denominator filter coefficients, returned as a matrix. The size and interpretation of A depends on the
Orientation and mode:

• If 'Orientation' is set to "column" and mode is set to "sos", then A is returned as an L-by-2
matrix. Each column corresponds to the denominator coefficients of your cascaded second-order
sections. A does not include the leading unity coefficients.

• If 'Orientation' is set to "column" and mode is set to "fos", then A is returned as an L-by-4
matrix. Each column corresponds to the denominator coefficients of your cascaded fourth-order
sections. A does not include the leading unity coefficients.

• If 'Orientation' is set to "row" and mode is set to "sos", then A is returned as a 3-by-L
matrix. Each row corresponds to the denominator coefficients of your cascaded second-order
sections.

• If 'Orientation' is set to "row" and mode is set to "fos", then A is returned as a 5-by-L
matrix. Each row corresponds to the denominator coefficients of your cascaded fourth-order
sections.

Version History
Introduced in R2016a

2 Functions

2-538

References
[1] Orfanidis, Sophocles J. "High-Order Digital Parametric Equalizer Design." Journal of the Audio

Engineering Society. Vol. 53, November 2005, pp. 1026–1046.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
designVarSlopeFilter | designShelvingEQ | multibandParametricEQ | dsp.BiquadFilter

Topics
“Parametric Equalizer Design”
“Equalization”

 designParamEQ

2-539

designShelvingEQ
Design shelving equalizer

Syntax
[B,A] = designShelvingEQ(gain,slope,Fc)
[B,A] = designShelvingEQ(gain,slope,Fc,type)
[B,A] = designShelvingEQ(___ ,Orientation=ornt)

Description
[B,A] = designShelvingEQ(gain,slope,Fc) designs a low-shelf equalizer with the specified
gain, slope, and cutoff frequency Fc. B and A are the numerator and denominator coefficients,
respectively, of a single second-order section (biquad) IIR filter.

[B,A] = designShelvingEQ(gain,slope,Fc,type) specifies the design type as a low-shelving
or high-shelving equalizer.

[B,A] = designShelvingEQ(___ ,Orientation=ornt) specifies the orientation of the returned
filter coefficients as "column" or "row".

Examples

Filter Audio Using Low-Shelf Equalizer

Create audio file reader and audio device writer objects. Use the sample rate of the reader as the
sample rate of the writer.

frameSize = 256;

fileReader = dsp.AudioFileReader("RockGuitar-16-44p1-stereo-72secs.wav",SamplesPerFrame=frameSize);

deviceWriter = audioDeviceWriter(SampleRate=fileReader.SampleRate);

Play the audio signal through your device.

count = 0;
while count < 2500
 audio = step(fileReader);
 play(deviceWriter,audio);
 count = count + 1;
end
reset(fileReader)

Design a second-order sections (SOS) low-shelf equalizer.

gain = 10;
slope = 3;
Fc = 0.025;

[B,A] = designShelvingEQ(gain,slope,Fc);

2 Functions

2-540

Visualize your shelving filter design.

SOS = [B',[1,A']];
fvtool(dsp.BiquadFilter(SOSMatrix=SOS), ...
 Fs=fileReader.SampleRate, ...
 FrequencyScale="log")

Create a biquad filter object.

myFilter = dsp.BiquadFilter(...
 SOSMatrixSource="Input port", ...
 ScaleValuesInputPort=false);

Create a spectrum analyzer object to visualize the original audio signal and the audio signal passed
through your low-shelf equalizer.

scope = spectrumAnalyzer(...
 SampleRate=fileReader.SampleRate, ...
 PlotAsTwoSidedSpectrum=false, ...
 FrequencyScale="log", ...
 Title="Original and Equalized Signal", ...
 ShowLegend=true, ...
 ChannelNames=["Original Signal","Equalized Signal"]);

Play the equalized audio signal and visualize the original and equalized spectrums.

count = 0;
while count < 2500

 designShelvingEQ

2-541

 originalSignal = fileReader();
 equalizedSignal = myFilter(originalSignal,B,A);
 scope([originalSignal(:,1),equalizedSignal(:,1)]);
 deviceWriter(equalizedSignal);
 count = count + 1;
end

As a best practice, release your objects once done.

release(fileReader)
release(deviceWriter)
release(scope)

Design High-Shelf Equalizer

Design three second-order IIR high shelf equalizers using designShelvingEQ. The three shelving
equalizers use three separate gain specifications.

Specify sample rate, peak gain, slope coefficient, and normalized cutoff frequency for the three
shelving equalizers. The sample rate is in Hz. The peak gain is in dB.

Fs = 44.1e3;

gain1 = -6;

2 Functions

2-542

gain2 = 6;
gain3 = 12;

slope = 0.8;

Fc = 18000/(Fs/2);

Design the filter coefficients using the specified parameters.

[B1,A1] = designShelvingEQ(gain1,slope,Fc,"hi",Orientation="row");
[B2,A2] = designShelvingEQ(gain2,slope,Fc,"hi",Orientation="row");
[B3,A3] = designShelvingEQ(gain3,slope,Fc,"hi",Orientation="row");

Visualize your filter design.

fvt = fvtool([B1,A1;[1 0 0 1 0 0]], ...
 [B2,A2;[1 0 0 1 0 0]], ...
 [B3,A3;[1 0 0 1 0 0]], ...
 Fs=Fs);

legend(fvt,"gain = "+[gain1 gain2 gain3]+" dB",Location="northwest")

 designShelvingEQ

2-543

Design Low-Shelf Equalizer

Design three second-order IIR low-shelf equalizers using designShelvingEQ. The three shelving
equalizers use three separate slope specifications.

Specify sampling frequency, peak gain, slope coefficient, and normalized cutoff frequency for three
shelving equalizers. The sampling frequency is in Hz. The peak gain is in dB.

Fs = 44.1e3;

gain = 5;

slope1 = 0.5;
slope2 = 0.75;
slope3 = 1;

Fc = 1000/(Fs/2);

Design the filter coefficients using the specified parameters.

[B1,A1] = designShelvingEQ(gain,slope1,Fc,Orientation="row");
[B2,A2] = designShelvingEQ(gain,slope2,Fc,Orientation="row");
[B3,A3] = designShelvingEQ(gain,slope3,Fc,Orientation="row");

Visualize your filter design.

fvt = fvtool(...
 dsp.BiquadFilter([B1,A1]), ...
 dsp.BiquadFilter([B2,A2]), ...
 dsp.BiquadFilter([B3,A3]), ...
 Fs=Fs, ...
 FrequencyScale="log");

legend(fvt,"slope = 0.5","slope = 0.75","slope = 1")

2 Functions

2-544

Input Arguments
gain — Peak gain (dB)
real scalar

Peak gain in dB, specified as a real scalar.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

slope — Slope coefficient
positive scalar

Slope coefficient, specified as a positive scalar.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Fc — Normalized cutoff frequency
real scalar in the range [0, 1]

Normalized cutoff frequency, specified as a real scalar in the range [0, 1], where 1 corresponds to
the Nyquist frequency (π rad/sample).

Normalized cutoff frequency is implemented as half the shelving filter gain, or gain/2 dB.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

 designShelvingEQ

2-545

type — Filter type
"lo" (default) | 'hi'

Filter type, specified as "lo" or "hi".

• "lo"–– Low shelving equalizer
• "hi"–– High shelving equalizer

Data Types: char | string

ornt — Orientation of returned filter coefficients
"column" (default) | "row"

Orientation of returned filter coefficients, specified as "column" or "row".

• Set ornt to "row" for interoperability with FVTool, dsp.DynamicFilterVisualizer, and
dsp.FourthOrderSectionFilter.

• Set ornt to "column" for interoperability with dsp.BiquadFilter.

Data Types: char | string

Output Arguments
B — Numerator filter coefficients
three-element column vector | three-element row vector

Numerator filter coefficients, returned as a vector. The size and interpretation of B depend on the
orientation, ornt:

• If ornt is set to "column", then B is returned as a three-element column vector.
• If ornt is set to "row", then B is returned as a three-element row vector.

.

A — Denominator filter coefficients
two-element column vector | three-element row vector

Denominator filter coefficients of the designed second-order IIR filter, returned as a vector. The size
and interpretation of A depend on the orientation, ornt:

• If ornt is set to "column", then A is returned as a two-element column vector. A does not include
the leading unity coefficient.

• If ornt is set to "row", then A is returned as a three-element row vector.

Version History
Introduced in R2016a

References
[1] Bristow-Johnson, Robert. "Cookbook Formulae for Audio EQ Biquad Filter Coefficients." Accessed

September 13, 2021. https://webaudio.github.io/Audio-EQ-Cookbook/Audio-EQ-Cookbook.txt.

2 Functions

2-546

https://webaudio.github.io/Audio-EQ-Cookbook/Audio-EQ-Cookbook.txt

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Blocks
Shelving Filter

Objects
shelvingFilter | multibandParametricEQ

Functions
designParamEQ | designVarSlopeFilter

Topics
“Parametric Equalizer Design”
“Equalization”

 designShelvingEQ

2-547

designVarSlopeFilter
Design variable slope lowpass or highpass IIR filter

Syntax
[B,A] = designVarSlopeFilter(slope,Fc)
[B,A] = designVarSlopeFilter(slope,Fc,type)
[B,A] = designVarSlopeFilter(___ ,Name,Value)

Description
[B,A] = designVarSlopeFilter(slope,Fc) designs a lowpass filter with the specified slope
and cutoff frequency. B and A are matrices of numerator and denominator coefficients, with columns
corresponding to cascaded second-order sections (SOS).

[B,A] = designVarSlopeFilter(slope,Fc,type) specifies the design type as a lowpass or
highpass filter.

[B,A] = designVarSlopeFilter(___ ,Name,Value) specifies options using one or more
Name,Value pair arguments.

Examples

Design Lowpass IIR Filter

Design two second-order section (SOS) lowpass IIR filters using designVarSlopeFilter.

Specify the sampling frequency, slope, and normalized cutoff frequency for two lowpass IIR filters.
The sampling frequency is in Hz. The slope is in dB/octave.

Fs = 48e3;

slope = 18;

Fc1 = 10e3/(Fs/2);
Fc2 = 16e3/(Fs/2);

Design the filter coefficients using the specified parameters.

[B1,A1] = designVarSlopeFilter(slope,Fc1,"Orientation","row");
[B2,A2] = designVarSlopeFilter(slope,Fc2,"Orientation","row");

Visualize your filter design.

fvt = fvtool([B1,A1],[B2,A2],Fs=Fs,FrequencyScale="log");

legend(fvt,"Fc = 10 kHz","Fc = 16 kHz",Location="southwest")

2 Functions

2-548

Process Audio Using Lowpass Filter

Design a second-order section (SOS) lowpass IIR filter using designVarSlopeFilter. Use your
lowpass filter to process an audio signal.

Create audio file reader and audio device writer objects. Use the sample rate of the reader as the
sample rate of the writer.

frameSize = 256;

fileReader = dsp.AudioFileReader(...
 "RockGuitar-16-44p1-stereo-72secs.wav", ...
 SamplesPerFrame=frameSize);

sampleRate = fileReader.SampleRate;

deviceWriter = audioDeviceWriter(...
 SampleRate=sampleRate);

Play the audio signal through your device.

count = 0;
while count < 2500
 audio = fileReader();
 deviceWriter(audio);

 designVarSlopeFilter

2-549

 count = count + 1;
end
reset(fileReader)

Design a lowpass filter with a 12 dB/octave slope and a 0.15 normalized cutoff frequency.

slope = 12;
cutoff = 0.15;
[B,A] = designVarSlopeFilter(slope,cutoff);

Visualize your filter design. To output filter coefficients suitable for freqz, call
designVarSlopeFilter again with the same design specifications but with Orientation set to
"row".

[Bvisualize,Avisualize] = designVarSlopeFilter(slope,cutoff,Orientation="row");

[h,f] = freqz([Bvisualize Avisualize],[],sampleRate);
plot(f/1000,mag2db(abs(h)))
grid
ylim([-75 5])
xlabel("Frequency (kHz)")
ylabel("Magnitude Response (dB)")

Create a biquad filter.

myFilter = dsp.BiquadFilter(...
 SOSMatrixSource="Input port", ...
 ScaleValuesInputPort=false);

2 Functions

2-550

Create a spectrum analyzer to visualize the original audio signal and the audio signal passed through
your lowpass filter.

scope = spectrumAnalyzer(...
 SampleRate=sampleRate, ...
 PlotAsTwoSidedSpectrum=false, ...
 FrequencyScale="log", ...
 Title="Original and Equalized Signal", ...
 ShowLegend=true, ...
 ChannelNames={'Original Signal','Filtered Signal'});

Play the filtered audio signal and visualize the original and filtered spectrums.

count = 0;
while count < 2500
 originalSignal = fileReader();
 filteredSignal = myFilter(originalSignal,B,A);
 scope([originalSignal(:,1),filteredSignal(:,1)]);
 deviceWriter(filteredSignal);
 count = count + 1;
end

As a best practice, release your objects once done.

release(deviceWriter)
release(fileReader)
release(scope)

 designVarSlopeFilter

2-551

Design Highpass IIR Filter

Design two second-order section (SOS) highpass IIR filters using designVarSlopeFilter.

Specify the sampling frequency in Hz, the slope in dB/octave, and the normalized cutoff frequency.

Fs = 48e3;
slope1 = 18;
slope2 = 36;
Fc = 4000/(Fs/2);

Design the filter coefficients using the specified parameters.

[B1,A1] = designVarSlopeFilter(slope1,Fc,"hi","Orientation","row");
[B2,A2] = designVarSlopeFilter(slope2,Fc,"hi","Orientation","row");

Visualize your filter design.

fvt = fvtool([B1,A1],[B2,A2],...
 "Fs",Fs,...
 "FrequencyScale","Log");
legend(fvt,"slope = 18 dB/octave", ...
 "slope = 36 dB/octave", ...
 "Location","NorthWest")

2 Functions

2-552

Diminish Plosives from Speech Signal

Plosives are consonant sounds resulting from a sudden release of airflow. They are most pronounced
in words beginning with p, d, and g sounds. Plosives can be emphasized by the recording process and
are often displeasurable to hear. In this example, you minimize the plosives of a speech signal by
applying highpass filtering and low-band compression.

Create a dsp.AudioFileReader object and a audioDeviceWriter object to read an audio signal
from a file and write an audio signal to a device. Play the unprocessed signal. Then release the file
reader and device writer.

fileReader = dsp.AudioFileReader('audioPlosives.wav');
deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);

while ~isDone(fileReader)
 audioIn = fileReader();
 deviceWriter(audioIn);
end
release(deviceWriter)
release(fileReader)

Design a highpass filter with a steep rolloff of all frequencies below 120 Hz. Use a
dsp.BiquadFilter object to implement the highpass filter design. Create a crossover filter with
one crossover at 250 Hz. The crossover filter enables you to separate the band of interest for
processing. Create a dynamic range compressor to compress the dynamic range of plosive sounds. To
apply no make-up gain, set the MakeUpGainMode to "Property" and use the default 0 dB
MakeUpGain property value. Create a time scope to visualize the processed and unprocessed audio
signal.

[B,A] = designVarSlopeFilter(48,120/(fileReader.SampleRate/2),"hi");
biquadFilter = dsp.BiquadFilter(...
 "SOSMatrixSource","Input port", ...
 "ScaleValuesInputPort",false);

crossFilt = crossoverFilter(...
 "SampleRate",fileReader.SampleRate, ...
 "NumCrossovers",1, ...
 "CrossoverFrequencies",250, ...
 "CrossoverSlopes",48);

dRCompressor = compressor(...
 "Threshold",-35, ...
 "Ratio",10, ...
 "KneeWidth",20, ...
 "AttackTime",1e-4, ...
 "ReleaseTime",3e-1, ...
 "MakeUpGainMode","Property", ...
 "SampleRate",fileReader.SampleRate);

scope = timescope(...
 "SampleRate",fileReader.SampleRate, ...
 "TimeSpanSource","property","TimeSpan",3, ...
 "BufferLength",fileReader.SampleRate*3*2, ...
 "YLimits",[-1 1], ...
 "ShowGrid",true, ...

 designVarSlopeFilter

2-553

 "ShowLegend",true, ...
 "ChannelNames",{'Original','Processed'});

In an audio stream loop:

1 Read in a frame of the audio file.
2 Apply highpass filtering using your biquad filter.
3 Split the audio signal into two bands.
4 Apply dynamic range compression to the lower band.
5 Remix the channels.
6 Write the processed audio signal to your audio device for listening.
7 Visualize the processed and unprocessed signals on a time scope.

As a best practice, release your objects once done.

while ~isDone(fileReader)
 audioIn = fileReader();
 audioIn = biquadFilter(audioIn,B,A);
 [band1,band2] = crossFilt(audioIn);
 band1compressed = dRCompressor(band1);
 audioOut = band1compressed + band2;
 deviceWriter(audioOut);
 scope([audioIn audioOut])
end

As a best practice, release your objects once done.

release(deviceWriter)
release(fileReader)
release(crossFilt)
release(dRCompressor)
release(scope)

2 Functions

2-554

Input Arguments
slope — Filter slope (dB/octave)
real scalar in the range [0:6:48]

Filter slope in dB/octave, specified as a real scalar in the range [0:6:48]. Values that are not multiples
of 6 are rounded.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Fc — Normalized cutoff frequency
real scalar in the range 0 to 1

Normalized cutoff frequency, specified as a real scalar in the range 0 to 1, where 1 corresponds to the
Nyquist frequency (π rad/sample).
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

type — Filter type
'lo' (default) | 'hi'

Filter type, specified as 'lo' or 'hi'.

• 'lo'–– Lowpass filter

 designVarSlopeFilter

2-555

• 'hi'–– Highpass filter

Data Types: char | string

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Orientation',"row"

Orientation — Orientation of returned filter coefficients
"column" (default) | "row"

Orientation of returned filter coefficients, specified as the comma-separated pair consisting of
'Orientation' and "column" or "row":

• Set 'Orientation' to "row" for interoperability with FVTool,
dsp.DynamicFilterVisualizer, and dsp.FourthOrderSectionFilter.

• Set 'Orientation' to "column" for interoperability with dsp.BiquadFilter.

Data Types: char | string

Output Arguments
B — Numerator filter coefficients
3-by-4 matrix | 4-by-3 matrix

Numerator filter coefficients, returned as a matrix. The size and interpretation of B depends on the
Orientation:

• If 'Orientation' is set to "column", then B is returned as a 3-by-4 matrix. Each column of B
corresponds to the numerator coefficients of a different second-order section of your cascaded IIR
filter.

• If 'Orientation' is set to "row", then B is returned as a 4-by-3 matrix. Each row of B
corresponds to the numerator coefficients of a different second-order section of your cascaded IIR
filter.

A — Denominator filter coefficients
2-by-4 matrix | 4-by-3 matrix

Denominator filter coefficients, returned as a matrix. The size and interpretation of A depends on the
Orientation:

• If 'Orientation' is set to "column", then A is returned as a 2-by-4 matrix. Each column of A
corresponds to the denominator coefficients of a different second-order section of your cascaded
IIR filter. A does not include the leading unity coefficient for each section.

• If 'Orientation' is set to "row", then B is returned as a 4-by-3 matrix. Each row of B
corresponds to the denominator coefficients of a different second-order section of your cascaded
IIR filter.

2 Functions

2-556

Version History
Introduced in R2016a

References
[1] Orfanidis, Sophocles J. "High-Order Digital Parametric Equalizer Design." Journal of the Audio

Engineering Society. Vol. 53, November 2005, pp. 1026–1046.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
designShelvingEQ | designParamEQ | multibandParametricEQ

Topics
“Parametric Equalizer Design”
“Equalization”

 designVarSlopeFilter

2-557

disconnectMIDI
Disconnect MIDI controls from audio object

Syntax
disconnectMIDI(audioObject)

Description
disconnectMIDI(audioObject) disconnects MIDI controls from your audio object, audioObject.
Only those MIDI connections established using configureMIDI are disconnected.

Examples

Disconnect MIDI Controls from Audio Plugin

Create an object of the audio plugin example audiopluginexample.Echo.

echoPlugin = audiopluginexample.Echo;

Get the MIDI connections of echoPlugin and verify that it has no MIDI connections.

myMIDIConnections = getMIDIConnections(echoPlugin);
isempty(myMIDIConnections)

ans =

 1

Add MIDI connections using configureMIDI.

configureMIDI(echoPlugin,'Delay1');

Get the MIDI connections of echoPlugin using getMIDIConnections. The MIDI connections you
configured are saved as a structure. View details of the MIDI connections using dot notation.

myMIDIConnections = getMIDIConnections(echoPlugin);
myMIDIConnections.Delay1

ans =

 Law: 'lin'
 Min: 0
 Max: 1
 MIDIControl: 'any control on 'BCF2000''

Use disconnectMIDI to remove MIDI connections between your echoPlugin object and your MIDI
device.

disconnectMIDI(echoPlugin);

2 Functions

2-558

Get MIDI connections of echoPlugin and verify that you have successfully disconnected MIDI
controls from your plugin.

myMIDIConnections = getMIDIConnections(echoPlugin);
isempty(myMIDIConnections)

ans =

 1

Input Arguments
audioObject — Audio object
object

Audio plugin or compatible System object, specified as an object that inherits from the audioPlugin
class or an object of a compatible Audio Toolbox System object.

Version History
Introduced in R2016a

See Also
Classes
audioPlugin | audioPluginSource

Functions
configureMIDI | getMIDIConnections | midicontrols | midiread | midiid | midisync |
midicallback

Topics
“MIDI Control for Audio Plugins”
“MIDI Control Surface Interface”

 disconnectMIDI

2-559

fdesign.parameq
(To be removed) Parametric equalizer filter specification

Compatibility

Note The fdesign.parameq filter specification object will be removed in a future release. Existing
instances of the object continue to run. For new code, use the designParamEQ function instead. For
more information, see “Compatibility Considerations” on page 2-562.

Syntax
d = fdesign.parameq(spec, specvalue1, specvalue2, ...)
d = fdesign.parameq(... fs)

Description
d = fdesign.parameq(spec, specvalue1, specvalue2, ...) constructs a parametric
equalizer filter design object, where spec is a non-case sensitive character vector. The choices for
spec are as follows:

• 'F0, BW, BWp, Gref, G0, GBW, Gp' (minimum order default)
• 'F0, BW, BWst, Gref, G0, GBW, Gst'
• 'F0, BW, BWp, Gref, G0, GBW, Gp, Gst'
• 'N, F0, BW, Gref, G0, GBW'
• 'N, F0, BW, Gref, G0, GBW, Gp'
• 'N, F0, Fc, Qa, G0'
• 'N, F0, Fc, S, G0'
• 'N, F0 ,BW, Gref, G0, GBW, Gst'
• 'N, F0, BW, Gref, G0, GBW, Gp, Gst'
• 'N, Flow, Fhigh, Gref, G0, GBW'
• 'N, Flow, Fhigh, Gref, G0, GBW, Gp'
• 'N, Flow, Fhigh, Gref, G0, GBW, Gst'
• 'N, Flow, Fhigh, Gref, G0, GBW, Gp, Gst'

where the parameters are defined as follows:

Paramete
r

Definition Unit

BW Bandwidth
BWp Passband Bandwidth
BWst Stopband Bandwidth

2 Functions

2-560

Paramete
r

Definition Unit

Gref Reference Gain decibels
G0 Center Frequency Gain decibels
GBW Gain at which Bandwidth (BW) is

measured
decibels

Gp Passband Gain decibels
Gst Stopband Gain decibels
N Filter Order
F0 Center Frequency
Fc Cutoff Frequency
Fhigh Higher Frequency at Gain GBW
Flow Lower Frequency at Gain GBW
Qa Quality Factor
S Slope Parameter for Shelving

Filters

Regardless of the specification chosen, there are some conditions that apply to the specification
parameters. These are as follows:

• Specifications for parametric equalizers must be given in decibels
• To boost the input signal, set G0 > Gref; to cut, set Gref > G0
• For boost: G0 > Gp > GBW > Gst > Gref; For cut: G0 < Gp < GBW < Gst < Gref
• Bandwidth must satisfy: BWst > BW > BWp

d = fdesign.parameq(... fs) adds the input sampling frequency. fs must be specified as a
scalar trailing the other numerical values provided, and is assumed to be in Hz.

Examples

Design Parametric Equalizers

Design a Chebyshev Type II parametric equalizer filter that cuts by 12 dB.

parametricEQ = fdesign.parameq('N,Flow,Fhigh,Gref,G0,GBW,Gst', ...
 4,0.3,0.5,0,-12,-10,-1);

parametricEQBiquad = design(parametricEQ,'cheby2','SystemObject',true);
fvtool(parametricEQBiquad)

Design a 4th-order lowpass shelving filter with a normalized cutoff frequency of 0.25, a quality factor
of 10, and an 8 dB boost gain.

parametricEQ = fdesign.parameq('N,F0,Fc,Qa,G0',4,0,0.25,10,8);
parametricEQBiquad = design(parametricEQ,'SystemObject',true);
fvtool(parametricEQBiquad)

Design 4th-order highpass shelving filters with slopes of 1.5 and 3.

 fdesign.parameq

2-561

N = 4; % Filter order
F0 = 1; % Center Frequency (normalized)
Fc = 0.4; % Cutoff Frequency (normalized)
G0 = 10; % Center Frequency Gain (dB)

S1 = 1.5; % Slope for filter design 1
S2 = 3; % Slope for filter design 2

filter = fdesign.parameq('N,F0,Fc,S,G0',N,F0,Fc,S1,G0);
filterDesignS1 = design(filter,'SystemObject',true);

filter.S = S2;
filterDesignS2 = design(filter,'SystemObject',true);

filterVisualization = fvtool(filterDesignS1,filterDesignS2);
legend(filterVisualization,'Slope = 1.5','Slope = 3');

Version History
fdesign.parameq will be removed
Warns starting in R2022a

The fdesign.parameq filter specification object will be removed in a future release. Existing
instances of the object continue to run. For new code, use the designParamEQ function instead.

Update Code

This table shows how the object is typically used and explains how to update the existing code to use
the designParamEQ function.

2 Functions

2-562

Discouraged Usage Recommended Replacement
Design based on Filter Bandwidth

Fs = 48e3;
N = 2;
Q = 10;
G = 9; % 9 dB

% Normalized center frequency
Wo1 = 2000/(Fs/2);
Wo2 = 12000/(Fs/2);

% Normalized bandwidth
BW1 = Wo1/Q;
BW2 = Wo2/Q;

PEQ = fdesign.parameq('N,F0,BW,Gref,G0,GBW',N,Wo1,BW1,0,G,4.5);
BQ1 = design(PEQ,'SystemObject',true);

PEQ.BW = BW2;
PEQ.F0 = Wo2;
BQ2 = design(PEQ,'SystemObject',true);

% Visualize the filters
hfvt = fvtool(BQ1,BQ2,'Fs',Fs,'Color','white');
legend(hfvt,'BW1 = 200 Hz; Q = 10','BW2 = 1200 Hz; Q = 10');

Design based on Filter Bandwidth

Fs = 48e3;
N = 2;
Q = 10;
G = 9; % 9 dB

% Normalized center frequency
Wo1 = 2000/(Fs/2);
Wo2 = 12000/(Fs/2);

% Normalized bandwidth
BW1 = Wo1/Q;
BW2 = Wo2/Q;

[B1,A1] = designParamEQ(N,G,Wo1,BW1);
[B2,A2] = designParamEQ(N,G,Wo2,BW2);
BQ1 = dsp.BiquadFilter('SOSMatrix',[B1.',[1,A1.']]);
BQ2 = dsp.BiquadFilter('SOSMatrix',[B2.',[1,A2.']]);

% Visualize the filters
hfvt = fvtool(BQ1,BQ2,'Fs',Fs,'Color','white');
legend(hfvt,'BW1 = 200 Hz; Q = 10','BW2 = 1200 Hz; Q = 10');

Design based on Quality factor

Fs = 48e3;
N = 2;
G = 15; % 15 dB

% Quality factor
Q1 = 0.48;
Q2 = 1/sqrt(2);

% Normalized center frequency
% F0 = 1 designs a highpass filter
% F0 can either be 0 or 1 in this configuration
F0 = 1;

% Cutoff Frequency
Fc = 6e3/(Fs/2);

PEQ = fdesign.parameq('N,F0,Fc,Qa,G0',N,F0,Fc,Q1,G);
BQ1 = design(PEQ,'SystemObject',true);

PEQ.Qa = Q2;
BQ2 = design(PEQ,'SystemObject',true);

% Visualize the filters
hfvt = fvtool(BQ1,BQ2,'Fs',Fs,'Color','white');
legend(hfvt,'Q = 0.48','Q = 0.7071');

Design based on Quality factor

Fs = 48e3;
N = 2;
G = 15; % 15 dB

% Quality factor
Q1 = 0.48;
Q2 = 1/sqrt(2);

% Normalized center frequency
Wo = 6000/(Fs/2);

% Normalized bandwidth
BW1 = Wo/Q1;
BW2 = Wo/Q2;

[B1,A1] = designParamEQ(N,G,Wo,BW1);
[B2,A2] = designParamEQ(N,G,Wo,BW2);
BQ1 = dsp.BiquadFilter('SOSMatrix',[B1.',[1,A1.']]);
BQ2 = dsp.BiquadFilter('SOSMatrix',[B2.',[1,A2.']]);

% Visualize the filters
hfvt = fvtool(BQ1,BQ2,'Fs',Fs,'Color','white');
legend(hfvt,'Q = 0.48','Q = 0.7071');

 fdesign.parameq

2-563

Discouraged Usage Recommended Replacement
Low shelf and high shelf filters

Fs = 48e3;
N = 4;
G = 10; % 10 dB

% Normalized center frequency
Wo1 = 0; % Lowpass filter
% Corresponds to Fs/2 (Hz) or pi (rad/sample)
Wo2 = 1; % Highpass filter

% Bandwidth occurs at 7.4 dB in this case
BW = 1000/(Fs/2);

PEQ = fdesign.parameq('N,F0,BW,Gref,G0,GBW',N,Wo1,BW,0,G,3);
BQ1 = design(PEQ,'SystemObject',true);

PEQ.F0 = Wo2;
BQ2 = design(PEQ,'SystemObject',true);

% Visualize the filters
hfvt = fvtool(BQ1,BQ2,'Fs',Fs,'Color','white');
legend(hfvt,'Low Shelf Filter','High Shelf Filter');

Low shelf and high shelf filters

Fs = 48e3;
N = 4;
G = 10; % 10 dB

% Normalized center frequency
Wo1 = 0; % Lowpass filter
% Corresponds to Fs/2 (Hz) or pi (rad/sample)
Wo2 = 1; % Highpass filter

% Bandwidth occurs at 7.4 dB in this case
BW = 1000/(Fs/2);

[B1,A1] = designParamEQ(N,G,Wo1,BW);
[B2,A2] = designParamEQ(N,G,Wo2,BW);
BQ1 = dsp.BiquadFilter('SOSMatrix',[B1.',[ones(2,1),A1.']]);
BQ2 = dsp.BiquadFilter('SOSMatrix',[B2.',[ones(2,1),A2.']]);

% Visualize the filters
hfvt = fvtool(BQ1,BQ2,'Fs',Fs,'Color','white');
legend(hfvt,'Low Shelf Filter','High Shelf Filter');

See Also
fdesign | designShelvingEQ | designParamEQ | designVarSlopeFilter |
multibandParametricEQ

Topics
“Parametric Equalizer Design”
“Equalization”

2 Functions

2-564

generateAudioPlugin
Generate audio plugin from MATLAB class

Syntax
generateAudioPlugin className
generateAudioPlugin options className
generateAudioPlugin

Description
generateAudioPlugin className generates a VST 2 audio plugin from a MATLAB class specified
by className. See Supported Compilers for a list of compilers supported by
generateAudioPlugin.

generateAudioPlugin options className specifies a nondefault plugin type, output folder, file
name, or file type. You can use the -juceproject option to create a zip file containing generated
C/C++ code and a JUCER project. Options can be specified in any grouping, and in any order.

generateAudioPlugin with no input arguments opens a user interface (UI) to generate and
validate an audio plugin. The UI provides functionality equivalent to the command-line interfaces of
generateAudioPlugin, audioPluginConfig, and validateAudioPlugin.

• The Audio plugin class name corresponds to the className input argument.
• The Validation options section corresponds to the options argument of

validateAudioPlugin.
• The Generation options section corresponds to the options argument of

generateAudioPlugin.
• The Coder configuration section corresponds to the “Properties” on page 4-255 of

audioPluginConfig.

Examples

Generate Audio Plugin

generateAudioPlugin audiopluginexample.Echo

.......

A VST 2 plugin with file name Echo is saved to your current folder. The extension of your plugin
depends on your operating system.

Specify Output Folder for Generated Plugin

mkdir(fullfile(pwd,'myPluginFolder'))
generateAudioPlugin -outdir myPluginFolder audiopluginexample.Echo

 generateAudioPlugin

2-565

https://www.mathworks.com/support/requirements/supported-compilers.html

.......

A VST 2 plugin with file name Echo is saved to your specified folder, myPluginFolder. The
extension of your plugin depends on your operating system.

Specify File Name of Generated Plugin

generateAudioPlugin -output awesomeEffect audiopluginexample.Echo

.......

A VST 2 plugin with file name awesomeEffect is saved to your current folder. The extension of your
plugin depends on your operating system.

Specify Output Folder and File Name of Generated Plugin

mkdir(fullfile(pwd,'myPluginFolder'))
generateAudioPlugin -output coolEffect -outdir myPluginFolder audiopluginexample.Echo

.......

A VST 2 plugin with file name coolEffect is saved to your specified folder, myPluginFolder. The
extension of your plugin depends on your operating system.

Generate win32 Plugin from win64 System

generateAudioPlugin -win32 audiopluginexample.Echo

.......

A 32-bit VST 2 plugin with file name Echo.dll is saved to your current folder.

Generate JUCE-Compatible Zip File

generateAudioPlugin -juceproject audiopluginexample.Echo

A zip file containing generated C/C++ code and a JUCER project file suitable for use with JUCE 5.3.2
to 6.0.8 is saved to your current folder.

Generate Standalone Executable

To generate a binary standalone executable, use the -exe option. The following command saves
Echo.exe to your current folder.

generateAudioPlugin -exe audiopluginexample.Echo

2 Functions

2-566

.......

When you execute the generated code, the UI you defined in your audio plugin opens.

eval('!Echo.exe')

The standalone executable enables you to:

• Configure audio input and output from the plugin. Synchronizing parameters with MIDI devices is
not currently supported.

• Save and load states.
• Reset states to default values.

 generateAudioPlugin

2-567

Generate and Validate Audio Plugin Through UI

To open the UI, call generateAudioPlugin with no input arguments.

generateAudioPlugin

2 Functions

2-568

Type "audiopluginexample.Echo" into the Audio plugin class name field. Click Validate to
validate the plugin. Click Generate to generate the plugin in the location specified by the Output
folder field.

Input Arguments
options — Options to specify output folder, plugin name, and file type
-au | -vst | -vst3 | -exe | -juceproject | -output fileName | -outdir folder | -win32 | -
mac64universal | -audioconfig cfg

Options to specify output folder, plugin name, and file type, specified as one of the values in the table.
You can specify options in any order and group them.

Option UI Setting Description
-au Set Format to AU Generates an Audio Unit (AU) v2 audio plugin

binary. This option is valid only on macOS.
-vst Set Format to VST Generates a VST 2 audio plugin binary. By

default, generateAudioPlugin generates a
VST 2 plugin.

-vst3 Set Format to VST3 Generates a VST 3 audio plugin binary. This
option adds a Bypass parameter to the plugin.

 generateAudioPlugin

2-569

Option UI Setting Description
-exe Set Format to Standalone

executable
Generates a standalone executable for your audio
plugin. When you evaluate the generated code,
the UI you defined in your audio plugin opens.
You can control the input to your plugin and the
output from your plugin using Options.

-juceproject Set Format to JUCE
project

Creates a zip file containing generated C/C++
code and a JUCER project file suitable for use
with JUCE 5.3.2 to 6.0.8. You can use the
generated zip file to modify the generated plugin
or compile it to a format other than VST 2.4. This
option requires a MATLAB Coder™ license. To
use the generated files with JUCE, you must
obtain your own appropriately licensed copy of
JUCE.

-output
fileName

Output file name Specifies the file name of the generated plugin or
zip file. The appropriate extension is appended to
the fileName based on the platform on which
the plugin or zip file is generated. By default, the
plugin or zip file is named after the class.

-outdir folder Output folder Generates a plugin or zip file to a specific folder.
By default, the generated plugin is placed in the
current folder. If folder is not in the current
folder, specify the exact path.

-win32 Generate a 32-bit audio
plugin

Creates a 32-bit audio plugin. Valid only on win64
Windows platforms. This option does not support
the coder.DeepLearningConfig("mkldnn")
deep learning library configuration, the "Intel
AVX (Windows)" code replacement library, or
the "DSP Intel AVX2-FMA (Windows)" code
replacement library.

-mac64universal Generate a macOS
universal plugin

Creates a Mac audio plugin for use on Intel® and
Apple Silicon. This option works only on
Macintosh platforms. This option does not
support the
coder.DeepLearningConfig("mkldnn")
deep learning library configuration or any code
replacement libraries.

-audioconfig
cfg

Coder Configuration
section

Generates a plugin that uses a deep learning
network or a code replacement library. See
audioPluginConfig for more details.

Only the -juceproject option is supported in MATLAB Online.

className — Name of plugin class to generate
plugin class

Name of the plugin class to generate. The plugin class must be on the MATLAB path. It must derive
from either the audioPlugin class or the audioPluginSource class.

2 Functions

2-570

https://www.mathworks.com/products/matlab-online.html

You can specify the plugin class to generate by specifying its class name or file name. For example,
the following syntaxes perform equivalent operations:

• generateAudioPlugin myPlugin
• generateAudioPlugin myPlugin.m

If you want to specify the plugin class by file name, and your plugin class is inside a package, you
must specify the package as a file path. For example, the following syntaxes perform equivalent
operations:

• generateAudioPlugin myPluginPackage.myPlugin
• generateAudioPlugin +myPluginPackage/myPlugin.m

Limitations
Build problems can occur when using folder names with spaces. For more information, see “Build
Process Support for File and Folder Names” (Simulink Coder) and Why is the build process failing for
a shipped model in Simulink or for a model run in Accelerator mode?.

More About
Generated VST Plugin File Extension

The extension of your generated VST plugin depends on your operating system.

Operating System File Extension
Windows .dll
macOS .vst

Version History
Introduced in R2016a

Generate and validate plugins through UI

Use a UI to configure plugin generation by calling generateAudioPlugin with no input arguments.
The UI provides functionality equivalent to the command-line interfaces of generateAudioPlugin,
audioPluginConfig, and validateAudioPlugin.

See Also
Audio Test Bench | validateAudioPlugin | parameterTuner | loadAudioPlugin |
audioPlugin | audioPluginSource | audioPluginConfig

Topics
“Audio Plugins in MATLAB”
“Export a MATLAB Plugin to a DAW”

 generateAudioPlugin

2-571

https://www.mathworks.com/matlabcentral/answers/95399-why-is-the-build-process-failing-for-a-shipped-model-in-simulink-or-for-a-model-run-in-accelerator-m
https://www.mathworks.com/matlabcentral/answers/95399-why-is-the-build-process-failing-for-a-shipped-model-in-simulink-or-for-a-model-run-in-accelerator-m

integratedLoudness
Measure integrated loudness and loudness range

Syntax
loudness = integratedLoudness(audioIn,Fs)
loudness = integratedLoudness(audioIn,Fs,channelWeights)
[loudness,loudnessRange] = integratedLoudness(___)

Description
loudness = integratedLoudness(audioIn,Fs) returns the integrated loudness of an audio
signal, audioIn, with sample rate Fs. The ITU-R BS.1770-4 and EBU R 128 standards define the
algorithms to calculate integrated loudness.

loudness = integratedLoudness(audioIn,Fs,channelWeights) specifies the channel
weights used to compute the integrated loudness. channelWeights must be a row vector with the
same number of elements as the number of channels in audioIn.

[loudness,loudnessRange] = integratedLoudness(___) returns the loudness range of the
audio signal using either of the previous syntaxes. The EBU R 128 Tech 3342 standard defines the
loudness range computation.

Examples

Determine Integrated Loudness

Determine the integrated loudness of an audio signal.

Create a two-second sine wave with a 0 dB amplitude, a 1 kHz frequency, and a 48 kHz sample rate.

sampleRate = 48e3;
increment = sampleRate*2;
amplitude = 10^(0/20);
frequency = 1e3;

sineGenerator = audioOscillator(...
 'SampleRate',sampleRate, ...
 'SamplesPerFrame',increment, ...
 'Amplitude',amplitude, ...
 'Frequency',frequency);

signal = sineGenerator();

Calculate the integrated loudness of the audio signal at the specified sample rate.

loudness = integratedLoudness(signal,sampleRate)

loudness = -3.0036

2 Functions

2-572

Specify Nondefault Channel Weights

Read in a four-channel audio signal. Specify a nondefault weighting vector with four elements.

[signal,fs] = audioread('AudioArray-16-16-4channels-20secs.wav');
weightingVector = [1,0.8,0.8,1.2];

Calculate the integrated loudness with the default channel weighting and the nondefault channel
weighting vector.

standardLoudness = integratedLoudness(signal,fs,weightingVector)

standardLoudness = -11.6825

nonStandardLoudness = integratedLoudness(signal,fs)

nonStandardLoudness = -11.0121

Determine Loudness Range

Read in an audio signal. Clip 3 five-second intervals out of the signal.

[x,fs] = audioread('FunkyDrums-44p1-stereo-25secs.mp3');
x1 = x(1:fs*5,:);
x2 = x(5e5:5e5+5*fs,:);
x3 = x(end-5*fs:end,:);

Calculate the loudness and loudness range of the total signal and of each interval.

[L,LRA] = integratedLoudness(x,fs);
[L1,LRA1] = integratedLoudness(x1,fs);
[L2,LRA2] = integratedLoudness(x2,fs);
[L3,LRA3] = integratedLoudness(x3,fs);

fprintf(['Loudness: %0.2f\n', ...
 'Loudness range: %0.2f\n\n', ...
 'Beginning loudness: %0.2f\n', ...
 'Beginning loudness range: %0.2f\n\n', ...
 'Middle loudness: %0.2f\n', ...
 'Middle loudness range: %0.2f\n\n', ...
 'End loudness: %0.2f\n', ...
 'End loudness range: %0.2f\n'], ...
 L,LRA,L1,LRA1,L2,LRA2,L3,LRA3);

Loudness: -22.98
Loudness range: 1.50

Beginning loudness: -23.38
Beginning loudness range: 1.18

Middle loudness: -22.97
Middle loudness range: 1.14

End loudness: -22.10
End loudness range: 1.82

 integratedLoudness

2-573

Input Arguments
audioIn — Input signal
matrix

Input signal, specified as a matrix. The columns of the matrix are treated as audio channels.

The maximum number of columns of the input signal depends on your channelWeights
specification:

• If you use the default channelWeights, the input signal has a maximum of five channels. Specify
the channels in this order: [Left, Right, Center, Left surround, Right surround].

• If you specify nondefault channelWeights, the input signal must have the same number of
columns as the number of elements in the channelWeights vector.

Data Types: single | double

Fs — Sample rate (Hz)
positive scalar

Sample rate of the input signal in Hz, specified as a positive scalar.
Data Types: single | double

channelWeights — Linear weighting applied to each input channel
[1.0, 1,0, 1.0, 1.41, 1.41] (default) | nonnegative row vector

Linear weighting applied to each input channel, specified as a row vector of nonnegative values. The
number of elements in the row vector must be equal to or greater than the number of input channels.
Excess values in the vector are ignored.

The default channel weights follow the ITU-R BS.1170-4 standard. To use the default channel weights,
specify the channels of the audioIn matrix in this order: [Left, Right, Center, Left surround, Right
surround].

It is a best practice to specify the channelWeights vector in order: [Left, Right, Center, Left
surround, Right surround].
Data Types: single | double

Output Arguments
loudness — Integrated loudness (LUFS)
scalar

Integrated loudness in loudness units relative to full scale (LUFS), returned as a scalar.

The ITU-R BS.1770-4 and EBU R 128 standards define the integrated loudness. The algorithm
computes the loudness by breaking down the audio signal into 0.4-second segments with 75%
overlap. If the input signal is less than 0.4 seconds, loudness is returned empty.
Data Types: single | double

2 Functions

2-574

loudnessRange — Loudness range (LU)
scalar

Loudness range in loudness units (LU), returned as a scalar.

The EBU R 128 Tech 3342 standard defines the loudness range. The algorithm computes the loudness
range by breaking down the audio into 3-second segments with 2.9-second overlap. If the input signal
is less than three seconds, loudnessRange is returned empty.
Data Types: single | double

Algorithms
The integratedLoudness function returns the integrated loudness and loudness range (LRA) of an
audio signal. You can specify any number of channels and nondefault channel weights used for
loudness measurements. The integratedLoudness algorithm is described for the general case of n
channels.

Integrated Loudness and Loudness Range

The input channels, x, pass through a K-weighted weightingFilter. The K-weighted filter shapes
the frequency spectrum to reflect perceived loudness.

Integrated Loudness

1 The K-weighted channels, y, are divided into 0.4-second segments with 0.3-second overlap. The
power (mean square) of each segment of the K-weighted channels is calculated:

mPi = 1
w ∑

k = 1

w
yi

2[k]

• mPi is the momentary power of the ith segment of a channel.
• w is the segment length in samples.

2 The momentary loudness, mL, is computed for each segment:

 integratedLoudness

2-575

mLi = − 0.691 + 10 log10 ∑
c = 1

n
Gc × mP i, c LUFS

• Gc is the weighting for channel c.
3 The momentary power is gated using the momentary loudness calculation:

mPi mP j

j = i mLi ≥ − 70
4 The relative threshold, Γ, is computed:

Γ = − 0.691 + 10log10 ∑
c = 1

n
Gc × lc − 10

lc is the mean momentary power of channel c:

lc = 1
j ∑j mP j, c

5 The momentary power subset, mPj, is gated using the relative threshold:

mP j mPk

k = j mP j ≥ Γ
6 The momentary power segments are averaged:

P = 1
k ∑k mPk

7 The integrated loudness is computed by passing the mean momentary power subset, P, through
the Compute Loudness system:

Integrated Loudness = − 0.691 + 10log10 ∑
c = 1

n
Gc × Pc LUFS

Loudness Range

1 The K-weighted channels, y, are divided into 3-second segments with 2.9-second overlap. The
power (mean square) of each segment of the K-weighted channels is calculated:

sPi = 1
w ∑

k = 1

w
yi

2[k]

• sPi is the short-term power of the ith segment of a channel.
• w is the segment length in samples.

2 The short-term loudness, sL, is computed for each segment:

sLi = − 0.691 + 10 log10 ∑
c = 1

n
Gc × sP i, c

• Gc is the weighting for channel c.

2 Functions

2-576

3 The short-term loudness is gated using an absolute threshold:

sLi sL j

j = i sLi ≥ − 70
4 The gated short-term loudness is converted back to linear, and then the mean is taken:

sP j = 1
j ∑j 10

sL j 10

The relative threshold, K, is computed:

K = − 20 + 10log10 sP j

5 The short-term loudness subset, sLj, is gated using the relative threshold:

sL j sLk

k = j sL j ≥ K
6 The short-term loudness subset, sLk, is sorted. The loudness range is calculated as between the

10th and 95th percentiles of the distribution, and is returned in loudness units (LU).

Version History
Introduced in R2016b

References
[1] International Telecommunication Union; Radiocommunication Sector. Algorithms to Measure

Audio Programme Loudness and True-Peak Audio Level. ITU-R BS.1770-4. 2015.

[2] European Broadcasting Union. Loudness Normalisation and Permitted Maximum Level of Audio
Signals. EBU R 128. 2014.

[3] European Broadcasting Union. Loudness Metering: 'EBU Mode' Metering to Supplement EBU R
128 Loudness Normalization. EBU R 128 Tech 3341. 2014.

[4] European Broadcasting Union. Loudness Range: A Measure to Supplement EBU R 128 Loudness
Normalization. EBU R 128 Tech 3342. 2016.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
loudnessMeter | weightingFilter | Loudness Meter

 integratedLoudness

2-577

getMIDIConnections
Get MIDI connections of audio object

Syntax
connectionInfo = getMIDIConnections(audioObject)

Description
connectionInfo = getMIDIConnections(audioObject) returns a structure,
connectionInfo, containing information about the MIDI connections for your audio object,
audioObject. Only those MIDI connections established using configureMIDI are returned.

The connectionInfo structure contains a substructure for each tunable property of audioObject
that has established MIDI connections. Each substructure contains the control number, the device
name of the corresponding MIDI control, and the property mapping information (mapping rule,
minimum value, and maximum value).

Examples

Get MIDI Connections of Plugin

Create an object of the audio plugin example audiopluginexample.Echo.

echoEffect = audiopluginexample.Echo;

Use configureMIDI to synchronize echoEffect properties with specific MIDI controls on the
default MIDI device.

configureMIDI(echoEffect,'Delay1',1001);
configureMIDI(echoEffect,'Gain1' ,1002);
configureMIDI(echoEffect,'Delay2',1003);
configureMIDI(echoEffect,'Gain2' ,1004);

Use getMIDIConnections to view the MIDI connections you established.

connectionInfo = getMIDIConnections(echoEffect)

connectionInfo =

 Delay1: [1x1 struct]
 Gain1: [1x1 struct]
 Delay2: [1x1 struct]
 Gain2: [1x1 struct]

View details of the Delay1 MIDI connection using dot notation.

connectionInfo.Delay1

ans =

2 Functions

2-578

 Law: 'lin'
 Min: 0
 Max: 1
 MIDIControl: 'control 1001 on 'nanoKONTROL2''

Input Arguments
audioObject — Audio object
object

Audio plugin or compatible System object, specified as an object that inherits from the audioPlugin
class or an object of a compatible Audio Toolbox System object.

Output Arguments
connectionInfo — Information about MIDI connection
structure

Information about MIDI connection between the specified audio plugin object and MIDI devices,
returned as a structure. Only those MIDI connections established using configureMIDI are
returned. The connectionInfo structure contains a substructure for each established MIDI
connection. Each substructure contains the control number, the device name of the corresponding
MIDI control, and the property mapping information (mapping rule, minimum value, and maximum
value).

Version History
Introduced in R2016a

See Also
Classes
audioPlugin | audioPluginSource

Functions
disconnectMIDI | configureMIDI | midicontrols | midiread | midiid | midisync |
midicallback

Topics
“MIDI Control for Audio Plugins”
“MIDI Control Surface Interface”

 getMIDIConnections

2-579

loadAudioPlugin
Load VST, VST 3, and AU plugins into MATLAB environment

Syntax
hostedPlugin = loadAudioPlugin(pluginpath)

Description
hostedPlugin = loadAudioPlugin(pluginpath) loads the 64-bit VST, VST 3, or AU audio
plugin specified by pluginpath. On Windows, you can load VST and VST 3 plugins. On macOS, you
can load AU, VST, and VST 3 plugins.

Your hosted plugin has two display modes: Parameters and Properties. The default display mode
is Properties.

• Parameters –– Interact with normalized parameter values of the hosted plugin using set and get
functions.

• Properties –– Interact with heuristically interpreted parameters with real-world values. You can
use standard dot notation to set and get the values while using this mode.

You can specify the display mode of the hosted plugin using standard dot notation, for example:

hostedPlugin.DisplayMode = 'Parameters';

See “Host External Audio Plugins” for a discussion of display modes and a walkthrough of both modes
of interaction.

You can interact with and exercise the hosted plugin using the following functions.

Process Audio

• audioOut = process(hostedPlugin,audioIn)

Returns an audio signal processed according to the algorithm and parameters of the hosted
plugin. For source plugins, call process without an audio input.

Set and Get Normalized Parameter Values

• value = getParameter(hostedPlugin,parameter)

Returns the normalized value of the specified hosted plugin parameter. Normalized values are in
the range [0,1]. You can specify a parameter by its name or by its index. To specify the name, use a
character vector.

• setParameter(hostedPlugin,parameter,newValue)

Sets the normalized value of the specified hosted plugin parameter to newValue. Normalized
values are in the range [0,1].

2 Functions

2-580

Get High-Level Information About the Hosted Plugin

• dispParameter(hostedPlugin)

Displays all parameters and associated indices, values, displayed values, and display labels of the
hosted plugin.

• pluginInfo = info(hostedPlugin)

Returns a structure containing information about the hosted plugin.

Set the Environment in Which the Plugin Is Run

• frameSize = getSamplesPerFrame(hostedPlugin)

Returns the frame size that the hosted plugin returns in subsequent calls to its processing
function (source plugins only).

• setSamplesPerFrame(hostedPlugin,frameSize)

Sets the frame size that the hosted plugin must return in subsequent calls to its processing
function (source plugins only).

• setSampleRate(hostedPlugin,sampleRate)

Sets the sample rate of the hosted plugin.
• sampleRate = getSampleRate(hostedPlugin)

Returns the sample rate in Hz at which the plugin is being run.

Examples

Host External Plugins in MATLAB

Use loadAudioPlugin to host a VST external plugin and a VST external source plugin in
MATLAB®.

Use the fullfile command to determine the full path to the oscillator VST plugin and parametric
equalizer VST plugin included with Audio Toolbox™. If you are using a Mac, replace the .dll file
extension with .vst.

oscPluginPath = ...
 fullfile(matlabroot,'toolbox/audio/samples/oscillator.dll');
EQPluginPath = ...
 fullfile(matlabroot,'toolbox/audio/samples/ParametricEqualizer.dll');

Create external plugin objects by calling loadAudioPlugin for each of the plugin paths.

hostedSourcePlugin = loadAudioPlugin(oscPluginPath);
hostedPlugin = loadAudioPlugin(EQPluginPath);

Hosted plugins derive from either the externalAudioPlugin or externalAudioSourcePlugin
class. Because oscillator.dll is a source audio plugin, the hosted object derives from
externalAudioSourcePlugin. Use class() to verify the classes of the hosted plugins.

class(hostedPlugin)

 loadAudioPlugin

2-581

ans =
'externalAudioPlugin'

class(hostedSourcePlugin)

ans =
'externalAudioPluginSource'

Call the hosted plugins to display basic information about them. This information includes the format,
the plugin name, the number of channels in and out, and the tunable properties of the plugin. Source
plugins also display the frame size of the plugin.

hostedSourcePlugin

hostedSourcePlugin =
 VST plugin 'oscillator' source, 1 out, 256 samples

 Frequency: 100 Hz
 Amplitude: 1 AU
 DCOffset: 0 AU

hostedPlugin

hostedPlugin =
 VST plugin 'ParametricEQ' 2 in, 2 out

 LowPeakGain: 0 dB
 LowCenterFrequency: 100 Hz
 LowQFactor: 2
 MediumPeakGain: 0 dB
 MediumCenterFrequency: 1000 Hz
 MediumQFactor: 2
 HighPeakGain: 0 dB
 HighCenterFrequency: 10000 Hz
 HighQFactor: 2

Run External Plugin in MATLAB

Load a VST audio plugin into MATLAB™ by specifying its full path. If you are using a Mac, replace
the .dll file extension with .vst.

pluginPath = fullfile(matlabroot,'toolbox','audio','samples','ParametricEqualizer.dll');
hostedPlugin = loadAudioPlugin(pluginPath);

Create input and output objects for an audio stream loop that reads from a file and writes to your
audio device. Set the sample rate of the hosted plugin to the sample rate of the input to the plugin.

fileReader = dsp.AudioFileReader('FunkyDrums-44p1-stereo-25secs.mp3');
deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);
setSampleRate(hostedPlugin,fileReader.SampleRate);

Set the MediumPeakGain property to -20 dB.

hostedPlugin.MediumPeakGain = -20;

Use the hosted plugin to process the audio file in an audio stream loop. Sweep the medium peak gain
upward in the loop to hear the effect.

2 Functions

2-582

while hostedPlugin.MediumPeakGain < 19
 hostedPlugin.MediumPeakGain = hostedPlugin.MediumPeakGain + 0.04;
 x = fileReader();
 y = process(hostedPlugin,x);
 deviceWriter(y);
end

release(fileReader)
release(deviceWriter)

Run External Source Plugin in MATLAB

Load a VST audio source plugin into MATLAB™ by specifying its full path. If you are using a Mac,
replace the .dll file extension with .vst.

pluginPath = fullfile(matlabroot,'toolbox','audio','samples','oscillator.dll');
hostedSourcePlugin = loadAudioPlugin(pluginPath);

Set the Amplitude property to 0.5. Set the Frequency property to 16 kHz.

hostedSourcePlugin.Amplitude = 0.5;
hostedSourcePlugin.Frequency = 16000;

Set the sample rate at which to run the plugin. Create an output object to write to your audio device.

setSampleRate(hostedSourcePlugin,44100);
deviceWriter = audioDeviceWriter('SampleRate',44100);

Use the hosted source plugin to output an audio stream. The processing in the audio stream loop
ramps the frequency parameter down and then up.

k = 1;
for i = 1:1000
 hostedSourcePlugin.Frequency = hostedSourcePlugin.Frequency - 30*k;
 y = process(hostedSourcePlugin);
 deviceWriter(y);
 if (hostedSourcePlugin.Frequency - 30 <= 0.1) || (hostedSourcePlugin.Frequency + 30 >= 20e3)
 k = -1*k;
 end
end

release(deviceWriter)

Input Arguments
pluginpath — Location of external plugin
character vector | string

Location of the external plugin, specified as a character vector. Use the full path to specify the audio
plugin you want to host in MATLAB. If the plugin is located in the current folder, specify it by its
name.
Example: loadAudioPlugin('coolPlugin.dll')

 loadAudioPlugin

2-583

Example: loadAudioPlugin('C:\Program Files\VSTPlugins\coolPlugin.dll')

Plugin Path for Mac

For macOS, the plugin locations are predetermined depending on if the plugin was saved system wide
or for a particular user.

This table shows the system-wide paths.

Plugin Type Path
VST 2 /Library/Audio/Plug-Ins/VST/coolPlugin.vst
VST 3 /Library/Audio/Plug-Ins/VST3/coolPlugin.vst3
AU /Library/Audio/Plug-Ins/Components/coolPlugin.component

This table shows the user-specific paths.

Plugin Type Path
VST 2 ~/Library/Audio/Plug-Ins/VST/coolPlugin.vst
VST 3 ~/Library/Audio/Plug-Ins/VST3/coolPlugin.vst3
AU ~/Library/Audio/Plug-Ins/Components/coolPlugin.component

Output Arguments
hostedPlugin — Object of external plugin
externalAudioPlugin | externalAudioSourcePlugin

Object of an external plugin, derived from the externalAudioPlugin or
externalAudioSourcePlugin class. You can interact with the hosted plugin as a DAW would, with
the additional functionality of the MATLAB environment.

Limitations
• The loadAudioPlugin function supports 64-bit plugins only. You cannot load 32-bit plugins using

the loadAudioPlugin function.
• Saving an external plugin as a MAT-file and then loading it preserves the external settings and

parameters of the plugin but does not preserve its internal state or memory. Do not save and load
your plugins when you are processing audio.

Version History
Introduced in R2016b

See Also
parameterTuner | Audio Test Bench | audioPlugin | audioPluginSource |
externalAudioPlugin | externalAudioPluginSource

Topics
“Host External Audio Plugins”

2 Functions

2-584

midicallback
Call function handle when MIDI controls change value

Syntax
oldFunctionHandle = midicallback(midicontrolsObject,functionHandle)
oldFunctionHandle = midicallback(midicontrolsObject,[])
currentFunctionHandle = midicallback(midicontrolsObject)

Description
oldFunctionHandle = midicallback(midicontrolsObject,functionHandle) sets
functionHandle as the function handle called when midicontrolsObject changes value, and
returns the previous function handle, oldFunctionHandle.

oldFunctionHandle = midicallback(midicontrolsObject,[]) clears the function handle.

currentFunctionHandle = midicallback(midicontrolsObject) returns the current
function handle.

Examples

Interactively Read MIDI Controls

Create a default MIDI controls object. Use midicallback to associate an anonymous function with
your MIDI controls object, mc.

mc = midicontrols;
midicallback(mc,@(x)disp(midiread(x)));

Move any control on your default MIDI device to display its current normalized value on the
command line.

 0.5079

 0.5000

 0.4921

 0.4841

 0.4762

 0.4683

 0.4603

 0.4683

 midicallback

2-585

Use midicallback to Update Plot

Use midiid to identify the name of your MIDI device and a specified control. Move the MIDI control
you want to identify.

[controlNumber,deviceName] = midiid;

Move the control you wish to identify; type ^C to abort.
Waiting for control message...

Create an object that responds to the control you specified.

midicontrolsObject = midicontrols(controlNumber);

Define a function that plots a sinusoid with the amplitude set by your MIDI control. Make the axis
constant.

axis([0,2*pi,-1,1]);
axis manual
hold on
sinePlotter = @(obj) plot(0:0.1:2*pi,midiread(obj).*sin(0:0.1:2*pi));

Use the midicallback function to associate your sinePlotter function with the control specified
by your midicontrolsObject. Move your specified MIDI control. The plot updates automatically
with the sinusoid amplitude specified by your MIDI control.

midicallback(midicontrolsObject,sinePlotter)

2 Functions

2-586

Change Function Handle Associated with MIDI Control

Create an object that responds to any control on the default MIDI device.

midicontrolsObject = midicontrols;

Define an anonymous function to display the current value of the MIDI control. Use midicallback
to associate your MIDI control object with the function you created. Verify that your object is
associated with your function.

displayControlValue = @(object) disp(midiread(object));
midicallback(midicontrolsObject,displayControlValue);
currentFunctionHandle = midicallback(midicontrolsObject)

currentFunctionHandle =

 @(object)disp(midiread(object))

Move any control on your default MIDI device to display its current normalized value on the
command line.

 0.3095

 0.4603

 0.6746

 0.7381

 midicallback

2-587

 0.8175

 0.8571

 0.9048

Define an anonymous function to print the current value of the MIDI control rounded to two
significant digits. Use midicallback to associate your MIDI controls object with the function you
created. Return the old function handle.
displayRoundedControlValue = @(object) fprintf('%.2f\n',midiread(object));
oldFunctionHandle = midicallback(midicontrolsObject,displayRoundedControlValue)

oldFunctionHandle =

 @(object)disp(midiread(object))

Move a control to display its current normalized value rounded to two significant digits.

0.91
0.83
0.67
0.49
0.29
0.18
0.05

Remove the association between the object and the function. Return the old function handle.

oldFunctionHandle = midicallback(midicontrolsObject,[])

oldFunctionHandle =

 @(object)fprintf('%.2f\n',midiread(object))

Verify that no function is associated with your MIDI controls object.

currentFunctionHandle = midicallback(midicontrolsObject)

currentFunctionHandle =

 []

Associate a Function with MIDI Controls

Define this function and save it to your current folder.

function plotSine(midicontrolsObject)

frequency = midiread(midicontrolsObject);

x = 0:0.01:10;

sinusoid = sin(2*pi*frequency.*x);

plot(x,sinusoid)
axis([0,10,-1.1,1.1]);

2 Functions

2-588

ylabel('Amplitude');
xlabel('Time (s)');
title('Sine Plot')
legend(sprintf('Frequency = %0.2f Hz',frequency));

end

Create a midicontrols object. Create a function handle for your plotSine function. Use
midicallback to associate your midicontrolsObject with plotSineHandle.

Move any controller on your MIDI device to plot a sinusoid. The sinusoid frequency updates when you
move MIDI controls.

midicontrolsObject = midicontrols;
plotSineHandle = @plotSine;
midicallback(midicontrolsObject,plotSineHandle);

Input Arguments
midicontrolsObject — Object that listens to the controls on a MIDI device
object

Object that listens to the controls on a MIDI device, specified as an object created by midicontrols.

functionHandle — New function handle
function handle

 midicallback

2-589

New function handle, specified as a function handle that contains one input argument. The new
function handle is called when midicontrolsObject changes value. For information on what
function handles are, see “Function Handles”.

Output Arguments
oldFunctionHandle — Old function handle
function handle

Old function handle set by the previous call to midicallback, returned as a function handle.

currentFunctionHandle — Current function handle
function handle

The function handle set by the most recent call to midicallback, returned as a function handle.

Version History
Introduced in R2016a

See Also
parameterTuner | Audio Test Bench | getMIDIConnections | configureMIDI |
disconnectMIDI | midicontrols | midiread | midisync | midiid | setpref

Topics
“MIDI Control Surface Interface”
“MIDI Control for Audio Plugins”

2 Functions

2-590

midicontrols
Open group of MIDI controls for reading

Syntax
midicontrolsObject = midicontrols
midicontrolsObject = midicontrols(controlNumbers)
midicontrolsObject = midicontrols(controlNumbers,initialValues)
midicontrolsObject = midicontrols(___ ,'MIDIDevice',deviceName)
midicontrolsObject = midicontrols(___ ,'OutputMode',mode)

Description
midicontrolsObject = midicontrols returns an object that listens to all controls on your
default MIDI device.

Call midiread with the object to return the values of controls on your MIDI device. If you call
midiread before a control is moved, midiread returns the initial value of your midicontrols
object.

midicontrolsObject = midicontrols(controlNumbers) listens to controls specified by
controlNumbers on your default MIDI device.

midicontrolsObject = midicontrols(controlNumbers,initialValues) specifies
initialValues associated with controlNumbers.

midicontrolsObject = midicontrols(___ ,'MIDIDevice',deviceName) specifies the MIDI
device your midicontrols object listens to, using any of the previous syntaxes.

midicontrolsObject = midicontrols(___ ,'OutputMode',mode) specifies the range of
values returned by midiread and accepted as initialValues for midicontrols and as
controlValues for midisync.

Examples

Listen to Any Control on Default Device

Create a midicontrols object and read the default control value.

midicontrolsObject = midicontrols
midiread(midicontrolsObject)

midicontrolsObject =

midicontrols object: any control on 'BCF2000'

ans =

 0

 midicontrols

2-591

Move any control on your MIDI device. Use midiread to return the most recent value of the last
control moved.

midiread(midicontrolsObject)

ans =

 0.3810

Listen to Specific Control

Use midiid to identify the name of your MIDI device and a specified control. Move the MIDI control
you want to identify.

[controlNumber,deviceName] = midiid;

Move the control you wish to identify; type ^C to abort.
Waiting for control message...

Create an object that responds to the control you specified.

midicontrolsObject = midicontrols(controlNumber);

Move your selected MIDI control, and then use midiread to return its most recent value.

midicontrolsObject = midiread(midicontrolsObject);

ans =

 0.4048

Specify Control Numbers and Initial Value

Determine the control numbers of four different controls on your MIDI device.

[controlNumber1,~] = midiid;
[controlNumber2,~] = midiid;
[controlNumber3,~] = midiid;
[controlNumber4,~] = midiid;

controlNumbers = [controlNumber1,controlNumber3;...
 controlNumber2,controlNumber4]

Move the control you wish to identify; type ^C to abort.
Waiting for control message... done
Move the control you wish to identify; type ^C to abort.
Waiting for control message... done
Move the control you wish to identify; type ^C to abort.
Waiting for control message... done
Move the control you wish to identify; type ^C to abort.
Waiting for control message... done

controlNumbers =

 1081 1085
 1082 1087

2 Functions

2-592

Create a midicontrols object that listens to your specified controls. Specify an initial value for all
controls.

initialValue = 0.5;
midicontrolsObject = midicontrols(controlNumbers,initialValue);

Move one of your specified controls, and then read the latest value of all your specified controls.

midiread(midicontrolsObject)

ans =

 0.0873 0.5000
 0.5000 0.5000

Specify Controls Numbers, Initial Value, and Output Mode

Determine the control numbers of two different controls on your MIDI device.

[controlNumber1,~] = midiid;
[controlNumber2,~] = midiid;

controlNumbers = [controlNumber1,controlNumber2];

Move the control you wish to identify; type ^C to abort.
Waiting for control message... done
Move the control you wish to identify; type ^C to abort.
Waiting for control message... done

Create a midicontrols object that listens to your specified controls. Specify an initial value for all
controls.
initialValue = 12;
midicontrolsObject = midicontrols(controlNumbers,initialValue,'OutputMode','rawmidi');

Move one of your specified controls, and then read the latest value of all your specified controls.

midiread(midicontrolsObject)

ans =

 63 12

Set the Default MIDI Device

Assume that your MIDI device is a Behringer BCF2000. Enter this syntax at the MATLAB command
line:

setpref midi DefaultDevice BCF2000

This preference persists across MATLAB sessions. You do not need to set it again unless you want to
change your default device.

 midicontrols

2-593

Specify Control Numbers and MIDI Device Name

Assume that your MIDI device is a Behringer BCF2000 and has a control with identification number
1001. Create a midicontrols object, which listens to control number 1001 on your Behringer
BCF2000 device.

midicontrolsObject = midicontrols(1001,'MIDIDevice','BCF2000');

Input Arguments
controlNumbers — MIDI device control numbers
integer | array of integers

MIDI device control numbers, specified as an integer or array of integers. Use midiid to
interactively identify the control numbers of your device. See “MIDI Device Control Numbers” on
page 2-595 for an advanced explanation of how controlNumbers are determined.

If you specify controlNumbers as an empty vector, [], then the midicontrols object responds to
any control on your MIDI device.
Example: 1081
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

initialValues — Initial values of MIDI controls
0 (default) | scalar | array the same size as controlNumbers

Initial values of MIDI controls, specified as a scalar or an array the same size as controlNumbers. If
you specify initialValues as a scalar, all controls specified by controlNumbers are assigned that
value.

The value associated with your MIDI controls cannot be determined until you move a MIDI control. If
you specify an initial value associated with your MIDI control, the initial value is returned by the
midiread function until the MIDI control is moved.

• If OutputMode is specified as 'normalized', then initial values must be in the range [0,1].
Actual initial values are quantized and can be slightly different from initial values specified when
your midicontrols object is created.

• If OutputMode is specified as 'rawmidi', then initial values must be integers in the range
[0,127]

Example: 0.3
Example: [0,0.3,0.6]
Example: 5
Example: [5;15;20]
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

deviceName — MIDI device name
character vector | string

MIDI device name, assigned by the device manufacturer or host operating system, specified as a
string. The specified deviceName can be a substring of the exact name of your device. If you do not

2 Functions

2-594

specify deviceName, the default MIDI device is used. See “Set the Default MIDI Device” on page 2-
593 for an example of specifying a default MIDI device.

If you do not set a default MIDI device, the host operating system chooses the default device in an
unspecified way. As a best practice, use midiid to identify the name of the device you want.
Example: 'MIDIDevice','BCF2000 MIDI 1'
Data Types: char | string

mode — Output mode for MIDI control value
'normalized' (default) | 'rawmidi'

Output mode for MIDI control value, specified as 'normalized' or 'rawmidi'.

• 'normalized' — Values of your MIDI control are normalized. If your midicontrols object is
called by midiread, then values in the range [0,1] are returned.

• 'rawmidi' — Values of your MIDI control are not normalized. If your midicontrols object is
called by midiread, then integer values in the range [0,127] are returned.

Example: 'OutputMode','normalized'
Example: 'OutputMode','rawmidi'
Data Types: char | string

Output Arguments
midicontrolsObject — Object that listens to the controls on a MIDI device
object

Object that listens to the controls on a MIDI device.

More About
MIDI Device Control Numbers

MATLAB defines MIDI device control numbers as (MIDI Channel Number) × 1000 + (MIDI Controller
Number).

• MIDI Channel Number is the transmission channel that your device uses to send messages. This
value is in the range 1–16.

• MIDI Controller Number is a number assigned to an individual control on your MIDI device. This
value is in the range 1–127.

Your MIDI device determines the values of MIDI Channel Number and MIDI Controller Number.

Version History
Introduced in R2016a

See Also
parameterTuner | Audio Test Bench | getMIDIConnections | configureMIDI |
disconnectMIDI | midicallback | midiread | midisync | midiid | setpref

 midicontrols

2-595

Topics
“MIDI Control Surface Interface”
“MIDI Control for Audio Plugins”

2 Functions

2-596

midiid
Interactively identify MIDI control

Syntax
[controlNumber,deviceName] = midiid

Description
[controlNumber,deviceName] = midiid returns the control number and device name of the
MIDI control you move. Call the function and then move the control you want to identify. The function
detects which control you move and returns the control number and device name that specify that
control.

Examples

Identify Control Number and Device Name

Call midiid and then move the control you want to identify on the MIDI device you want to identify.

[ctl,dev] = midiid;

Move the control you wish to identify; type ^C to abort.
Waiting for control message...

ctl =
1002
dev =
nanoKONTROL

Output Arguments
controlNumber — MIDI device control number
integer

MIDI device control number, specified as an integer. The device manufacturer assigns the value to the
control for identification purposes.

deviceName — MIDI device name
string

MIDI device name assigned by the device manufacturer or host operating system, specified as a
string.

Version History
Introduced in R2016a

 midiid

2-597

See Also
getMIDIConnections | configureMIDI | disconnectMIDI | midiread | midisync |
midicallback | setpref | parameterTuner | Audio Test Bench

Topics
“MIDI Control Surface Interface”
“MIDI Control for Audio Plugins”

2 Functions

2-598

midiread
Return most recent value of MIDI controls

Syntax
controlValues = midiread(midicontrolsObject)

Description
controlValues = midiread(midicontrolsObject) returns the most recent value of the MIDI
controls associated with the specified midicontrolsObject. To create this object, use the
midicontrols function.

Examples

Read Control Values of MIDI Device

midicontrolsObject = midicontrols;
controlValue = midiread(midicontrolsObject);

Read Multiple Control Values of MIDI Device

Identify two MIDI controls on your MIDI device.

[controlOne,~] = midiid
[controlTwo,~] = midiid

Move the control you wish to identify; type ^C to abort.
Waiting for control message... done

controlOne =

 1081

Move the control you wish to identify; type ^C to abort.
Waiting for control message... done

controlTwo =

 1082

Create a MIDI controls object that listens to both controls you identified.

controlNumbers = [controlOne,controlTwo];
midicontrolsObject = midicontrols(controlNumbers);

Move your specified MIDI controls and return their values. The values are returned as a vector that
corresponds to your control numbers vector, controlNumbers.

 midiread

2-599

tic
while toc < 5
 controlValues = midiread(midicontrolsObject)
end

controlValues =

 0.0397 0.0556

Read Control Values in an Audio Stream Loop

Use midiid to identify the name of your MIDI device and a specified control. Move the MIDI control
you want to identify.

[controlNumber, deviceName] = midiid;

Move the control you wish to identify; type ^C to abort.
Waiting for control message... done

Create a MIDI controls object. The value associated with your MIDI controls object cannot be
determined until you move the MIDI control. Specify an initial value associated with your MIDI
control. The midiread function returns the initial value until the MIDI control is moved.

initialControlValue = 1;
midicontrolsObject = midicontrols(controlNumber,initialControlValue);

Create a dsp.AudioFileReader System object with default settings. Create an
audioDeviceWriter System object and specify the sample rate.

fileReader = dsp.AudioFileReader('RockDrums-44p1-stereo-11secs.mp3');
deviceWriter = audioDeviceWriter(...
 'SampleRate',fileReader.SampleRate);

In an audio stream loop, read an audio signal frame from the file, apply gain specified by the control
on your MIDI device, and then write the frame to your audio output device. By default, the control
value returned by midiread is normalized.

while ~isDone(fileReader)
 audioData = step(fileReader);

 controlValue = midiread(midicontrolsObject);

 gain = controlValue*2;
 audioDataWithGain = audioData*gain;

 play(deviceWriter,audioDataWithGain);
end

Close the input file and release your output device.

2 Functions

2-600

release(fileReader);
release(deviceWriter);

Input Arguments
midicontrolsObject — Object that listens to the controls on a MIDI device
object

Object that listens to the controls on a MIDI device, specified as an object created by midicontrols.

Output Arguments
controlValues — Most recent values of MIDI controls
[0,1] (default) | integer values in the range [0,127]

Most recent values of MIDI controls, returned as normalized values in the range [0,1], or as integer
values in the range [0,127]. The output values depend on the OutputMode specified when your
midicontrols object is created.

• If OutputMode was specified as 'normalized', then midiread returns values in the range
[0,1]. The default OutputMode is 'normalized'.

• If OutputMode was specified as 'rawmidi', then midiread returns integer values in the range
[0,127], and no quantization is required.

Version History
Introduced in R2016a

See Also
Audio Test Bench | parameterTuner | getMIDIConnections | configureMIDI |
disconnectMIDI | midicontrols | midicallback | midisync | midiid | setpref

Topics
“MIDI Control Surface Interface”
“MIDI Control for Audio Plugins”

 midiread

2-601

midisync
Send values to MIDI controls for synchronization

Syntax
midisync(midicontrolsObject)
midisync(midicontrolsObject,controlValues)

Description
midisync(midicontrolsObject) sends the initial values of controls to your MIDI device, as
specified by your MIDI controls object. To create this object, use the midicontrols function. If your
MIDI device can receive and respond to messages, it adjusts its controls as specified.

Note Many MIDI devices are not bidirectional. Calling midisync with a unidirectional device has no
effect. midisync cannot tell whether a value is successfully sent to a device or even whether the
device is bidirectional. If sending a value fails, no errors or warnings are generated.

midisync(midicontrolsObject,controlValues) sends controlValues to the MIDI controls
associated with the specified midicontrolsObject.

Examples

Synchronize MIDI Control to Initial Value

Use midiid to identify a control on your default MIDI device.

[controlNumber,~] = midiid;

Move the control you wish to identify; type ^C to abort.
Waiting for control message... done

Create a MIDI controls object. Specify an initial value for your control. Call midisync to set the
specified control on your device to the initial value.

initialValue = 0.5;
midicontrolsObject = midicontrols(controlNumber,initialValue);
midisync(midicontrolsObject);

Synchronize MIDI Control to Specified Value

Use midiid to identify three controls on your default MIDI device.

[controlNumber1,~] = midiid;
[controlNumber2,~] = midiid;
[controlNumber3,~] = midiid;
controlNumbers = [controlNumber1,controlNumber2,controlNumber3];

2 Functions

2-602

Move the control you wish to identify; type ^C to abort.
Waiting for control message... done
Move the control you wish to identify; type ^C to abort.
Waiting for control message... done
Move the control you wish to identify; type ^C to abort.
Waiting for control message... done

Create a MIDI controls object. Specify initial values for your controls. Call midisync to set the
specified control on your device to the initial value.

controlValues = [0,0,1];
midicontrolsObject = midicontrols(controlNumbers,controlValues);
midisync(midicontrolsObject);

Create a loop that updates your control values and synchronizes those values to the physical controls
on your device.

for i = 1:100
 controlValues = controlValues + [0.006,0.008,-0.008];
 midisync(midicontrolsObject,controlValues);
 pause(0.1)
end

Create UI Slider and Synchronize with MIDI Control

Define this function and save it to your current folder.

function trivialmidigui(controlNumber,deviceName)

 slider = uicontrol('Style','slider');
 mc = midicontrols(controlNumber,'MIDIDevice',deviceName);
 midisync(mc);
 set(slider,'Callback',@slidercb);
 midicallback(mc, @mccb);

 function slidercb(slider,~)
 val = get(slider,'Value');
 midisync(mc, val);
 disp(val);
 end

 function mccb(mc)
 val = midiread(mc);
 set(slider,'Value',val);
 disp(val);
 end

end

Use midiid to identify a control number and device name. Call the function you created, specifying
the control number and device name as inputs.

[controlNumber,deviceName] = midiid;
trivialmidigui(controlNumber,deviceName)

 midisync

2-603

The slider on the user interface is synchronized with the specified control on your device. Move one
to see the other respond.

Input Arguments
midicontrolsObject — Object that listens to the controls on a MIDI device
object

Object that listens to the controls on a MIDI device, specified as an object created by midicontrols.

controlValues — Values sent to MIDI device
initial values specified by midicontrolsObject (default) | scalar | array

Values sent to MIDI device, specified as a scalar or an array the same size as controlNumbers of the
associated midicontrols object. If you do not specify controlValues, the default value is the
initialValues of the associated midicontrols object.

The possible range for controlValues depends on the OutputMode of the associated
midicontrols object.

• If OutputMode is specified as 'normalized', then controlValues must consist of values in the
range [0,1]. The default OutputMode is 'normalized'.

• If OutputMode is specified as 'rawmidi', then controlValues must consist of integer values in
the range [0,127].

Example: 0.3
Example: [0,0.3,0.6]
Example: 5
Example: [5;15;20]
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Version History
Introduced in R2016a

See Also
Audio Test Bench | parameterTuner | getMIDIConnections | configureMIDI |
disconnectMIDI | midicontrols | midiread | midicallback | midiid | setpref

Topics
“MIDI Control Surface Interface”
“MIDI Control for Audio Plugins”

2 Functions

2-604

validateAudioPlugin
Test MATLAB source code for audio plugin

Syntax
validateAudioPlugin classname
validateAudioPlugin options classname

Description
validateAudioPlugin classname generates and runs a “Test Bench Procedure” on page 2-607
that exercises your audio plugin class.

validateAudioPlugin options classname specifies options to modify the default “Test Bench
Procedure” on page 2-607.

Examples

Validate Audio Plugin

validateAudioPlugin audiopluginexample.Echo

Checking plug-in class 'audiopluginexample.Echo'... passed.
Generating testbench file 'testbench_Echo.m'... done.
Running testbench... passed.
Generating mex file 'testbench_Echo_mex.mexw64'... done.
Running mex testbench... passed.
Deleting testbench.
Ready to generate audio plug-in.

Skip MEX Version of Test Bench

validateAudioPlugin -nomex audiopluginexample.Echo

Checking plug-in class 'audiopluginexample.Echo'... passed.
Generating testbench file 'testbench_Echo.m'... done.
Running testbench... passed.
Skipping mex.
Deleting testbench.

Keep Test Benches After Validation

validateAudioPlugin -keeptestbench audiopluginexample.Echo

Checking plug-in class 'audiopluginexample.Echo'... passed.
Generating testbench file 'testbench_Echo.m'... done.
Running testbench... passed.
Generating mex file 'testbench_Echo_mex.mexw64'... done.

 validateAudioPlugin

2-605

Running mex testbench... passed.
Keeping testbench.
Ready to generate audio plug-in.

Two test benches are saved to your current folder:

• testbench_Echo.m
• testbench_Echo_mex.mexw64

Skip MEX Version and Keep Test Bench

validateAudioPlugin -keeptestbench -nomex audiopluginexample.Echo

Checking plug-in class 'audiopluginexample.Echo'... passed.
Generating testbench file 'testbench_Echo.m'... done.
Running testbench... passed.
Skipping mex.
Keeping testbench.

One test bench is saved to your current folder:

• testbench_Echo.m

Input Arguments
options — Options to modify test bench procedure
-nomex | -keeptestbench | -audioconfig cfg

Options to modify test bench procedure, specified as -nomex, -keeptestbench, or -audioconfig
cfg. Options can be specified together or separately, and in any order.

You can also specify these options and validate plugins using the generateAudioPlugin user
interface (UI).

Option generateAudioPlugin UI
Setting

Description

-nomex Clear the Run a MEX
version of the test bench
option

Do not generate and run a MEX version of the
test bench file. This option significantly reduces
run time of the test bench procedure.

-keeptestbench Save test benches to
output folder

Save the generated test benches to the current
folder. In the generateAudioPlugin UI, the
test benches are saved to the folder specified by
Output folder.

-audioconfig
cfg

Coder Configuration
section

Specify deep learning and code replacement
configuration for coder. See
audioPluginConfig for more details

classname — Name of the plugin class to validate
plugin class

2 Functions

2-606

Name of the plugin class to validate. The plugin class must derive from either the audioPlugin class
or the audioPluginSource class. The validateAudioPlugin function exercises an instance of
the specified plugin class.

You can specify the plugin class to validate by specifying its class name or file name. For example, the
following syntaxes perform equivalent operations:

• validateAudioPlugin myPlugin
• validateAudioPlugin myPlugin.m

If you want to specify the plugin class by file name, and your plugin class is inside a package, you
must specify the package as a file path. For example, the following syntaxes perform equivalent
operations:

• validateAudioPlugin myPluginPackage.myPlugin
• validateAudioPlugin +myPluginPackage/myPlugin.m

Limitations
The validateAudioPlugin function is compatible with Windows and Mac operating systems. It is
not compatible with Linux.

More About
Test Bench Procedure

The validateAudioPlugin function uses dynamic testing to find common audio plugin
programming mistakes not found by the static checks performed by generateAudioPlugin. The
function:

1 Runs a subset of error checks performed by generateAudioPlugin.
2 Generates and runs a MATLAB test bench to exercise the class.
3 Generates and runs a MEX version of the test bench.
4 Removes the generated test benches.

If the plugin class fails testing, step 4 is automatically omitted. To debug your plugin, step through
the saved generated test bench.

If you use the -keeptestbench option, or if an error occurs during validation, the test bench files
are saved to your current folder.

Version History
Introduced in R2016a

See Also
Audio Test Bench | generateAudioPlugin | parameterTuner | audioPlugin |
audioPluginSource | audioPluginConfig

Topics
“Audio Plugins in MATLAB”

 validateAudioPlugin

2-607

acousticLoudness
Perceived loudness of acoustic signal

Syntax
loudness = acousticLoudness(audioIn,fs)
loudness = acousticLoudness(audioIn,fs,calibrationFactor)
loudness = acousticLoudness(SPLIn)
loudness = acousticLoudness(___ ,Name,Value)

[loudness,specificLoudness] = acousticLoudness(___)

[loudness,specificLoudness,perc] = acousticLoudness(___ ,'TimeVarying',true)
[loudness,specificLoudness,perc] = acousticLoudness(___ ,'TimeVarying',true,
'Percentiles',p)

acousticLoudness(___)

Description
loudness = acousticLoudness(audioIn,fs) returns loudness in sones according to ISO 532-1
(Zwicker).

loudness = acousticLoudness(audioIn,fs,calibrationFactor) specifies a nondefault
microphone calibration factor used to compute loudness.

loudness = acousticLoudness(SPLIn) computes loudness using one-third-octave-band sound
pressure levels (SPL).

loudness = acousticLoudness(___ ,Name,Value) specifies options using one or more
Name,Value pair arguments.
Example: loudness = acousticLoudness(audioIn,fs,'Method','ISO 532-2') returns
loudness according to ISO 532-2 (Moore-Glasberg).

[loudness,specificLoudness] = acousticLoudness(___) also returns the specific
loudness.

[loudness,specificLoudness,perc] = acousticLoudness(___ ,'TimeVarying',true)
also returns percentile loudness.

[loudness,specificLoudness,perc] = acousticLoudness(___ ,'TimeVarying',true,
'Percentiles',p) specifies nondefault percentiles to return.

acousticLoudness(___) with no output arguments plots specific loudness and displays loudness
textually. If TimeVarying is true, both loudness and specific loudness are plotted, with the latter in
3-D.

Examples

2 Functions

2-608

Measure Acoustic Loudness

Measure the ISO 532-1 stationary free-field loudness. Assume the recording level is calibrated such
that a 1 kHz tone registers as 100 dB on a SPL meter.

[audioIn,fs] = audioread('WashingMachine-16-44p1-stereo-10secs.wav');

loudness = acousticLoudness(audioIn,fs)

loudness = 1×2

 28.2688 27.7643

Measure Loudness and Sharpness of Stationary Signals

Create two stationary signals with equivalent power: a pink noise signal and a white noise signal.

fs = 48e3;
dur = 5;
pnoise = 2*pinknoise(dur*fs);
wnoise = rand(dur*fs,1) - 0.5;
wnoise = wnoise*sqrt(var(pnoise)/var(wnoise));

Call acousticLoudness using the default ISO 532-1 (Zwicker) method and no output arguments to
plot the loudness of the pink noise. Call acousticLoudness again, this time with output arguments,
to get the specific loudness.

figure
acousticLoudness(pnoise,fs)

 acousticLoudness

2-609

[~,pSpecificLoudness] = acousticLoudness(pnoise,fs);

Plot the loudness for the white noise signal and then get the specific loudness values.

figure
acousticLoudness(wnoise,fs)

2 Functions

2-610

[~,wSpecificLoudness] = acousticLoudness(wnoise,fs);

Call the acousticSharpness function to compare the sharpness of the pink noise and white noise.

pSharpness = acousticSharpness(pSpecificLoudness);
wSharpness = acousticSharpness(wSpecificLoudness);
fprintf('Sharpness of pink noise = %0.2f acum\n',pSharpness)

Sharpness of pink noise = 2.00 acum

fprintf('Sharpness of white noise = %0.2f acum\n',wSharpness)

Sharpness of white noise = 2.62 acum

Time-Varying Loudness and Percentiles

Read in an audio file.

[audioIn,fs] = audioread('JetAirplane-16-11p025-mono-16secs.wav');

Plot the time-varying acoustic loudness in accordance with ISO 532-1 and get the percentiles. Listen
to the audio signal.

acousticLoudness(audioIn,fs,'SoundField','diffuse','TimeVarying',true)

 acousticLoudness

2-611

sound(audioIn,fs)

Call acousticLoudness again with the same inputs and get the percentiles. Print the Nmax and N5
percentiles. The Nmax percentile is the maximum loudness reported. The N5 percentile is the
loudness below which is 95% of the reported loudness.

[~,~,perc] = acousticLoudness(audioIn,fs,'SoundField','diffuse','TimeVarying',true);
fprintf('Max loudness = %0.2f sones\n',perc(1))

Max loudness = 89.48 sones

fprintf('N5 loudness = %0.2f sones\n',perc(2))

N5 loudness = 81.77 sones

Measure Acoustic Loudness from Sound Pressure Level

Read in an audio file.

[audioIn,fs] = audioread('Turbine-16-44p1-mono-22secs.wav');

Call acousticLoudness with no output arguments to plot the specific loudness. Assume a
calibration factor of 0.15 and a reference pressure of 21 micropascals. To determine the calibration
factor specific to your audio system, use the calibrateMicrophone function.

2 Functions

2-612

calibrationFactor = 0.15;
refPressure = 21e-6;
acousticLoudness(audioIn,fs,calibrationFactor,'PressureReference',refPressure)

acousticLoudness enables you to specify an intermediate representation, sound pressure levels,
instead of a time-domain input. This enables you to reuse intermediate SPL calculations. Another
advantage is that if your physical SPL meter does not report loudness in accordance to ISO 532-1 or
ISO 531-2, you can use the reported 1/3-octave SPLs to calculate standard-compliant loudness.

To calculate sound pressure levels from an audio signal, first create an splMeter object. Call the
splMeter object with the audio input.

spl = splMeter("SampleRate",fs,"Bandwidth","1/3 octave", ...
 "CalibrationFactor",calibrationFactor,"PressureReference",refPressure, ...
 "FrequencyWeighting","Z-weighting","OctaveFilterOrder",6);

splMeasurement = spl(audioIn);

Compute the mean SPL level, skipping the first 0.2 seconds. Only keep the bands from 25 Hz to 12.5
kHz (the first 28 bands).

SPLIn = mean(splMeasurement(ceil(0.2*fs):end,1:28));

Using the SPL input, call acousticLoudness with no output arguments to plot the specific
loudness.

acousticLoudness(SPLIn)

 acousticLoudness

2-613

Loudness Measurements Using Calibrated Microphone

Set up an experiment as indicated by the diagram.

2 Functions

2-614

Create an audioDeviceReader object to read from the microphone and an audioDeviceWriter
object to write to your speaker.

fs = 48e3;
deviceReader = audioDeviceReader(fs);
deviceWriter = audioDeviceWriter(fs);

Create an audioOscillator object to generate a 1 kHz sinusoid.

osc = audioOscillator("sine",1e3,"SampleRate",fs);

Create a dsp.AsyncBuffer object to buffer data acquired from the microphone.

dur = 5;
buff = dsp.AsyncBuffer(dur*fs);

For five seconds, play the sinusoid through your speaker and record using your microphone. While
the audio streams, note the loudness as reported by your SPL meter. Once complete, read the
contents of the buffer object.

numFrames = dur*(fs/osc.SamplesPerFrame);
for ii = 1:numFrames
 audioOut = osc();
 deviceWriter(audioOut);

 audioIn = deviceReader();
 write(buff,audioIn);
end

SPLreading = 60.4;

micRecording = read(buff);

To compute the calibration factor for the microphone, use the calibrateMicrophone function.

calibrationFactor = calibrateMicrophone(micRecording,deviceReader.SampleRate,SPLreading);

 acousticLoudness

2-615

Call acousticLoudness with the microphone recording, sample rate, and calibration factor. The
loudness reported from acousticLoudness is the true acoustic loudness measurement as specified
by 532-1.

loudness = acousticLoudness(micRecording,deviceReader.SampleRate,calibrationFactor)

loudness = 14.7902

You can now use the calibration factor you determined to measure the loudness of any sound that is
acquired through the same microphone recording chain.

Plot Specific Loudness Over Hertz

Read in an audio signal.

[audioIn,fs] = audioread('TrainWhistle-16-44p1-mono-9secs.wav');

ISO 532-1

Determine the time-varying specific loudness according to the default method (ISO 532-1).

[~,specificLoudness] = acousticLoudness(audioIn,fs,'TimeVarying',true);

ISO 532-1 reports specific loudness over Bark, where the Bark bins are 0.1:0.1:24. Convert the
Bark bins to Hz and then plot the specific loudness over Hz across time.

barkBins = 0.1:0.1:24;
hzBins = bark2hz(barkBins);

t = 0:2e-3:2e-3*(size(specificLoudness,1)-1);
surf(t,hzBins,sum(specificLoudness,3).','EdgeColor','interp')
set(gca,'YScale','log')
view([0 90])
axis tight
xlabel('Time (s)')
ylabel('Frequency (Hz)')
colorbar
title('Specific Loudness (sones/Bark)')

2 Functions

2-616

ISO 532-2

Determine the stationary specific loudness according to the Moore-Glasberg method (ISO 532-2).

[~,specificLoudness] = acousticLoudness(audioIn,fs,'Method','ISO 532-2');

ISO 532-2 reports specific loudness over the ERB scale, where the ERB bins are 1.8:0.1:38.9. The
unit of the ERB scale is sometimes referred to as Cam. Convert the ERB bins to Hz and then plot the
specific loudness.

erbBins = 1.8:0.1:38.9;
hzBins = erb2hz(erbBins);

semilogx(hzBins,specificLoudness)
xlabel('Frequency (Hz)')
ylabel('Loudness (sones)')
title('Specific Loudness')
grid on

 acousticLoudness

2-617

Loudness Using Custom Earphone Responses

Read in an audio file.

[x,fs] = audioread('WashingMachine-16-44p1-stereo-10secs.wav');

ISO 532-2 enables you to specify a custom earphone response when calculating loudness. Create a
30-by-2 matrix where the first column is the frequency and the second column is the earphone's
deviation from a flat response.

tdh = [0, 80, 100, 200, 500, 574, 660, 758, 871, 1000, 1149, 1320, 1516, 1741, 2000, ...
 2297, 2639, 3031, 3482, 4000, 4500, 5000, 5743, 6598, 7579, 8706, 10000, 12000, 16000, 20000; ...
 -50, -15.3, -13.8, -8.1, -0.5, 0.4, 0.8, 0.9, 0.5, 0.1, -0.8, -1.5, -2.3, -3.2, -3.9, ...
 -4.2, -4.3, -4.3, -3.9, -3.2, -2.3, -1.1, -0.3, -2, -5.4, -9, -12.1, -15.2, -30, -50].';

Calculate the loudness using ISO 532-2. Specify SoundField as earphones and the earphone
response as the matrix you just created.

acousticLoudness(x,fs,'Method','ISO 532-2','SoundField','earphones','EarphoneResponse',tdh)

2 Functions

2-618

Streaming Calculation of Stationary Loudness

Create a dsp.AudioFileReader object to read in an audio signal frame-by-frame. Specify a frame
duration of 50 ms. This will be the frame duration over which you calculate stationary loudness.

fileReader = dsp.AudioFileReader('Engine-16-44p1-stereo-20sec.wav');

frameDur = 0.05;
fileReader.SamplesPerFrame = round(fileReader.SampleRate*frameDur);

Create an audioDeviceWriter object to write audio to your default output device.

deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);

Create a timescope object to display stationary loudness over time.

scope = timescope(...
 'SampleRate',1/frameDur, ...
 'YLabel','Loudness (sones)', ...
 'ShowGrid',true, ...
 'PlotType','Stairs', ...
 'TimeSpanSource','property', ...
 'TimeSpan',20, ...
 'AxesScaling','Auto', ...
 'ShowLegend',true);

 acousticLoudness

2-619

In a loop:

1 Read a frame from the audio file.
2 Calculate the stationary loudness of that frame.
3 Play the sound through your output device.
4 Write the loudness to the scope.

while ~isDone(fileReader)
 audioIn = fileReader();
 loudness = acousticLoudness(audioIn,fileReader.SampleRate);
 deviceWriter(audioIn);
 scope(loudness)
end
release(fileReader)
release(deviceWriter)
release(scope)

Input Arguments
audioIn — Audio input
column vector | 2-column matrix

Audio input, specified as a column vector (mono) or matrix with two columns (stereo).

2 Functions

2-620

Data Types: single | double

fs — Sample rate (Hz)
positive scalar

Sample rate in Hz, specified as a positive scalar. The recommended sample rate for new recordings is
48 kHz.

Note The minimum acceptable sample rate is 8 kHz.

Data Types: single | double

calibrationFactor — Microphone calibration factor
sqrt(8) | positive scalar

Microphone calibration factor, specified as a positive scalar. The default calibration factor
corresponds to a full-scale 1 kHz sine wave with a sound pressure level of 100 dB (SPL). To compute
the calibration factor specific to your system, use the calibrateMicrophone function.
Data Types: single | double

SPLIn — Sound pressure level (dB)
1-by-28-by-C | 1-by-29-by-C

Sound pressure level (SPL) in dB, specified as a 1-by-28-by-C array or a 1-by-29-by-C array, depending
on the Method:

• If Method is set to 'ISO 532-1', specify SPLIn as a 1-by-28-by-C array, where 28 corresponds to
one-third-octave bands between 25 Hz and 12.5 kHz, and C is the number of channels.

• If Method is set to 'ISO 532-2', specify SPLIn as a 1-by-29-by-C array, where 29 corresponds to
one-third-octave bands between 25 Hz and 16 kHz, and C is the number of channels.

For both methods, the SPL input should be measured with a flat frequency weighting (Z-weighting).
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: acousticLoudness(audioIn,fs,'Method','ISO 532-2')

Method — Loudness calculation method
'ISO 532-1' (default) | 'ISO 532-2'

Loudness calculation method, specified as 'ISO 532-1' [1] or 'ISO 532-2' [2].

Note Only in the ISO 532-1 method, output is reported for each channel independently, and
stationary signals are processed after discarding up to the first 0.2 seconds of the signal at the output
of the internal 1/3-octave filters.

 acousticLoudness

2-621

Data Types: char | string

TimeVarying — Input is time-varying
false (default) | true

Input is time-varying, specified as true or false.

Dependencies

To set TimeVarying to true, you must set Method to 'ISO 532-1'.
Data Types: logical

SoundField — Sound field of audio recording
'free' (default) | 'diffuse' | 'eardrum' | 'earphones'

Sound field of audio recording, specified as a character vector or scalar string. The possible values
for SoundField depend on the Method:

• 'ISO 532-1' –– 'free', 'diffuse'
• 'ISO 532-2' –– 'free', 'diffuse', 'eardrum', 'earphones'

Data Types: char | string

EarphoneResponse — Earphone response
[0,0] (default) | M-by-2 matrix

Earphone response, specified as an M-by-2 matrix containing M frequency-amplitude pairs that
describe the earphone's deviations from a flat response. The form is as specified in an ISO
11904-1:2002 earphone correction file. Specify the frequency in increasing order in Hz. Specify the
amplitude deviation in decibels. Intermediate values are computed by linear interpolation. Values out
of the given range are set to the nearest frequency-amplitude pair. The default value corresponds to a
flat response.

Dependencies

To specify EarphoneResponse, you must set SoundField to 'earphones'.
Data Types: single | double

PressureReference — Reference pressure (Pa)
20e-6 (default) | positive scalar

Reference pressure for dB calculation in pascals, specified as a positive scalar. The default value, 20
micropascals, is the common value for air.

Dependencies

PressureReference is only used for time-domain input signals.
Data Types: single | double

Percentiles — Percentiles at which to calculate percentile loudness
[0,5] (default) | vector with values in the range [0, 100]

Percentiles at which to calculate percentile loudness, specified as a vector with values in the range
[0, 100]. The defaults, 0 and 5, correspond to the Nmax and N5 percentiles, respectively [1].

2 Functions

2-622

Percentile loudness refers to the loudness that is reached or exceeded in X% of the measured time
intervals, where X is the specified percentile.
Data Types: single | double

TimeResolution — Time resolution of the output
'standard' (default) | 'high'

Time resolution of the output, specified as a character vector or scalar string. The time interval is 2
ms in 'standard' resolution, or 0.5 ms in 'high' resolution. The default is 'standard' (ISO 532-1
compliant).
Data Types: char | string

Output Arguments
loudness — Loudness (sones)
K-by-1 | K-by-2

Loudness in sones, returned as a K-by-1 column vector or K-by-2 matrix of independent channels. If
TimeVarying is set to false, K is equal to 1. If TimeVarying is set to true, then loudness is
computed every 2 ms. If Method is set to 'ISO 532-2', then loudness is computed using a
binaural model and always returned as a K-by-1 column vector.

specificLoudness — Specific loudness
K-by-240-by-C | K-by-372-by-C

Specific loudness, returned as a K-by-240-by-C array or a K-by-372-by-C array. The first dimension of
specific loudness, K, matches the first dimension of loudness. The third dimension of specific
loudness, C, matches the second dimension of loudness. The second dimension of specific loudness
depends on the Method used to calculate loudness:

• If Method is set to 'ISO 532-1', then specific loudness is reported in sones/Bark on a scale from
0.1 to 24, inclusive, in 0.1 increments.

• If Method is set to 'ISO 532-2', then specific loudness is reported in sones/Cam on a scale from
1.8 to 38.9, inclusive, in 0.1 increments.

perc — Percentile loudness (sones)
p-by-1 vector (mono input) | p-by-2 matrix (stereo input)

Percentile loudness in sones, returned as a p-by-1 vector or p-by-2 matrix. The number of rows, p, is
equal to the number of Percentiles.

Percentile loudness refers to the loudness that is reached or exceeded in X% of the measured time
intervals, where X is the specified percentile.
Dependencies

The percentiles output argument is valid only if TimeVarying is set to true. If TimeVarying is set
to false, the perc output is empty.

Algorithms
Loudness and loudness level are perceptual attributes of sound. Due to differences among people,
measurements of loudness and loudness level should be considered statistical estimators. The ISO

 acousticLoudness

2-623

532 series specifies procedures for estimating loudness and loudness level as perceived by persons
with ontologically normal hearing under specific listening conditions.

ISO 532-1 and ISO 532-2 specify two different methods for calculating loudness, but leave it to the
user to select the appropriate method for a given situation.

ISO 532-1:2017(E) – Zwicker Method

ISO 532-1:2017(E) describes methods for calculating acoustic loudness of stationary and time-varying
signals.

Stationary Signals

This method is based on DIN 45631:1991. The algorithm differs from ISO 532:1975, method B, by
specifying corrections for low frequencies.

The diagram and the steps provide a high-level overview of the sequence of the method. For details,
see [1].

1 The time-domain signal level is adjusted according to the CalibrationFactor. The following
steps of the algorithm assume a true known signal level.

2 The signal is transformed to a 1/3 octave SPL representation using fractional octave band
filtering. The filter bank consists of 28 filters between 25 Hz to 12.5 kHz. The output from this
stage is in dB and normalized by the reference pressure.

3 Low frequency 1/3 octave bands are de-emphasized according to a fixed weighting table. Some of
the low-frequency bands are combined to form a total of 20 critical bands.

4 The levels of the critical bands are corrected for filter bandwidth and the critical band level at
the threshold of quiet, and then transformed to core loudness.

5 Core loudness is mapped to Bark bins.
6 Frequency spreading is computed using a table of level- and frequency-dependent slopes.
7 Loudness is calculated as the integral of specific loudness, taking into account the frequency-

spreading slopes.

Time-Varying Signals

This method is based on DIN 45631/A1:2010, and is designed to properly simulate the duration-
dependent behavior of loudness perception for short impulses. The method for time-varying sounds is
a generalization of the Zwicker approach to stationary signals. If the generalized version is applied to
stationary sounds, it gives the same loudness values as the non-generalized form for stationary
signals.

2 Functions

2-624

The diagram and the steps provide a high-level overview of the sequence of the method. For details,
see [1].

1 The time-domain signal level is adjusted according to the CalibrationFactor. The following
steps of the algorithm assume a true known signal level.

2 The signal is transformed to a 1/3 octave SPL representation using fractional octave band
filtering. The filter bank consists of 28 filters between 25 Hz to 12.5 kHz. The output from this
stage is in dB and normalized by the reference pressure.

3 The SPL bands are smoothed along time according to band-dependent filters.
4 Low frequency 1/3 octave bands are de-emphasized according to a fixed weighting table. Some of

the low-frequency bands are combined to form a total of 20 critical bands.
5 The levels of the critical bands are corrected for filter bandwidth and the critical band level at

the threshold of quiet, and then transformed to core loudness.
6 Nonlinear temporal decay is simulated using a diode-capacitor-resistor network. This models the

steep perceptual drop after short signals when compared to long signals.
7 Core loudness is mapped to Bark bins.
8 Frequency spreading is computed using a table of level- and frequency-dependent slopes.
9 Temporal weighting is applied to simulate the duration-dependence of loudness perception.
10 Loudness is calculated as the integral of specific loudness, taking into account the frequency-

spreading slopes.

ISO 532-2:2017(E) – Moore-Glasberg Method

ISO 532-2:2017(E) describes a binaural model for calculating acoustic loudness of stationary signals.
The method in ISO 523-2 differs from those in ISO 532:1975: it improves the calculated loudness in
the low frequency range and the binaural model allows for different sounds for each ear. ISO 532-2
provides a good match to the equal loudness level contours defined in ISO 226:2003, and the
threshold of hearing defined in ISO 389-7:2005.

The diagram and the steps provide a high-level overview of the sequence of the method. For details,
see [2].

 acousticLoudness

2-625

1 The time-domain signal level is adjusted according to the CalibrationFactor. The following
steps of the algorithm assume a true known signal level.

2 The signal is transformed to a spectral representation. The spectral representation is
transformed according to fixed filters representing the transfer of sound through the tympanic
membrane (eardrum). The spectrum is scaled according to the reference pressure.

3 The signal is transformed using a model of the inner ear. Again, the transfer function is given by
a fixed filter specified in the standard. The filter choice depends on the specified sound field.

4 The signal is transformed from the sound spectrum to an excitation pattern at the basilar
membrane. The transformation is accomplished using a series of rounded-exponential filters
spread on the ERB scale.

5 The excitation pattern is converted to specific loudness.
6 The specific loudness is passed through a model of binary inhibition, where a signal at one ear

inhibits the loudness evoked by a signal at the other ear. The output from this stage is the
specific loudness in sones/ERB.

7 The specific loudness is integrated over the ERB scale to give the loudness in sones.

Version History
Introduced in R2020a

References
[1] ISO 532-1:2017(E). "Acoustics – Methods for calculating loudness – Part 1: Zwicker method."

International Organization for Standardization.

[2] ISO 532-2:2017(E). "Acoustics – Methods for calculating loudness – Part 2: Moore-Glasberg
method. International Organization for Standardization.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
splMeter | acousticSharpness | calibrateMicrophone | sone2phon | phon2sone |
acousticFluctuation | acousticRoughness

Topics
“Effect of Soundproofing on Perceived Noise Levels”

2 Functions

2-626

acousticSharpness
Perceived sharpness of acoustic signal

Syntax
sharpness = acousticSharpness(audioIn,fs)
sharpness = acousticSharpness(audioIn,fs,calibrationFactor)
sharpness = acousticSharpness(SPLIn)
sharpness = acousticSharpness(specificLoudnessIn)
sharpness = acousticSharpness(___ ,Name,Value)
acousticSharpness(___ ,TimeVarying,true)

Description
sharpness = acousticSharpness(audioIn,fs) returns sharpness in acum according to DIN
45692 [2] and ISO 532-1:2017(E) [1].

sharpness = acousticSharpness(audioIn,fs,calibrationFactor) specifies a nondefault
microphone calibration factor used to compute loudness.

sharpness = acousticSharpness(SPLIn) computes sharpness using one-third-octave-band
sound pressure levels (SPL).

sharpness = acousticSharpness(specificLoudnessIn) computes sharpness using specific
loudness.

sharpness = acousticSharpness(___ ,Name,Value) specifies options using one or more
Name,Value pair arguments.
Example: sharpness =
acousticSharpness(audioIn,fs,calibrationFactor,'SoundField','diffuse') returns
sharpness assuming a diffuse sound field.

acousticSharpness(___ ,TimeVarying,true) with no output arguments plots sharpness
relative to time.

Examples

Acoustic Sharpness of Audio Signal

Compute the acoustic sharpness of turbine noise. Assume it is stationary and was recorded in a
diffuse sound field.

[audioIn,fs] = audioread('Turbine-16-44p1-mono-22secs.wav');

sharpness = acousticSharpness(audioIn,fs,'SoundField','diffuse');

fprintf('Acoustic sharpness = %0.2f acum\n',sharpness)

Acoustic sharpness = 1.11 acum

 acousticSharpness

2-627

Time-Varying Sharpness

Read in an audio signal.

[audioIn,fs] = audioread('RockDrums-48-stereo-11secs.mp3');

Plot the time-varying sharpness of the signal. Listen to the signal.

acousticSharpness(audioIn,fs,'TimeVarying',true)

sound(audioIn,fs)

Measure Loudness and Sharpness of Stationary Signals

Create two stationary signals with equivalent power: a pink noise signal and a white noise signal.

fs = 48e3;
dur = 5;
pnoise = 2*pinknoise(dur*fs);
wnoise = rand(dur*fs,1) - 0.5;
wnoise = wnoise*sqrt(var(pnoise)/var(wnoise));

2 Functions

2-628

Call acousticLoudness using the default ISO 532-1 (Zwicker) method and no output arguments to
plot the loudness of the pink noise. Call acousticLoudness again, this time with output arguments,
to get the specific loudness.

figure
acousticLoudness(pnoise,fs)

[~,pSpecificLoudness] = acousticLoudness(pnoise,fs);

Plot the loudness for the white noise signal and then get the specific loudness values.

figure
acousticLoudness(wnoise,fs)

 acousticSharpness

2-629

[~,wSpecificLoudness] = acousticLoudness(wnoise,fs);

Call the acousticSharpness function to compare the sharpness of the pink noise and white noise.

pSharpness = acousticSharpness(pSpecificLoudness);
wSharpness = acousticSharpness(wSpecificLoudness);
fprintf('Sharpness of pink noise = %0.2f acum\n',pSharpness)

Sharpness of pink noise = 2.00 acum

fprintf('Sharpness of white noise = %0.2f acum\n',wSharpness)

Sharpness of white noise = 2.62 acum

Effect of Input Levels on Acoustic Sharpness

Create a pink noise signal with a 48 kHz sample rate and a duration of 5 seconds.

fs = 48e3;
n = fs*5;
pnoise = pinknoise(n);

Specify a vector to sweep over the dB range from -60 to 20. Create a gain vector which, when
multiplied by the original signal, results in a signal with the desired output level.

2 Functions

2-630

dBSweep = -60:10:20;
coefSweep = sqrt((10.^(dBSweep/10))/var(pnoise));

Call acousticSharpness in a loop with the different signal levels. Determine the sharpness using
the default DIN 45692 frequency weighting and the Aures frequency weighting.

sharpnessDIN45692 = zeros(numel(dBSweep),1);
sharpnessAures = zeros(numel(dBSweep),1);
for ii = 1:numel(dBSweep)
 signal = pnoise*coefSweep(ii);
 sharpnessDIN45692(ii) = acousticSharpness(signal,fs);
 sharpnessAures(ii) = acousticSharpness(signal,fs,'Weighting','Aures');
end

Display the effect of the input level on the acoustic sharpness. The Aures frequency weighting method
is more sensitive to the input level.

plot(dBSweep,sharpnessDIN45692,dBSweep,sharpnessAures)
legend('Weighting = DIN45692','Weighting = Aures')
xlabel('Input Level (dB)')
ylabel('Sharpness (acum)')
title('Effect of Input Level on Sharpness')
axis([dBSweep(1) dBSweep(end) 0 20])
grid on

 acousticSharpness

2-631

Compare Time-Varying Sharpness of Music Genres

Read in two audio files: one of an electric guitar with distortion and one of an acoustic guitar. Both
audio files have a sample rate of 44.1 kHz. For easy comparison, convert the rock guitar signal to
mono and shorten the soft guitar signal to the length of the rock guitar signal.

fs = 44.1e3;
rockGuitar = audioread('RockGuitar-16-44p1-stereo-72secs.wav');
softGuitar = audioread('SoftGuitar-44p1_mono-10mins.ogg');
rockGuitar = mean(rockGuitar,2);
softGuitar = softGuitar(1:numel(rockGuitar));

Calculate the time-varying sharpness for both the rock guitar and soft guitar.

rGSharpness = acousticSharpness(rockGuitar,fs,'TimeVarying',true);
sGSharpness = acousticSharpness(softGuitar,fs,'TimeVarying',true);

Plot the probability distribution based on the observed sharpness of the rock guitar and the soft
guitar.

histogram(rGSharpness,'Normalization','probability')
hold on
histogram(sGSharpness,'Normalization','probability')
legend('Electric Guitar','Soft Guitar')
xlabel('Sharpness (acum)')
ylabel('Probability')
title('Time-Varying Acoustic Sharpness (DIN 45692)')

2 Functions

2-632

Measure Acoustic Sharpness from Sound Pressure Level

Read in an audio file.

[audioIn,fs] = audioread('Turbine-16-44p1-mono-22secs.wav');

To calculate sound pressure levels from an audio signal, first create an splMeter object. Call the
splMeter object with the audio input.

spl = splMeter("SampleRate",fs,"Bandwidth","1/3 octave", ...
 "FrequencyWeighting","Z-weighting","OctaveFilterOrder",6);

splMeasurement = spl(audioIn);

Compute the mean SPL level, skipping the first 0.2 seconds. Only keep the bands from 25 Hz to 12.5
kHz (the first 28 bands).

SPLIn = mean(splMeasurement(ceil(0.2*fs):end,1:28));

To determine the acoustic sharpness of the audio signal, call acousticSharpness using the sound
pressure level input.

sharpness = acousticSharpness(SPLIn)

sharpness = 1.1015

Input Arguments
audioIn — Audio input
column vector | 2-column matrix

Audio input, specified as a column vector (mono) or matrix with two columns (stereo). Sharpness is
computed for each channel (column) independently.
Data Types: single | double

fs — Sample rate (Hz)
positive scalar

Sample rate in Hz, specified as a positive scalar. The recommended sample rate for new recordings is
48 kHz.

Note The minimum acceptable sample rate is 8 kHz.

Data Types: single | double

calibrationFactor — Microphone calibration factor
sqrt(8) | positive scalar

Microphone calibration factor, specified as a positive scalar. The default calibration factor
corresponds to a full-scale 1 kHz sine wave with a sound pressure level of 100 dB (SPL). To compute
the calibration factor specific to your system, use the calibrateMicrophone function.

 acousticSharpness

2-633

Data Types: single | double

SPLIn — Sound pressure level (dB)
1-by-28-by-C

Sound pressure level (SPL) in dB, specified as a 1-by-28-by-C array. 28 corresponds to one-third-
octave bands between 25 Hz and 12.5 kHz. C is the number of channels.
Data Types: single | double

specificLoudnessIn — Specific loudness (sones/Bark)
T-by-240-by-C

Specific loudness in sones/Bark, specified as a T-by-240-by-C array, where:

• T is 1 for stationary signals or one per 2 ms for time-varying signals.
• 240 is the number of Bark bins in the domain for specific loudness. The Bark bins are

0.1:0.1:24.
• C is the number of channels.

You can use the acousticLoudness function to calculate specificLoudnessIn using this syntax:

[~,specificLoudnessIn] = acousticLoudness(audioIn,fs);

Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: acousticSharpness(audioIn,fs,'Weighting','von Bismarck')

Weighting — Frequency weighting
'DIN 45692' (default) | 'Aures' | 'von Bismarck'

Frequency weighting, specified as 'DIN 45692', 'Aures', or 'von Bismarck'. By design, the
'Aures' frequency weighting method is more sensitive to amplitude levels and proper calibration.
For details, see “Algorithms” on page 2-635.
Data Types: char | string

SoundField — Sound field
'free' (default) | 'diffuse'

Sound field of audio recording, specified as 'free' or 'diffuse'.
Data Types: char | string

PressureReference — Reference pressure (Pa)
20e-6 (default) | positive scalar

Reference pressure for dB calculation in pascals, specified as a positive scalar. The default value, 20
micropascals, is the common value for air.

2 Functions

2-634

Data Types: single | double

TimeVarying — Input is time-varying
false (default) | true

Input is time-varying, specified as true or false. If TimeVarying is set to true, acoustic sharpness
is calculated in 2 ms intervals.
Data Types: logical

Output Arguments
sharpness — Acoustic sharpness (acum)
scalar | vector | matrix

Acoustic sharpness in acum, returned as a scalar, vector, or matrix. Sharpness is computed according
to DIN 45692 and ISO 532-1.
Data Types: single | double

Algorithms
Acoustic sharpness is a measurement derived from acoustic loudness. The acoustic loudness
algorithm is described in [1] and implemented in the acousticLoudness function. The acoustic
sharpness calculation is described in [2]. The algorithm for acoustic sharpness is outlined as follows.

sharpness = k
∫

z = 0

24
N′(z) g(z) z dz

∫
z = 0

24
N′(z) dz

Where N' is the specific loudness in sones/Bark. The function g(z) and the scaling factor k depend on
the specified Weighting method:

'DIN 45692': k is set such that a 1 kHz reference tone results in a 1 acum sharpness measurement,
and

g(z) = 1 for z ≤ 15.8 Bark
g(z) = 0.15e0.42(z − 15.8) + 0.85 for z > 15.8 Bark

'von Bismark': k is set to 0.11, and

g(z) = 1 for z ≤ 15 Bark
g(z) = 0.2e0.308(z − 15) + 0.8 for z > 15 Bark

'Aures': k is set to 0.11, and

 acousticSharpness

2-635

g(z) = 0.078 e0.171z

z
N

ln(0.05N + 1)
where

N = ∫
z = 0

24
N′(z) dz

Version History
Introduced in R2020a

References
[1] ISO 532-1:2017(E). "Acoustics – Methods for calculating loudness – Part 1: Zwicker method."

International Organization for Standardization.

[2] DIN 45692:2009. "Measurement Technique for the Simulation of the Auditory Sensation of
Sharpness." German Institute for Standardization.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
splMeter | acousticLoudness | calibrateMicrophone | sone2phon | phon2sone |
acousticFluctuation | acousticRoughness

Topics
“Effect of Soundproofing on Perceived Noise Levels”

2 Functions

2-636

detectSpeech
Detect boundaries of speech in audio signal

Syntax
idx = detectSpeech(audioIn,fs)
idx = detectSpeech(audioIn,fs,Name,Value)
[idx,thresholds] = detectSpeech(___)
detectSpeech(___)

Description
idx = detectSpeech(audioIn,fs) returns indices of audioIn that correspond to the
boundaries of speech signals.

idx = detectSpeech(audioIn,fs,Name,Value) specifies options using one or more
Name,Value pair arguments.
Example:
detectSpeech(audioIn,fs,'Window',hann(512,'periodic'),'OverlapLength',256)
detects speech using a 512-point periodic Hann window with 256-point overlap.

[idx,thresholds] = detectSpeech(___) also returns the thresholds used to compute the
boundaries of speech.

detectSpeech(___) with no output arguments displays a plot of the detected speech regions in
the input signal.

Examples

Plot Detected Regions of Speech

Read in an audio signal. Clip the audio signal to 20 seconds.

[audioIn,fs] = audioread('Rainbow-16-8-mono-114secs.wav');
audioIn = audioIn(1:20*fs);

Call detectSpeech. Specify no output arguments to display a plot of the detected speech regions.

detectSpeech(audioIn,fs);

 detectSpeech

2-637

The detectSpeech function uses a thresholding algorithm based on energy and spectral spread per
analysis frame. You can modify the Window, OverlapLength, and MergeDistance to fine-tune the
algorithm for your specific needs.

windowDuration = ; % seconds
numWindowSamples = round(windowDuration*fs);
win = hamming(numWindowSamples,'periodic');

percentOverlap = ;
overlap = round(numWindowSamples*percentOverlap/100);

mergeDuration = ;
mergeDist = round(mergeDuration*fs);

detectSpeech(audioIn,fs,"Window",win,"OverlapLength",overlap,"MergeDistance",mergeDist)

2 Functions

2-638

Reuse Decision Thresholds

Read in an audio file containing speech. Split the audio signal into a first half and a second half.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');
firstHalf = audioIn(1:floor(numel(audioIn)/2));
secondHalf = audioIn(numel(firstHalf):end);

Call detectSpeech on the first half of the audio signal. Specify two output arguments to return the
indices corresponding to regions of detected speech and the thresholds used for the decision.

[speechIndices,thresholds] = detectSpeech(firstHalf,fs);

Call detectSpeech on the second half with no output arguments to plot the regions of detected
speech. Specify the thresholds determined from the previous call to detectSpeech.

detectSpeech(secondHalf,fs,'Thresholds',thresholds)

 detectSpeech

2-639

Working with Large Data Sets

Reusing speech detection thresholds provides significant computational efficiency when you work
with large data sets, or when you deploy a deep learning or machine learning pipeline for real-time
inference. Download and extract the data set [1] on page 2-643.

url = 'https://storage.googleapis.com/download.tensorflow.org/data/speech_commands_v0.01.tar.gz';

downloadFolder = tempdir;
datasetFolder = fullfile(downloadFolder,'google_speech');

if ~exist(datasetFolder,'dir')
 disp('Downloading data set (1.9 GB) ...')
 untar(url,datasetFolder)
end

Create an audio datastore to point to the recordings. Use the folder names as labels.

ads = audioDatastore(datasetFolder,'IncludeSubfolders',true,'LabelSource','foldernames');

Reduce the data set by 95% for the purposes of this example.

ads = splitEachLabel(ads,0.05,'Exclude','_background_noise');

Create two datastores: one for training and one for testing.

[adsTrain,adsTest] = splitEachLabel(ads,0.8);

2 Functions

2-640

Compute the average thresholds over the training data set.

thresholds = zeros(numel(adsTrain.Files),2);
for ii = 1:numel(adsTrain.Files)
 [audioIn,adsInfo] = read(adsTrain);
 [~,thresholds(ii,:)] = detectSpeech(audioIn,adsInfo.SampleRate);
end
thresholdAverage = mean(thresholds,1);

Use the precomputed thresholds to detect speech regions on files from the test data set. Plot the
detected region for three files.

[audioIn,adsInfo] = read(adsTest);
detectSpeech(audioIn,adsInfo.SampleRate,'Thresholds',thresholdAverage);

[audioIn,adsInfo] = read(adsTest);
detectSpeech(audioIn,adsInfo.SampleRate,'Thresholds',thresholdAverage);

 detectSpeech

2-641

[audioIn,adsInfo] = read(adsTest);
detectSpeech(audioIn,adsInfo.SampleRate,'Thresholds',thresholdAverage);

2 Functions

2-642

References

[1] Warden, Pete. "Speech Commands: A Public Dataset for Single Word Speech Recognition."
Distributed by TensorFlow. Creative Commons Attribution 4.0 License.

Remove Silent Regions from Speech Signal

Read in an audio file and listen to it. Plot the spectrogram.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');

sound(audioIn,fs)

spectrogram(audioIn,hann(1024,'periodic'),512,1024,fs,'yaxis')

 detectSpeech

2-643

For machine learning applications, you often want to extract features from an audio signal. Call the
spectralEntropy function on the audio signal, then plot the histogram to display the distribution
of spectral entropy.

entropy = spectralEntropy(audioIn,fs);

numBins = 40;
histogram(entropy,numBins,'Normalization','probability')
title('Spectral Entropy of Audio Signal')

2 Functions

2-644

Depending on your application, you might want to extract spectral entropy from only the regions of
speech. The resulting statistics are more characteristic of the speaker and less characteristic of the
channel. Call detectSpeech on the audio signal and then create a new signal that contains only the
regions of detected speech.

speechIndices = detectSpeech(audioIn,fs);
speechSignal = [];
for ii = 1:size(speechIndices,1)
 speechSignal = [speechSignal;audioIn(speechIndices(ii,1):speechIndices(ii,2))];
end

Listen to the speech signal and plot the spectrogram.

sound(speechSignal,fs)

spectrogram(speechSignal,hann(1024,'periodic'),512,1024,fs,'yaxis')

 detectSpeech

2-645

Call the spectralEntropy function on the speech signal and then plot the histogram to display
the distribution of spectral entropy.

entropy = spectralEntropy(speechSignal,fs);

histogram(entropy,numBins,'Normalization','probability')
title('Spectral Entropy of Speech Signal')

2 Functions

2-646

Input Arguments
audioIn — Audio input
column vector

Audio input, specified as a column vector.
Data Types: single | double

fs — Sample rate (Hz)
scalar

Sample rate in Hz, specified as a scalar.
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: detectSpeech(audioIn,fs,'MergeDistance',100)

 detectSpeech

2-647

Window — Window applied in time domain
hann(round(0.03*fs),'periodic') (default) | vector

Window applied in the time domain, specified as the comma-separated pair consisting of 'Window'
and a real vector. The number of elements in the vector must be in the range [2, size(audioIn,1)].
The number of elements in the vector must also be greater than OverlapLength.
Data Types: single | double

OverlapLength — Number of samples overlapping between adjacent windows
0 (default) | scalar in the range [0, numel(Window)−1]

Number of samples overlapping between adjacent windows, specified as the comma-separated pair
consisting of 'OverlapLength' and an integer in the range [0, size(Window,1)).
Data Types: single | double

MergeDistance — Number of samples over which to merge positive speech detection
decisions
numel(Window)*5 (default) | nonnegative scalar

Number of samples over which to merge positive speech detection decisions, specified as the comma-
separated pair consisting of 'MergeDistance' and a nonnegative scalar.

Note The resolution for speech detection is given by the hop length, where the hop length is equal to
numel(Window) − OverlapLength.

Data Types: single | double

Thresholds — Thresholds for decision
2-element vector

Thresholds for decision, specified as the comma-separated pair consisting of 'Thresholds' and a
two-element vector.

• If you do not specify Thresholds, the detectSpeech function derives thresholds by using
histograms of the features calculated over the current input frame.

• If you specify Thresholds, the detectSpeech function skips the derivation of new decision
thresholds. Reusing speech decision thresholds provides significant computational efficiency when
you work with large data sets, or when you deploy a deep learning or machine learning pipeline
for real-time inference.

Data Types: single | double

Output Arguments
idx — Start and end indices of speech regions
N-by-2 matrix

Start and end indices of speech regions, returned as an N-by-2 matrix. N corresponds to the number
of individual speech regions detected. The first column corresponds to start indices of speech regions
and the second column corresponds to end indices of speech regions.
Data Types: single | double

2 Functions

2-648

thresholds — Thresholds used for decision
two-element vector

Thresholds used for decision, returned as a two-element vector. The thresholds are in the order
[Energy Threshold, Spectral Spread Threshold].
Data Types: single | double

Algorithms
The detectSpeech algorithm is based on [1], although modified so that the statistics to threshold
are short-term energy and spectral spread, instead of short-term energy and spectral centroid. The
diagram and steps provide a high-level overview of the algorithm. For details, see [1].

1 The audio signal is converted to a time-frequency representation using the specified Window and
OverlapLength.

2 The short-term energy and spectral spread is calculated for each frame. The spectral spread is
calculated according to spectralSpread.

3 Histograms are created for both the short-term energy and spectral spread distributions.
4

For each histogram, a threshold is determined according to T =
W × M1 + M2

W + 1 , where M1 and M2

are the first and second local maxima, respectively. W is set to 5.
5 Both the spectral spread and the short-term energy are smoothed across time by passing through

successive five-element moving median filters.
6 Masks are created by comparing the short-term energy and spectral spread with their respective

thresholds. To declare a frame as containing speech, a feature must be above its threshold.
7 The masks are combined. For a frame to be declared as speech, both the short-term energy and

the spectral spread must be above their respective thresholds.
8 Regions declared as speech are merged if the distance between them is less than

MergeDistance.

Version History
Introduced in R2020a

 detectSpeech

2-649

References
[1] Giannakopoulos, Theodoros. "A Method for Silence Removal and Segmentation of Speech Signals,

Implemented in MATLAB", (University of Athens, Athens, 2009).

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
spectralSpread | voiceActivityDetector

Topics
“Keyword Spotting in Noise Using MFCC and LSTM Networks”

2 Functions

2-650

calibrateMicrophone
Calibration factor for microphone

Syntax
calibrationFactor = calibrateMicrophone(micRecording,fs,SPLreading)
calibrationFactor = calibrateMicrophone(micRecording,fs,SPLreading,
Name,Value)

Description
calibrationFactor = calibrateMicrophone(micRecording,fs,SPLreading) returns the
calibration factor for the microphone used to create micRecording.

calibrationFactor = calibrateMicrophone(micRecording,fs,SPLreading,
Name,Value) specifies options using one or more Name,Value pair arguments.
Example: calibrationFactor =
calibrateMicrophone(micRecording,fs,SPLreading,'FrequencyWeighting','Z-
weighting') returns the calibration factor for an SPL reading that applies Z-weighting.

Examples

Determine Microphone Calibration Factor

This diagram depicts the setup used in the example:

 calibrateMicrophone

2-651

To run this example, you must connect a microphone and loudspeaker to a full-duplex sound card,
and use an SPL meter to determine the true loudness level.

Create an audioOscillator object to generate a 1 kHz sine wave at a sample rate of 48 kHz.

fs = 48e3;
osc = audioOscillator("sine",1e3,"SampleRate",fs);

Create an audioPlayerRecorder object to write the sine wave to your loudspeaker and
simultaneously read from your microphone.

playRec = audioPlayerRecorder(fs);

Create a dsp.AsyncBuffer object to store the audio recorded from your microphone. Specify the
capacity of the buffer to hold 3 seconds worth of data.

dur = 3;
buff = dsp.AsyncBuffer(dur*fs);

In a loop, for three seconds:

• Generate a frame of a 1 kHz sinusoid.

2 Functions

2-652

• Write the frame to your loudspeaker and simultaneously read a frame from your microphone.
• Write the frame acquired from your microphone to the buffer.

While the loop runs, note the true SPL measurement as reported from your SPL meter. Once
complete, read the contents of the buffer object.

numFrames = dur*(fs/osc.SamplesPerFrame);
for ii = 1:numFrames
 audioOut = osc();
 audioIn = playRec(audioOut);
 write(buff,audioIn);
end
release(playRec);

SPL = 78.2; % read from physical SPL meter

micRecording = read(buff);

Compute the calibration factor for the microphone.

calibrationFactor = calibrateMicrophone(micRecording,playRec.SampleRate,SPL);

Calibrate Microphone Using Externally Generated Calibration Tone

The diagram depicts the example setup and data flow.

 calibrateMicrophone

2-653

To run this example, you must connect a microphone to your audio card, generate a 1 kHz tone using
an external device, and use an SPL meter to determine the true loudness level.

Specify a 48 kHz sample rate for your audio device and a 3-second duration for acquiring audio.
Create an audioDeviceReader object to read from your audio device.

fs = 48e3;
dur = 3;

deviceReader = audioDeviceReader(fs);

Create a dsp.AsyncBuffer object to store the streamed audio.

buff = dsp.AsyncBuffer(dur*fs);

Start the 1 kHz test tone using an external loudspeaker. Then, in a loop, read from your audio device
and then write the data to the buffer. While the loop runs, note the true SPL measurement as
reported from your SPL meter. Once complete, read the contents of the buffer object.

N = deviceReader.SamplesPerFrame;
while buff.NumUnreadSamples+N <= buff.Capacity
 audioIn = deviceReader();
 write(buff,audioIn);
end

2 Functions

2-654

release(deviceReader);

SPL = 77.7; % read from physical SPL meter

micRecording = read(buff);

Compute the calibration factor for the microphone.

calibrationFactor = calibrateMicrophone(micRecording,deviceReader.SampleRate,SPL);

Input Arguments
micRecording — Audio signal used to calibrate microphone
column vector | matrix

Audio signal used to calibrate microphone, specified as a column vector (mono) or matrix of
independent channels (stereo). micRecording must be acquired from the microphone you want to
calibrate. The recording should consist of a 1 kHz test tone.
Data Types: single | double

fs — Sample rate of microphone recording (Hz)
positive scalar

Sample rate of microphone recording in Hz, specified as a positive scalar. The recommended sample
rate for new recordings is 48 kHz.
Data Types: single | double

SPLreading — Sound pressure level reported from physical meter (dB)
scalar | vector

Sound pressure level reported from meter in dB, specified as a scalar or vector. If SPLreading is
specified as a vector, it must have the same number of elements as columns in micRecording.
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: calibrateMicrophone(micRecording,fs,SPLReading,'PressureReference',22)

PressureReference — Reference pressure (Pa)
20e-6 (default) | positive scalar

Reference pressure for dB calculation in pascals, specified as a positive scalar. The default reference
pressure (20 micropascals) is the common value for air.
Data Types: single | double

FrequencyWeighting — Frequency weighting used by physical meter
'A-weighting' (default) | 'C-weighting' | 'Z-weighting'

 calibrateMicrophone

2-655

Frequency weighting used by physical meter, specified as 'A-weighting', 'C-weighting', or 'Z-
weighting'.
Data Types: char | string

Output Arguments
calibrationFactor — Microphone calibration factor
scalar | row vector

Microphone calibration factor, returned as a scalar or row vector with the same number of elements
as SPLreading.
Data Types: single | double

Algorithms
To determine the calibration factor for a microphone, the calibrateMicrophone function uses:

• A calibration tone recorded from the microphone you want to calibrate.
• The sample rate used by your sound card for AD conversion.
• The known loudness, usually determined using a physical SPL meter.
• The frequency weighting used by your physical SPL meter.
• The atmospheric pressure at the recording location.

The diagram indicates a typical physical setup and the locations of required information.

The calibrationFactor is set according to the equation:

CalibrationFactor = 10 SPLreading−k /20

rms(x)

2 Functions

2-656

where x is the microphone recording passed through the weighting filter specified in the
FrequencyWeighting argument. k is 1 pascal relative to the PressureReference calculated in
dB:

k = 20log10
1

PressureReference .

Version History
Introduced in R2020a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
splMeter | acousticLoudness | acousticSharpness | acousticFluctuation |
acousticRoughness

 calibrateMicrophone

2-657

sone2phon
Convert from sone to phon

Syntax
phon = sone2phon(sone)
phon = sone2phon(sone,standard)

Description
phon = sone2phon(sone) converts sone to phon, according to ISO 532-1:2017(E).

phon = sone2phon(sone,standard) specifies the standard used to convert sone to phon.

Examples

Convert Sone to Phon

Plot the relationship between loudness (sone) and loudness levels (phon), as specified in ISO 532-1.

s = (0.51:0.01:1.8).^10;

p1 = sone2phon(s);

semilogx(s,p1)
xlabel('Loudness (sone)')
ylabel('Loudness Level (phon)')
title('Relation Between Sone and Phon (ISO 532-1)')
grid on
axis([0 s(end) 0 130])

2 Functions

2-658

Plot the relationship between loudness (sone) and loudness levels (phon), as specified in ISO 532-2.

p2 = sone2phon(s,'ISO 532-2');

semilogx(s,p2)
xlabel('Loudness (sone)')
ylabel('Loudness Level (phon)')
title('Relation Between Sone and Phon (ISO 532-2)')
grid on
axis([0 s(end) 0 130])

 sone2phon

2-659

Input Arguments
sone — Input loudness in sone
nonnegative scalar | vector of nonnegative values | matrix of nonnegative values | multidimensional
array of nonnegative values

Input loudness in sone, specified as a scalar, vector, matrix, or multidimensional array of nonnegative
values.
Data Types: single | double

standard — Reference standard for unit conversion
'ISO 532-1' (default) | 'ISO 532-2'

Reference standard for unit conversion, specified as 'ISO 532-1' or 'ISO 532-2'.
Data Types: char | string

Output Arguments
phon — Output loudness level in phon
scalar | vector | matrix | multidimensional array

Output loudness level in phon, returned as a scalar, vector, matrix, or multidimensional array the
same size as sone.

2 Functions

2-660

Data Types: single | double

Algorithms
ISO 532-1: Zwicker Method

The Zwicker method of conversion from sone to phon is given by this equation in [1] on page 2-662:

phon = 40 sone 0.35

40 + 10log2 sone
if sone < 1
otherwise

ISO 532-2: Moore-Glasberg Method

In the Moore-Glasberg method, conversion from sone to phon is prescribed according to this table
(table 5 in [2] on page 2-662).

Loudness Level (phon) Calculated Loudness (sone)
0.0 0.001
2.2 0.004
4.0 0.008
5.0 0.010
7.5 0.019
10.0 0.031
15.0 0.073
20.0 0.146
25.0 0.26
30.0 0.43
35.0 0.67
40.0 1.00
45.0 1.46
50.0 2.09
55.0 2.96
60.0 4.14
65.0 5.77
70.0 8.04
75.0 11.2
80.0 15.8
85.0 22.7
90.0 32.9
95.0 47.7
100.0 69.6
105.0 102.0

 sone2phon

2-661

Loudness Level (phon) Calculated Loudness (sone)
110.0 151.0
115.0 225.0
120.0 337.6

The sone2phon function uses interpolation for values not specified in the table.

Version History
Introduced in R2020a

References
[1] ISO 532-1:2017(E). "Acoustics – Methods for calculating loudness – Part 1: Zwicker method."

International Organization for Standardization.

[2] ISO 532-2:2017(E). "Acoustics – Methods for calculating loudness – Part 2: Moore-Glasberg
method." International Organization for Standardization.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
phon2sone | acousticLoudness

2 Functions

2-662

phon2sone
Convert from phon to sone

Syntax
sone = phon2sone(phon)
sone = phon2sone(phon,standard)

Description
sone = phon2sone(phon) converts phon to sone, according to ISO 532-1:2017(E).

sone = phon2sone(phon,standard) specifies the standard used to convert phon to sone.

Examples

Convert Phon to Sone

Plot the relationship between loudness level (phon) and loudness (sone), as specified in ISO 532-1.

p = 0:120;

s1 = phon2sone(p);

semilogy(p,s1)
xlabel('Loudness Level (phon)')
ylabel('Loudness (sone)')
title('Relation Between Phon and Sone (ISO 532-1)')
grid on
axis([0 120 0 500])

 phon2sone

2-663

Plot the relationship between loudness level (phon) and loudness (sone), as specified in ISO 532-2.

s2 = phon2sone(p,'ISO 532-2');

semilogy(p,s2)
xlabel('Loudness Level (phon)')
ylabel('Loudness (sone)')
title('Relation Between Phon and Sone (ISO 532-2)')
grid on
axis([0 120 0 500])

2 Functions

2-664

Input Arguments
phon — Loudness level in phon
nonnegative scalar | vector of nonnegative values | matrix of nonnegative values | multidimensional
array of nonnegative values

Input loudness level in phon, specified as a scalar, vector, matrix, or multidimensional array of
nonnegative values.
Data Types: single | double

standard — Reference standard for unit conversion
'ISO 532-1' (default) | 'ISO 532-2'

Reference standard for unit conversion, specified as 'ISO 532-1' or 'ISO 532-2'.
Data Types: char | string

Output Arguments
sone — Output loudness in sone
scalar | vector | matrix | multidimensional array

Output loudness in sone, returned as a scalar, vector, matrix, or multidimensional array the same size
as phon.

 phon2sone

2-665

Data Types: single | double

Algorithms
ISO 532-1: Zwicker Method

The Zwicker method of conversion from phon to sone is given by [1] on page 2-667:

sone =
phon
40

1 0.35 if phon < 1

2
phon − 40

10 otherwise

ISO 532-2: Moore-Glasberg Method

In the Moore-Glasberg method, conversion from phon to sone is prescribed according to this table
(table 5 in [2] on page 2-667).

Loudness Level (phon) Calculated Loudness (sone)
0.0 0.001
2.2 0.004
4.0 0.008
5.0 0.010
7.5 0.019
10.0 0.031
15.0 0.073
20.0 0.146
25.0 0.26
30.0 0.43
35.0 0.67
40.0 1.00
45.0 1.46
50.0 2.09
55.0 2.96
60.0 4.14
65.0 5.77
70.0 8.04
75.0 11.2
80.0 15.8
85.0 22.7
90.0 32.9
95.0 47.7
100.0 69.6

2 Functions

2-666

Loudness Level (phon) Calculated Loudness (sone)
105.0 102.0
110.0 151.0
115.0 225.0
120.0 337.6

The phon2sone function uses interpolation for values not specified in the table.

Version History
Introduced in R2020a

References
[1] ISO 532-1:2017(E). "Acoustics – Methods for calculating loudness – Part 1: Zwicker method."

International Organization for Standardization.

[2] ISO 532-2:2017(E). "Acoustics – Methods for calculating loudness – Part 2: Moore-Glasberg
method." International Organization for Standardization.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
sone2phon | acousticLoudness

 phon2sone

2-667

generateSimulinkAudioPlugin
Create object class compatible with Simulink

Syntax
generateSimulinkAudioPlugin(plugin)
generateSimulinkAudioPlugin(plugin,fileName)

Description
generateSimulinkAudioPlugin(plugin) generates code for a System object class with the same
functionality as the provided audio plugin and opens the generated file. The generated System object
is compatible with Simulink® through the MATLAB System block. See Audio Plugin for a block that
uses generateSimulinkAudioPlugin to include an audio plugin in a Simulink model.

generateSimulinkAudioPlugin(plugin,fileName) generates code and saves the resulting
System object class to the file specified by fileName.

Examples

Generate Audio Plugin System object to Use in Simulink

You can include an audio plugin in your Simulink model by generating a System object with
generateSimulinkAudioPlugin and then using that System object with the MATLAB System
block.

Call generateSimulinkAudioPlugin with the audiopluginexample.LFOFilter audio plugin to
generate a System object class.

generateSimulinkAudioPlugin(audiopluginexample.LFOFilter)

In Simulink, place the MATLAB System block in your model.

2 Functions

2-668

Double-click the block to open the dialog box, and specify the System object name as the generated
class, audioSimulinkSysObj. Click OK to generate a block with the same functionality as the
original plugin.

You can now use the block in your model. The block has the same parameters as the original plugin.
For more information about the generated block and its parameters, see Audio Plugin.

Specify Generated Class Name

Specify the fileName as "myPlugin" to generate the System object class with that name in the
current directory.

generateSimulinkAudioPlugin(audiopluginexample.Echo,"myPlugin")

 generateSimulinkAudioPlugin

2-669

Input Arguments
plugin — Audio plugin
audio plugin object

Audio plugin from which to generate the System object class, specified as an audio plugin object.
Plugins authored in MATLAB derive from audioPlugin or audioPluginSource. Externally
authored plugins derive from externalAudioPlugin or externalAudioPluginSource and are
returned by loadAudioPlugin.

If the input plugin is an externally hosted plugin returned by loadAudioPlugin, the function
generates additional files required by the System object. For more information, see “Code
Generation” on page 2-671.
Example: audiopluginExample.Echo

fileName — File name of generated class
"audioSimulinkSysObj" (default) | string | character vector

File name of the generated System object class, specified as a string or character vector. You can
optionally specify the path and .m file extension. By default, generateSimulinkAudioPlugin
creates a class named audioSimulinkSysObj in the current directory.
Example: "myLFO"
Example: "plugins/myEchoPlugin.m"
Data Types: char | string

Limitations
Some Simulink functionality, such as Step Back, requires saving and restoring the simulation state.
Blocks that use hosted external plugins do not support simulation save and restore and therefore do
not support associated functionality. For tips on using simulation save and restore functionality with
blocks that use plugins authored in MATLAB, see “Tips” on page 2-670.

Tips
To use Simulink functionality that requires saving and restoring the simulation state, such as Step
Back, with a block that uses a plugin authored in MATLAB, the original plugin implementation must
correctly save and load its state.

2 Functions

2-670

• If the original plugin is a System object, it must correctly save and load its state using the
saveObjectImpl and loadObjectImpl methods.

• If the original plugin is an audioPlugin and not a System object plugin, it must correctly save
and load its state using the saveobj and loadobj methods.

Note If the original plugin does not maintain any state, no additional considerations are necessary
for the save and restore functionality.

Version History
Introduced in R2022b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Generating code from blocks that use external audio plugins has additional requirements. External
audio plugins include plugins loaded into MATLAB with loadAudioPlugin.

• The generateSimulinkAudioPlugin function generates files in addition to the System object
file to aid in code generation. These files include sysObjNamePluginLoader.m and
sysObjNameInterface.m where sysObjName is the name of the generated System object. The
function also generates sysObjNameTables.mat if the plugin has any parameters. These
additional files are required for both code generation and running the block in simulation.

• You must select the Support long long parameter in the Hardware Implementation pane of
the Model Settings.

• If you are using an ERT target, you must set the Language parameter to C++ under the Target
selection section of the Code Generation pane in the Model Settings. You must also select the
Dynamic memory allocation in MATLAB functions parameter in the Advanced parameters
section of the Simulation Target pane.

• To use a standalone executable generated from a block with an external plugin, you must generate
the jucehost.dll file on Windows or the libjucehost.dylib file on Mac by selecting the
Package code and artifacts parameter under the Build process section of the Code
Generation pane in the Model Settings.

• On Windows platforms, you must make the jucehost.dll file visible to the standalone
executable. To do this, add the path to the jucehost.dll file to the PATH environment
variable or copy the jucehost.dll file to the same folder as the standalone executable .

• On Mac platforms, you must make the libjucehost.dylib file visible to the standalone
executable. To do this, place the libjucehost.dylib file in the /usr/lib directory.

See Also
Audio Plugin | audioPlugin | audioPluginSource | loadAudioPlugin

 generateSimulinkAudioPlugin

2-671

speechClient
Interface with pretrained model or third-party speech service

Syntax
clientObj = speechClient(name)
clientObj = speechClient(___ ,Name=Value)

Description
clientObj = speechClient(name) returns a speechClient object that interfaces with a
wav2vec 2.0 pretrained speech-to-text model or third-party cloud-based speech services. Use the
object with speech2text or text2speech.

Note To use speechClient to interface with third-party speech services, you must download the
extended Audio Toolbox functionality from File Exchange. The File Exchange submission includes a
tutorial to get started with the third-party services.

Using wav2vec 2.0 requires Deep Learning Toolbox and installing the pretrained model.

clientObj = speechClient(___ ,Name=Value) specifies additional properties used by the
speechClient object.

Examples

Download wav2vec 2.0 Network

Download and install the pretrained wav2vec 2.0 model for speech-to-text transcription.

Type speechClient("wav2vec2.0") into the command line. If the pretrained model for wav2vec
2.0 is not installed, the function provides a download link. To install the model, click the link to
download the file and unzip it to a location on the MATLAB path.

Alternatively, execute the following commands to download the wav2vec 2.0 model, unzip it to your
temporary directory, and then add it to your MATLAB path.

downloadFile = matlab.internal.examples.downloadSupportFile("audio","wav2vec2/wav2vec2-base-960.zip");
wav2vecLocation = fullfile(tempdir,"wav2vec");
unzip(downloadFile,wav2vecLocation)
addpath(wav2vecLocation)

Check that the installation is successful by typing speechClient("wav2vec2.0") into the
command line. If the model is installed, then the function returns a Wav2VecSpeechClient object.

speechClient("wav2vec2.0")

ans =
 Wav2VecSpeechClient with properties:

2 Functions

2-672

https://www.mathworks.com/matlabcentral/fileexchange/65266-speech2text

 Segmentation: 'word'
 TimeStamps: 0

Perform Speech-to-Text Transcription

Read in an audio file containing speech and listen to it.

[y,fs] = audioread("speech_dft.wav");
soundsc(y,fs)

Create a speechClient object that uses the wav2vec 2.0 pretrained network. This requires
installing the pretrained network. If the network is not installed, the function provides a link with
instructions to download and install the pretrained model.

transcriber = speechClient("wav2vec2.0");

Use speech2text to obtain a transcription of the audio signal.

transcript = speech2text(transcriber,y,fs)

transcript=12×2 table
 Transcript Confidence
 ___________ __________

 "the" 0.97605
 "discreet" 0.91927
 "fourier" 0.84546
 "transform" 0.89922
 "of" 0.66676
 "a" 0.50026
 "real" 0.88796
 "valued" 0.89913
 "signal" 0.8041
 "is" 0.53891
 "conjugate" 0.98438
 "symmetric" 0.89333

Input Arguments
name — Pretrained model or service name
"wav2vec2.0" | "Google" | "IBM" | "Microsoft"

Name of the pretrained model or speech service, specified as "wav2vec2.0", "Google", "IBM", or
"Microsoft".

• "wav2vec2.0" –– Use a pretrained wav2vec 2.0 model. You can only use wav2vec 2.0 to perform
speech-to-text transcription, and therefore you cannot use it with text2speech.

• "Google" –– Interface with the Google Cloud Speech-to-Text and Text-to-Speech service.
• "IBM" –– Interface with the IBM® Watson Speech to Text and Text to Speech service.

 speechClient

2-673

• "Microsoft" –– Interface with the Microsoft® Azure® Speech service.

Using the wav2vec 2.0 pretrained model requires Deep Learning Toolbox and installing the
pretrained wav2vec 2.0 model. If the model is not installed, calling speechClient with
"wav2vec2.0" provides a link to download and install the model.

To use any of the third-party speech services (Google, IBM, or Microsoft), you must download the
extended Audio Toolbox functionality from File Exchange. The File Exchange submission includes a
tutorial to get started with the third-party services.
Data Types: string | char

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: speechClient("wav2vec2.0",Segmentation="none")

Note These arguments apply to the wav2vec 2.0 pretrained model. For the third-party speech
services (Google, IBM, or Microsoft), valid property names and values depend on their specific API.
See the documentation for the corresponding service for property names and values.

Segmentation — Segmentation of transcript
"word" (default) | "none"

Segmentation of the output transcript, specified as "word" or "none".

If the segmentation is "word", speech2text returns the transcript as a table where each word is in
its own row.

If the segmentation is "none", speech2text returns a string containing the entire transcript.
Data Types: string | char

TimeStamps — Include timestamps in transcript
false (default) | true

Include timestamps of transcribed speech in transcript, specified as true or false. To enable this
property, set Segmentation to "word". If you specify TimeStamps as true, speech2text includes
an additional column in the transcript table that contains the timestamps. The speech2text function
determines the timestamps using the algorithm described in [2].
Data Types: logical

Output Arguments
clientObj — Client object
speechClient object

Client object to be used with speech2text to transcribe speech in audio signals to text, or with
text2speech to synthesize speech signals from text.

2 Functions

2-674

https://www.mathworks.com/matlabcentral/fileexchange/65266-speech2text

Version History
Introduced in R2022b

References
[1] Baevski, Alexei, Henry Zhou, Abdelrahman Mohamed, and Michael Auli. “Wav2vec 2.0: A

Framework for Self-Supervised Learning of Speech Representations,” 2020. https://doi.org/
10.48550/ARXIV.2006.11477.

[2] Kürzinger, Ludwig, Dominik Winkelbauer, Lujun Li, Tobias Watzel, and Gerhard Rigoll. “CTC-
Segmentation of Large Corpora for German End-to-End Speech Recognition.” In Speech and
Computer, edited by Alexey Karpov and Rodmonga Potapova, 12335:267–78. Cham: Springer
International Publishing, 2020. https://doi.org/10.1007/978-3-030-60276-5_27.

See Also
speech2text | text2speech | Signal Labeler

 speechClient

2-675

text2speech
Synthesize speech from text

Syntax
[speech,fs] = text2speech(clientObj,text)
[speech,fs] = text2speech(___ ,HTTPTimeout=timeout)

Description
[speech,fs] = text2speech(clientObj,text) synthesizes a speech signal from the provided
text. text2speech interfaces with third-party speech services (Google, IBM, or Microsoft) to
perform the synthesis.

Note To use text2speech, you must download the extended Audio Toolbox functionality from File
Exchange. The File Exchange submission includes a tutorial to get started with the third-party
services.

[speech,fs] = text2speech(___ ,HTTPTimeout=timeout) specifies the time in seconds to
wait for the initial server connection to the third-party speech service.

Examples

Synthesize Speech from Text

Create a speechClient object that interfaces with the IBM Watson Text to Speech service.

synthesizer = speechClient("IBM");

Call text2speech with a string to synthesize a speech signal.

[speech,fs] = text2speech(synthesizer,"hello world");

Listen to the synthesized speech.

soundsc(speech,fs)

Input Arguments
clientObj — Client object
speechClient object

Client object, specified as an object returned by speechClient. The object is an interface to a third-
party speech service.

You cannot use text2speech with a speechClient object that interfaces with the wav2vec 2.0
pretrained model.

2 Functions

2-676

https://www.mathworks.com/matlabcentral/fileexchange/73326-text2speech
https://www.mathworks.com/matlabcentral/fileexchange/73326-text2speech

To use the third-party speech services, you must download the extended Audio Toolbox functionality
from File Exchange. The File Exchange submission includes a tutorial to get started with the third-
party services.
Example: speechClient("IBM")

text — Text
string | character array

Text to synthesize into speech, specified as a string or character array.
Example: "Hello world"
Data Types: char | string

timeout — Time to wait for server connection in seconds
10 (default) | positive scalar

Time to wait for initial server connection in seconds, specified as a positive scalar.

Output Arguments
speech — Synthesized speech
column vector

Synthesized speech signal, returned as a column vector (single channel).
Data Types: double

fs — Sample rate (Hz)
positive double

Sample rate of speech signal in Hz, returned as a positive double. The sample rate depends on the
third-party service and its properties set through the clientObj. See the documentation for the
specific speech service for more information.
Data Types: double

Version History
Introduced in R2022b

See Also
speechClient | speech2text

 text2speech

2-677

https://www.mathworks.com/matlabcentral/fileexchange/73326-text2speech

System Objects

3

audioTimeScaler
Apply time scaling to streaming audio

Description
The audioTimeScaler object performs audio time scale modification (TSM) independently across
each input channel.

To modify the time scale of streaming audio:

1 Create the audioTimeScaler object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
aTS = audioTimeScaler
aTS = audioTimeScaler(speedupFactor)
aTS = audioTimeScaler(___ ,'Name',Value)

Description

aTS = audioTimeScaler creates an object, aTS, that performs audio time scale modification
independently across each input channel over time.

aTS = audioTimeScaler(speedupFactor) sets the SpeedupFactor property to
speedupFactor.

aTS = audioTimeScaler(___ ,'Name',Value) sets each property Name to the specified Value.
Unspecified properties have default values.
Example: aTS =
audioTimeScaler(1.2,'Window',sqrt(hann(1024,'periodic')),'OverlapLength',768)
creates an object, aTS, that increases the tempo of audio by 1.2 times its original speed using a
periodic 1024-point Hann window and a 768-point overlap.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

3 System Objects

3-2

SpeedupFactor — Speedup factor
1.1 (default) | positive real scalar

Speedup factor, specified as a positive real scalar.

Tunable: Yes
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

InputDomain — Domain of input signal
"Time" (default) | "Frequency"

Domain of the input signal, specified as "Time" or "Frequency".
Data Types: char | string

Window — Analysis window
sqrt(hann(512,'periodic')) (default) | real vector

Analysis window, specified as a real vector.

Note If using audioTimeScaler with frequency-domain input, you must specify Window as the
same window used to transform audioIn to the frequency domain.

Data Types: single | double

OverlapLength — Overlap length of adjacent analysis windows
384 (default) | nonnegative integer

Overlap length of adjacent analysis windows, specified as a nonnegative integer.

Note If using audioTimeScaler with frequency-domain input, you must specify OverlapLength
as the same overlap length used to transform audioIn to a time-frequency representation.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

FFTLength — FFT length
[] (default) | positive scalar integer

FFT length, specified as a positive integer. The default, [], means that the FFT length is equal to the
number of rows in the input signal.

Dependencies

To enable this property, set InputDomain to 'Time'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

LockPhase — Apply identity phase locking
false (default) | true

Apply identity phase locking, specified as true or false.
Data Types: logical

 audioTimeScaler

3-3

Usage

Syntax
audioOut = aTS(audioIn)

Description

audioOut = aTS(audioIn) applies time-scale modification to the input, audioIn, and returns the
time-scaled output, audioOut.

Input Arguments

audioIn — Input audio
column vector | matrix

Input audio, specified as a column vector or matrix. How audioTimeScaler interprets audioIn
depends on the InputDomain property.

• If InputDomain is set to "Time", audioIn must be a real N-by-1 column vector or N-by-C
matrix. The number of rows, N, must be equal to or less than the hop length (size(audioIn,1)
<= numel(Window)-OverlapLength). Columns of a matrix are interpreted as individual
channels.

• If InputDomain is set to "Frequency", specify audioIn as a real or complex NFFT-by-1 column
vector or NFFT-by-C matrix. The number of rows, NFFT, is the number of points in the DFT
calculation, and is set on the first call to the audio time scaler. NFFT must be greater than or
equal to the window length (size(audioIn,1) >= numel(Window)). Columns of a matrix are
interpreted as individual channels.

Data Types: single | double
Complex Number Support: Yes

Output Arguments

audioOut — Time-stretched audio
column vector | matrix

Time-stretched audio, returned as a column vector or matrix.
Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics

3 System Objects

3-4

reset Reset internal states of System object

Examples

Apply Time Scale Modification to Streaming Audio

To minimize artifacts caused by windowing, create a square root Hann window capable of perfect
reconstruction. Use iscola to verify the design.

win = sqrt(hann(1024,'periodic'));
overlapLength = 896;
iscola(win,overlapLength)

ans = logical
 1

Create an audioTimeScaler with a speedup factor of 1.5. Change the value of alpha to hear the
effect of the speedup factor.

alpha = ;
aTS = audioTimeScaler(...
 'SpeedupFactor',alpha, ...
 'Window',win, ...
 'OverlapLength',overlapLength);

Create a dsp.AudioFileReader object to read frames from an audio file. The length of frames input
to the audio time scaler must be less than or equal to the analysis hop length defined in
audioTimeScaler. To minimize buffering, set the samples per frame of the file reader to the
analysis hop length.

hopLength = numel(aTS.Window) - overlapLength;
fileReader = dsp.AudioFileReader('Counting-16-44p1-mono-15secs.wav', ...
 'SamplesPerFrame',hopLength);

Create an audioDeviceWriter to write frames to your audio device. Use the same sample rate as
the file reader.

deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);

In an audio stream loop, read a frame the file, apply time scale modification, and then write a frame
to the device.

while ~isDone(fileReader)
 audioIn = fileReader();
 audioOut = aTS(audioIn);
 deviceWriter(audioOut);
end

As a best practice, release your objects once done.

release(deviceWriter)
release(fileReader)
release(aTS)

 audioTimeScaler

3-5

Process Frequency-Domain Input

Create a window capable of perfect reconstruction. Use iscola to verify the design.

win = kbdwin(512);
overlapLength = 256;
iscola(win,overlapLength)

ans = logical
 1

Create an audioTimeScaler with a speedup factor of 0.8. Set InputDomain to "Frequency" and
specify the window and overlap length used to transform time-domain audio to the frequency domain.
Set LockPhase to true to increase the fidelity in the time-scaled output.

alpha = 0.8;
timeScaleModification = audioTimeScaler(...
 "SpeedupFactor",alpha, ...
 "InputDomain","Frequency", ...
 "Window",win, ...
 "OverlapLength",overlapLength, ...
 "LockPhase",true);

Create a dsp.AudioFileReader object to read frames from an audio file. Create a dsp.STFT object
to perform a short-time Fourier transform on streaming audio. Specify the same window and overlap
length you used to create the audioTimeScaler. Create an audioDeviceWriter object to write
frames to your audio device.

fileReader = dsp.AudioFileReader('RockDrums-44p1-stereo-11secs.mp3','SamplesPerFrame',numel(win)-overlapLength);

shortTimeFourierTransform = dsp.STFT('Window',win,'OverlapLength',overlapLength,'FFTLength',numel(win));

deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);

In an audio stream loop:

1 Read a frame from the file.
2 Input the frame to the STFT. The dsp.STFT object performs buffering.
3 Apply time scale modification.
4 Write the modified audio to your audio device.

while ~isDone(fileReader)
 x = fileReader();
 X = shortTimeFourierTransform(x);
 y = timeScaleModification(X);
 deviceWriter(y);
end

As a best practice, release your objects once done.

release(fileReader)
release(shortTimeFourierTransform)
release(timeScaleModification)
release(deviceWriter)

3 System Objects

3-6

Algorithms
audioTimeScaler uses the same phase vocoder algorithm as stretchAudio and is based on the
descriptions in [1] and [2].

Version History
Introduced in R2019b

References
[1] Driedger, Johnathan, and Meinard Müller. "A Review of Time-Scale Modification of Music Signals."

Applied Sciences. Vol. 6, Issue 2, 2016.

[2] Driedger, Johnathan. "Time-Scale Modification Algorithms for Music Audio Signals." Master's
thesis, Saarland University, 2011.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

“System Objects in MATLAB Code Generation” (MATLAB Coder)

See Also
shiftPitch | stretchAudio | audioDataAugmenter

 audioTimeScaler

3-7

parameterTuner
Tune object parameters while streaming

Syntax
H = parameterTuner(obj)

Description
H = parameterTuner(obj) creates a parameter tuning UI and returns a figure handle, H.

Examples

Tune Parameters of Multiple Objects

parameterTuner enables you to graphically tune parameters of multiple objects. In this example,
you use a crossover filter to split a signal into multiple subbands and then apply different effects to
the subbands.

Create a dsp.AudioFileReader to read in audio frame-by-frame. Create an audioDeviceWriter
to write audio to your sound card.

fileReader = dsp.AudioFileReader('FunkyDrums-48-stereo-25secs.mp3', ...
 'PlayCount',2);
deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);

Create a crossoverFilter with two crossovers to split the audio into three bands. Call visualize
to plot the frequency responses of the filters. Call parameterTuner to open a UI to tune the
crossover frequencies while streaming.

xFilt = crossoverFilter('SampleRate',fileReader.SampleRate,'NumCrossovers',2);
visualize(xFilt)
parameterTuner(xFilt)

3 System Objects

3-8

Create two compressor objects to apply dynamic range compression on two of the subbands. Call
visualize to plot the static characteristic of both of the compressors. Call parameterTuner to
open UIs to tune the static characteristics.

cmpr1 = compressor('SampleRate',fileReader.SampleRate);
visualize(cmpr1)
parameterTuner(cmpr1)

 parameterTuner

3-9

cmpr2 = compressor('SampleRate',fileReader.SampleRate);
visualize(cmpr2)
parameterTuner(cmpr2)

3 System Objects

3-10

Create an audiopluginexample.Chorus to apply a chorus effect to one of the bands. Call
parameterTuner to open a UI to tune the chorus plugin parameters.

 parameterTuner

3-11

chorus = audiopluginexample.Chorus;
setSampleRate(chorus,fileReader.SampleRate);
parameterTuner(chorus)

In an audio stream loop:

1 Read in a frame of audio from the file.
2 Split the audio into three bands using the crossover filter.
3 Apply dynamic range compression to the first and second bands.
4 Apply a chorus effect to the third band.
5 Sum the audio bands.
6 Write the frame of audio to your audio device for listening.

while ~isDone(fileReader)
 audioIn = fileReader();

 [b1,b2,b3] = xFilt(audioIn);

 b1 = cmpr1(b1);
 b2 = cmpr2(b2);
 b3 = process(chorus,b3);

 audioOut = b1+b2+b3;

 deviceWriter(audioOut);

 drawnow limitrate % Process parameterTuner callbacks
end

As a best practice, release your objects once done.

release(fileReader)
release(deviceWriter)

Tune Hosted Audio Plugin Parameters

Create a dsp.AudioFileReader to read in audio frame-by-frame. Create an audioDeviceWriter
to write audio to your sound card. Use loadAudioPlugin to load an equalizer plugin. If you are
using a Mac, replace the .dll file extension with .vst.

fileReader = dsp.AudioFileReader('FunkyDrums-48-stereo-25secs.mp3');
deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);

pluginPath = fullfile(matlabroot,'toolbox/audio/samples/ParametricEqualizer.dll');
eq = loadAudioPlugin(pluginPath);
setSampleRate(eq,fileReader.SampleRate);

Call parameterTuner to open a UI to tune parameters of the equalizer while streaming.

parameterTuner(eq)

3 System Objects

3-12

In an audio stream loop:

1 Read in a frame of audio from the file.
2 Apply equalization.
3 Write the frame of audio to your audio device for listening.

while ~isDone(fileReader)
 audioIn = fileReader();
 audioOut = process(eq,audioIn);
 deviceWriter(audioOut);

 drawnow limitrate % Process parameterTuner callbacks
end

As a best practice, release your objects once done.

release(fileReader)
release(deviceWriter)

Tune MATLAB Audio Plugin Parameters

Create a dsp.AudioFileReader to read in audio frame-by-frame. Create an audioDeviceWriter
to write audio to your sound card. Create an audiopluginexample.Flanger to process the audio
data and set the sample rate.

 parameterTuner

3-13

fileReader = dsp.AudioFileReader('RockGuitar-16-96-stereo-72secs.flac');
deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);

flanger = audiopluginexample.Flanger;
setSampleRate(flanger,fileReader.SampleRate);

Call parameterTuner to open a UI to tune parameters of the flanger while streaming.

parameterTuner(flanger)

In an audio stream loop:

1 Read in a frame of audio from the file.
2 Apply flanging.
3 Write the frame of audio to your audio device for listening.

while ~isDone(fileReader)
 audioIn = fileReader();
 audioOut = process(flanger,audioIn);
 deviceWriter(audioOut);

 drawnow limitrate % Process parameterTuner callbacks
end

As a best practice, release your objects once done.

release(fileReader)
release(deviceWriter)

Tune Compressor Parameters

Create a dsp.AudioFileReader to read in audio frame-by-frame. Create an audioDeviceWriter
to write audio to your sound card. Create a compressor to process the audio data. Call visualize
to plot the static characteristic of the compressor.

frameLength = 1024;
fileReader = dsp.AudioFileReader('RockDrums-44p1-stereo-11secs.mp3', ...
 'SamplesPerFrame',frameLength);
deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);

3 System Objects

3-14

dRC = compressor('SampleRate',fileReader.SampleRate);
visualize(dRC)

Create a timescope to visualize the original and processed audio.

scope = timescope(...
 'SampleRate',fileReader.SampleRate, ...
 'TimeSpanSource','property',...
 'TimeSpan',1, ...
 'BufferLength',fileReader.SampleRate*4, ...
 'YLimits',[-1,1], ...
 'TimeSpanOverrunAction','Scroll', ...
 'ShowGrid',true, ...
 'LayoutDimensions',[2,1], ...
 'NumInputPorts',2, ...
 'Title','Original vs. Compressed Audio (top) and Compressor Gain in dB (bottom)');
scope.ActiveDisplay = 2;
scope.YLimits = [-4,0];
scope.YLabel = 'Gain (dB)';

Call parameterTuner to open a UI to tune parameters of the compressor while streaming.

parameterTuner(dRC)

 parameterTuner

3-15

In an audio stream loop:

1 Read in a frame of audio from the file.
2 Apply dynamic range compression.
3 Write the frame of audio to your audio device for listening.
4 Visualize the original audio, the processed audio, and the gain applied.

While streaming, tune parameters of the dynamic range compressor and listen to the effect.

while ~isDone(fileReader)
 audioIn = fileReader();
 [audioOut,g] = dRC(audioIn);
 deviceWriter(audioOut);
 scope([audioIn(:,1),audioOut(:,1)],g(:,1));
 drawnow limitrate % required to update parameter
end

As a best practice, release your objects once done.

release(deviceWriter)
release(fileReader)
release(dRC)
release(scope)

3 System Objects

3-16

Input Arguments
obj — Object to tune
audioPlugin object | compressor | expander | limiter | noiseGate | octaveFilter |
crossoverFilter | multibandParametericEQ | graphicEQ | audioOscillator |
wavetableSynthesizer | reverberator | shelvingFilter

Object to tune, specified as an object that inherits from audioPlugin or one of the following Audio
Toolbox objects:

• compressor
• expander
• limiter
• noiseGate
• octaveFilter
• crossoverFilter
• multibandParametricEQ
• graphicEQ
• audioOscillator
• wavetableSynthesizer

 parameterTuner

3-17

• reverberator
• shelvingFilter

Output Arguments
H — Target figure
Figure object

Target figure, returned as a Figure object.

Version History
Introduced in R2019a

See Also
Audio Test Bench | audioPlugin

3 System Objects

3-18

gammatoneFilterBank
Gammatone filter bank

Description
gammatoneFilterBank decomposes a signal by passing it through a bank of gammatone filters
equally spaced on the ERB scale. Gammatone filter banks were designed to model the human
auditory system.

To model the human auditory system:

1 Create the gammatoneFilterBank object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation
Syntax
gammaFiltBank = gammatoneFilterBank
gammaFiltBank = gammatoneFilterBank(range)
gammaFiltBank = gammatoneFilterBank(range,numFilts)
gammaFiltBank = gammatoneFilterBank(range,numFilts,fs)
gammaFiltBank = gammatoneFilterBank(___ ,Name,Value)

Description

gammaFiltBank = gammatoneFilterBank returns a gammatone filter bank. The object filters
data independently across each input channel over time.

 gammatoneFilterBank

3-19

gammaFiltBank = gammatoneFilterBank(range) sets the Range property to range.

gammaFiltBank = gammatoneFilterBank(range,numFilts) sets the NumFilters property to
numFilts.

gammaFiltBank = gammatoneFilterBank(range,numFilts,fs) sets the SampleRate
property to fs.

gammaFiltBank = gammatoneFilterBank(___ ,Name,Value) sets each property Name to the
specified Value. Unspecified properties have default values.
Example: gammaFiltBank = gammatoneFilterBank([62.5,12e3],'SampleRate',24e3)
creates a gammatone filter bank, gammaFiltBank, with bandpass filters placed between 62.5 Hz and
12 kHz. gammaFiltBank operates at a sample rate of 24 kHz.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

FrequencyRange — Frequency range of filter bank (Hz)
[50 8000] (default) | two-element row vector of monotonically increasing values

Frequency range of the filter bank in Hz, specified as a two-element row vector of monotonically
increasing values.

Tunable: No
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

NumFilters — Number of filters
32 (default) | positive integer scalar

Number of filters in the filter bank, specified as a positive integer scalar.

Tunable: No
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

SampleRate — Input sample rate (Hz)
16000 (default) | positive scalar

Input sample rate in Hz, specified as a positive scalar.

Tunable: Yes
Data Types: single | double

3 System Objects

3-20

Usage

Syntax
audioOut = gammaFiltBank(audioIn)

Description

audioOut = gammaFiltBank(audioIn) applies the gammatone filter bank on the input and
returns the filtered output.

Input Arguments

audioIn — Audio input to filter bank
scalar | vector | matrix

Audio input to the filter bank, specified as a scalar, vector, or matrix. If specified as a matrix, the
columns are treated as independent audio channels.
Data Types: single | double

Output Arguments

audioOut — Audio output from filter bank
scalar | vector | matrix | 3-D array

Audio output from the filter bank, returned as a scalar, vector, matrix, or 3-D array. The shape of
audioOut depends on the shape of audioIn and NumFilters. If audioIn is an M-by-N matrix, then
audioOut is returned as an M-by-NumFilters-by-N array. If N is 1, then audioOut is returned as a
matrix.
Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to gammatoneFilterBank
fvtool Visualize filter bank
freqz Compute frequency response
getCenterFrequencies Center frequencies of filters
getBandwidths Get filter bandwidths
coeffs Get filter coefficients
info Get filter information

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics

 gammatoneFilterBank

3-21

reset Reset internal states of System object

Examples

Apply Gammatone Filter Bank

Create a default gammatone filter bank for a 16 kHz sample rate.

fs = 16e3;
gammaFiltBank = gammatoneFilterBank(SampleRate=fs)

gammaFiltBank =

 gammatoneFilterBank with properties:

 FrequencyRange: [50 8000]
 NumFilters: 32
 SampleRate: 16000

Use fvtool to visualize the response of the filter bank.

fvtool(gammaFiltBank)

3 System Objects

3-22

Process white Gaussian noise through the filter bank. Use a spectrum analyzer to view the spectrum
of the filter outputs.

sa = spectrumAnalyzer(SampleRate=16e3,...
 PlotAsTwoSidedSpectrum=false,...
 FrequencyScale="log");

for i = 1:5000
 x = randn(256,1);
 y = gammaFiltBank(x);
 sa(y);
end

Analysis and Synthesis

This example illustrates a nonoptimal but simple approach to analysis and synthesis using
gammatoneFilterBank.

Read in an audio file and listen to its contents.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');
sound(audioIn,fs)

Create a default gammatoneFilterBank. The default frequency range of the filter bank is 50 to
8000 Hz. Frequencies outside of this range are attenuated in the reconstructed signal.

 gammatoneFilterBank

3-23

gammaFiltBank = gammatoneFilterBank('SampleRate',fs)

gammaFiltBank =
 gammatoneFilterBank with properties:

 FrequencyRange: [50 8000]
 NumFilters: 32
 SampleRate: 44100

Pass the audio signal through the gammatone filter bank. The output is 32 channels, where the
number of channels is set by the NumFilters property of the gammatoneFilterBank.

audioOut = gammaFiltBank(audioIn);

[N,numChannels] = size(audioOut)

N = 685056

numChannels = 32

To reconstruct the original signal, sum the channels. Listen to the result.

reconstructedSignal = sum(audioOut,2);
sound(reconstructedSignal,fs)

The gammatone filter bank introduced various group delays for the output channels, which results in
poor reconstruction. To compensate for the group delay, remove the beginning delay from the
individual channels and zero-pad the ends of the channels. Use info to get the group delays. Listen
to the group delay-compensated reconstruction.

infoStruct = info(gammaFiltBank);
groupDelay = round(infoStruct.GroupDelays); % round for simplicity

audioPadded = [audioOut;zeros(max(groupDelay),gammaFiltBank.NumFilters)];

for i = 1:gammaFiltBank.NumFilters
 audioOut(:,i) = audioPadded(groupDelay(i)+1:N+groupDelay(i),i);
end

reconstructedSignal = sum(audioOut,2);
sound(reconstructedSignal,fs)

Create Gammatone Spectrogram

Read in an audio signal and convert it to mono for easy visualization.

[audio,fs] = audioread('WaveGuideLoopOne-24-96-stereo-10secs.aif');
audio = mean(audio,2);

Create a gammatoneFilterBank with 64 filters that span the range 62.5 to 20,000 Hz. Pass the
audio signal through the filter bank.

gammaFiltBank = gammatoneFilterBank('SampleRate',fs, ...
 'NumFilters',64, ...
 'FrequencyRange',[62.5,20e3]);

3 System Objects

3-24

audioOut = gammaFiltBank(audio);

Calculate the energy-per-band using 50 ms windows with 25 ms overlap. Use dsp.AsyncBuffer to
divide the signals into overlapped windows and then to log the RMS value of each window for each
channel.

samplesPerFrame = round(0.05*fs);
samplesOverlap = round(0.025*fs);

buff = dsp.AsyncBuffer(numel(audio));
write(buff,audioOut.^2);

sink = dsp.AsyncBuffer(numel(audio));

while buff.NumUnreadSamples > 0
 currentFrame = read(buff,samplesPerFrame,samplesOverlap);
 write(sink,mean(currentFrame,1));
end

Convert the energy values to dB. Plot the energy-per-band over time.

gammatoneSpec = read(sink);
D = 20*log10(gammatoneSpec');

timeVector = ((samplesPerFrame-samplesOverlap)/fs)*(0:size(D,2)-1);
cf = getCenterFrequencies(gammaFiltBank)./1e3;

surf(timeVector,cf,D,'EdgeColor','none')
axis([timeVector(1) timeVector(end) cf(1) cf(end)])
view([0 90])
caxis([-150,-60])
colorbar
xlabel('Time (s)')
ylabel('Frequency (kHz)')

 gammatoneFilterBank

3-25

Algorithms
A gammatone filter bank is often used as the front end of a cochlea simulation, which transforms
complex sounds into a multichannel activity pattern like that observed in the auditory nerve.[2] The
gammatoneFilterBank follows the algorithm described in [1]. The algorithm is an implementation
of an idea proposed in [2]. The design of the gammatone filter bank can be described in two parts: the
filter shape (gammatone) and the frequency scale. The equivalent rectangular bandwidth (ERB) scale
defines the relative spacing and bandwidth of the gammatone filters. The derivation of the ERB scale
also provides an estimate of the auditory filter response which closely resembles the gammatone
filter.

3 System Objects

3-26

Frequency Scale

The ERB scale was determined using the notched-noise masking method. This method involves a
listening test wherein notched noise is centered on a tone. The power of the tone is tuned, and the
audible threshold (the power required for the tone to be heard) is recorded. The experiment is
repeated for different notch widths and center frequencies.

The notched-noise method assumes the audible threshold corresponds to a constant signal-to-masker
ratio at the output of the theoretical auditory filter. That is, the ratio of the power of the fc tone and
the shaded area is constant. Therefore, the relationship between the audible threshold and 2Δf (the
notch bandwidth) is linearly related to the relationship between the noise passed through the filter
and 2Δf.

 gammatoneFilterBank

3-27

The derivative of the function relating Δf to the noise passed through the filter estimates the auditory
filter shape. Because Δf has an inverse relationship with the noise power passed through the filter,
the derivative of the function must be multiplied by –1. The resulting auditory filter shape is usually
approximated as a roex filter.

The equivalent rectangular bandwidth of the auditory filter is defined as the width of a rectangular
filter required to pass the same noise power as the auditory filter.

3 System Objects

3-28

[4] defines ERB as a function of center frequency for young listeners with normal hearing and a
moderate noise level:

ERB = 24.7(0.00437fc + 1)

The ERB scale (ERBs) is an extension of the relationship between ERB and center frequency, derived
by integrating the reciprocal of the ERB function:

ERBs = 21.4log10(0.00437f + 1)

To design a gammatone filter bank, [2] suggests distributing the center frequencies of the filters in
proportion to their bandwidth. To accomplish this, gammatoneFilterBank defines the center
frequencies as linearly spaced on the ERB scale, covering the specified frequency range with the
desired number of filters. You can specify the frequency range and desired number of filters using the
FrequencyRange and NumFilters properties.

Gammatone Filter

The gammatone filter was introduced in [3]. The continuous impulse response is:

g(t) = atn− 1e−2πbtcos(2πfct + ϕ)

where

• a –– amplitude factor
• t –– time in seconds
• n –– filter order (set to four to model human hearing)
• fc–– center frequency
• b –– bandwidth, set to 1.019*hz2erb(fc).
• ϕ –– phase factor

 gammatoneFilterBank

3-29

The gammatone filter is similar to the roex filter derived from the notched-noise experiment.
gammatoneFilterBank implements the digital filter as a cascade of four second-order sections, as
described in [1].

Version History
Introduced in R2019a

References
[1] Slaney, Malcolm. "An Efficient Implementation of the Patterson-Holdsworth Auditory Filter Bank."

Apple Computer Technical Report 35, 1993.

[2] Patterson, R. D., K. Robinson, J. Holdsworth, D. McKeown, C. Zhang, and M. Allerhand. "Complex
Sounds and Auditory Images." Auditory Physiology and Perception. 1992, pp. 429–446.

[3] Aertsen, A. M. H. J., and P. I. M. Johannesma. "Spectro-temporal Receptive Fields of Auditory
Neurons in the Grassfrog." Biological Cybernetics. Vol. 38, Issue 4, 1980, pp. 223–234.

[4] Glasberg, Brian R., and Brian C. J. Moore. "Derivation of Auditory Filter Shapes from Notched-
Noise Data." Hearing Research. Vol. 47. Issue 1-2, 1990, pp. 103 –138.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

“System Objects in MATLAB Code Generation” (MATLAB Coder)

See Also
octaveFilterBank | crossoverFilter

3 System Objects

3-30

coeffs
Get filter coefficients

Syntax
[B,A] = coeffs(obj)

Description
[B,A] = coeffs(obj) returns the coefficients of the filters created by obj.

Examples

Get graphicEQ Coefficients

Create a graphicEQ and then call coeffs to get its coefficients. The coefficients are returned as
second-order sections. The dimensions of B are 3-by-(M * EQOrder / 2), where M is the number of
bandpass equalizers. The dimensions of A are 2-by-(M * EQOrder / 2).

fs = 44.1e3;
x = 0.1*randn(fs*5,1);
equalizer = graphicEQ('SampleRate',fs, ...
 'Gains',[-10,-10,10,10,-10,-10,10,10,-10,-10], ...
 'EQOrder',2);

[B,A] = coeffs(equalizer);

Compare the output of the filter function using coefficients B and A with the output of graphicEQ.

y = x;
for section = 1:equalizer.EQOrder/2
 for i = 1:numel(equalizer.Gains)
 y = filter(B(:,i*section),A(:,i*section),y);
 end
end
audioOut_filter = y;

audioOut = equalizer(x);

subplot(2,1,1)
plot(abs(fft(audioOut)))
title('graphicEQ')
ylabel('Magnitude Response')

subplot(2,1,2)
plot(abs(fft(audioOut_filter)))
title('Filter function')
xlabel('Bin')
ylabel('Magnitude Response')

 coeffs

3-31

Get gammatoneFilterBank Coefficients

Create the default gammatoneFilterBank, and then call coeffs to get its coefficients. Each
gammatone filter is an eighth-order IIR filter composed of a cascade of four second-order sections.
The size of B is 4-by-3-by-NumFilters. The size of A is 4-by-2-by-NumFilters.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');

gammaFiltBank = gammatoneFilterBank('SampleRate',fs);

[B,A] = coeffs(gammaFiltBank);

Compare the output of the filter function using coefficients B and A with the output of
gammaFiltBank. For simplicity, compare output from channel eight only.

channelToCompare = 8;
y1 = filter(B(1,:,channelToCompare),[1,A(1,:,channelToCompare)],audioIn);
y2 = filter(B(2,:,channelToCompare),[1,A(2,:,channelToCompare)],y1);
y3 = filter(B(3,:,channelToCompare),[1,A(3,:,channelToCompare)],y2);
audioOut_filter = filter(B(4,:,channelToCompare),[1,A(4,:,channelToCompare)],y3);

audioOut = gammaFiltBank(audioIn);

t = (0:(size(audioOut,1)-1))'/fs;

3 System Objects

3-32

subplot(2,1,1)
plot(t,audioOut(:,channelToCompare))
title('Gammatone Filter Bank')
ylabel('Amplitude')

subplot(2,1,2)
plot(t,audioOut_filter)
title('Filter Function')
xlabel('Time (s)')
ylabel('Amplitude')

Get octaveFilterBank Coefficients

Create the default octaveFilterBank, and then call coeffs to get its coefficients. The coefficients
are returned as second-order sections. The dimensions of B and A are T-by-3-by-M, where T is the
number of sections and M is the number of filters.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');

octFiltBank = octaveFilterBank('SampleRate',fs);

[B,A] = coeffs(octFiltBank);

Compare the output of the filter function using coefficients B and A with the output of
octaveFilterBank. For simplicity, compare output from channel five only.

 coeffs

3-33

channelToCompare = 5;

audioOut_filter = filter(B(1,:,channelToCompare),A(1,:,channelToCompare),audioIn);
audioOut = octFiltBank(audioIn);

subplot(2,1,1)
plot(audioOut(:,channelToCompare))
title('Octave Filter Bank')

subplot(2,1,2)
plot(audioOut_filter)
title('Filter Function')

Input Arguments
obj — Object to get filter coefficients from
gammatoneFilterBank | octaveFilterBank | graphicEQ

Object to get filter coefficients from, specified as an object of gammatoneFilterBank,
octaveFilterBank, graphicEQ, or shelvingFilter.

Output Arguments
B — Numerator filter coefficients
matrix | 3-D array

3 System Objects

3-34

Numerator filter coefficients, returned as a 2-D matrix or 3-D array, depending on obj.
Data Types: single | double

A — Denominator filter coefficients
matrix | 3-D array

Numerator filter coefficients, returned as a 2-D matrix or 3-D array, depending on obj.
Data Types: single | double

Version History
Introduced in R2019a

SOS returned instead of FOS from octaveFilterBank
Behavior changed in R2020b

The coeffs function of octaveFilterBank now returns the filter in second-order sections (SOS)
instead of fourth-order sections (FOS). This new format reflects an updated internal representation,
which has been enhanced to remain stable at very low frequencies.

See Also
gammatoneFilterBank | octaveFilterBank | graphicEQ

 coeffs

3-35

freqz
Compute frequency response

Syntax
[H,f] = freqz(obj)
[H,f] = freqz(obj,ind)
[H,f] = freqz(___ ,Name,Value)
freqz(___)

Description
[H,f] = freqz(obj) returns a matrix of complex frequency responses for each filter designed by
obj.

[H,f] = freqz(obj,ind) returns the frequency response of filters with indices corresponding to
the elements in vector ind.

[H,f] = freqz(___ ,Name,Value) specifies options using one or more Name,Value pair
arguments.

freqz(___) with no output arguments plots the frequency response of the filter bank.

Examples

Frequency Response of gammatoneFilterBank

Create a gammatoneFilterBank object. Call freqz to get the complex frequency response, H, of
the filter bank and a vector of frequencies, f, at which the response is calculated. Plot the magnitude
frequency response of the filter bank.

gammaFiltBank = gammatoneFilterBank;
[H,f] = freqz(gammaFiltBank);

plot(f,abs(H))
xlabel('Frequency (Hz)')

3 System Objects

3-36

To get the frequency response of a subset of filters in the filter bank, specify the second argument as
a row vector of indices between one and the number of filters in the filter bank. Get the frequency
response of the 10th filter in the filter bank and plot the magnitude frequency response.

[H,f] = freqz(gammaFiltBank,10);

plot(f,abs(H))
xlabel('Frequency (Hz)')

 freqz

3-37

To specify the number of FFT points used to compute the frequency response, use the NFFT name-
value pair. Specify that the frequency response is calculated using a 128-point FFT. Plot the
magnitude frequency response.

[H,f] = freqz(gammaFiltBank,'NFFT',128);

plot(f,abs(H))
xlabel('Frequency (Hz)')

3 System Objects

3-38

To visualize the magnitude frequency response only, call freqz without any output arguments. Plot
the magnitude frequency response, in dB, of filters 20, 21, and 22 using a 1024-point DFT.

freqz(gammaFiltBank,[20,21,22],'NFFT',1024)

 freqz

3-39

Frequency Response of octaveFilterBank

Create an octaveFilterBank object. Call freqz to get the complex frequency response, H, of the
filter bank and a vector of frequencies, f, at which the response is calculated. Plot the magnitude
frequency response in dB.

octFiltBank = octaveFilterBank;
[H,f] = freqz(octFiltBank);

plot(f,20*log10(abs(H)))
xlabel('Frequency (Hz)')
ylabel('Magnitude (dB)')
set(gca,'XScale','log')
axis([10 octFiltBank.SampleRate/2 -100 2])

3 System Objects

3-40

To get the frequency response of a subset of filters in the filter bank, specify the second argument as
a row vector of indices between one and the number of filters in the filter bank. Get the frequency
response of the 5th filter in the filter bank and plot the magnitude frequency response in dB.

[H,f] = freqz(octFiltBank,5);

plot(f,20*log10(abs(H)))
xlabel('Frequency (Hz)')
ylabel('Magnitude (dB)')
set(gca,'XScale','log')
axis([10 octFiltBank.SampleRate/2 -100 2])

 freqz

3-41

To specify the number of FFT points used to compute the frequency response, use the NFFT name-
value pair. Specify that the frequency response is calculated using a 8192-point FFT. Plot the
magnitude frequency response in dB.

[H,f] = freqz(octFiltBank,'NFFT',8192);

plot(f,20*log10(abs(H)))
xlabel('Frequency (Hz)')
ylabel('Magnitude (dB)')
set(gca,'XScale','log')
axis([10 octFiltBank.SampleRate/2 -100 2])

3 System Objects

3-42

To visualize the magnitude frequency response only, call freqz without any output arguments. Plot
the magnitude frequency response, in dB, of filters 4, 5, and 6 using a 1024-point DFT.

freqz(octFiltBank,[4,5,6],'NFFT',1024)

 freqz

3-43

Input Arguments
obj — Object to get filter frequency responses from
gammatoneFilterBank | octaveFilterBank

Object to get filter frequency responses from, specified as an object of gammatoneFilterBank or
octaveFilterBank.

ind — Indices of filters to calculate frequency responses from
1:N (default) | row vector of integers with values in the range [1, N]

Indices of filters to calculate frequency responses from, specified as a row vector of integers with
values in the range [1, N]. N is the total number of filters designed by obj.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'NFFT',2048

NFFT — Number of DFT bins
8192 (default) | positive integer

3 System Objects

3-44

Number of DFT bins, specified as a positive integer.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
H — Complex frequency response of each filter
matrix

Complex frequency response of each filter, returned as an M-by-N matrix. M is the number of DFT
bins, specified by NFFT. N is the number of filters, which is either length(ind) or, if ind is not
specified, the total number of filters in the filter bank.
Data Types: double

f — Frequencies at which response is computed (Hz)
column vector

Frequencies at which the response is computed in Hz, returned as a column vector.
Data Types: double

Version History
Introduced in R2019a

See Also
gammatoneFilterBank | octaveFilterBank | fvtool

 freqz

3-45

fvtool
Visualize filter bank

Syntax
fvtool(obj)
fvtool(obj,ind)
fvtool(___ ,Name,Value)

Description
fvtool(obj) visualizes the filters in the filter bank using the Filter Visualization Tool (FVTool).

fvtool(obj,ind) visualizes the filters corresponding to the elements in the vector ind.

fvtool(___ ,Name,Value) specifies options using one or more Name,Value pair arguments.

Examples

View octaveFilterBank in FVTool

Create an octaveFilterBank object. Call fvtool to visualize the filter bank.

octFiltBank = octaveFilterBank;
fvtool(octFiltBank)

3 System Objects

3-46

ans =
 Figure (filtervisualizationtool) with properties:

 Number: []
 Name: 'Figure 1: Magnitude Response (dB)'
 Color: [0.9400 0.9400 0.9400]
 Position: [360 502 560 420]
 Units: 'pixels'

 Use get to show all properties

To visualize a subset of filters in the filter bank, specify the second argument as a row vector of
indices between one and the number of filters in the filter bank. If not specified, fvtool visualizes 1
to N filters of the filter bank, where N is the smallest of octFiltBank.NumFilters and 64.
Visualize the ninth filter.

fvtool(octFiltBank,9)

 fvtool

3-47

ans =
 Figure (filtervisualizationtool) with properties:

 Number: []
 Name: 'Figure 2: Magnitude Response (dB)'
 Color: [0.9400 0.9400 0.9400]
 Position: [360 502 560 420]
 Units: 'pixels'

 Use get to show all properties

To specify the number of FFT points used to compute the frequency response, use the NFFT name-
value pair. Specify that the frequency response is calculated using a 8192-point FFT.

fvtool(octFiltBank,'NFFT',8192)

3 System Objects

3-48

ans =
 Figure (filtervisualizationtool) with properties:

 Number: []
 Name: 'Figure 3: Magnitude Response (dB)'
 Color: [0.9400 0.9400 0.9400]
 Position: [360 502 560 420]
 Units: 'pixels'

 Use get to show all properties

View gammatoneFilterBank in FVTool

Create a gammatoneFilterBank object. Call fvtool to visualize the filter bank.

gammaFiltBank = gammatoneFilterBank;
fvtool(gammaFiltBank);

 fvtool

3-49

To visualize a subset of filters in the filter bank, specify the second argument as a row vector of
indices between one and the number of filters in the filter bank. If not specified, fvtool visualizes 1
to N filters of the filter bank, where N is the smallest of gammaFiltBank.NumFilters and 64.
Visualize the ninth filter.

fvtool(gammaFiltBank,9);

3 System Objects

3-50

To specify the number of FFT points used to compute the frequency response, use the NFFT name-
value pair. Specify that the frequency response is calculated using a 8192-point FFT.

fvtool(gammaFiltBank,'NFFT',8192);

 fvtool

3-51

Input Arguments
obj — Object to get filter frequency responses from
gammatoneFilterBank | octaveFilterBank

Object to get filter frequency responses from, specified as an object of gammatoneFilterBank or
octaveFilterBank.

ind — Indices of filters to calculate frequency responses from
1:max(N,64) (default) | row vector of integers with values in the range [1, N]

Indices of filters to calculate frequency responses from, specified as a row vector of integers with
values in the range [1, N]. N is the total number of filters designed by obj.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'NFFT',2048

3 System Objects

3-52

NFFT — Number of DFT bins
8192 (default) | positive integer

Number of DFT bins, specified as a positive integer.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Version History
Introduced in R2019a

See Also
gammatoneFilterBank | octaveFilterBank

 fvtool

3-53

getBandedgeFrequencies
Get filter bandedges

Syntax
bandEdges = getBandedgeFrequencies(obj)
[bandEdges,centerFrequencies] = getBandedgeFrequencies(obj)

Description
bandEdges = getBandedgeFrequencies(obj) returns the bandedge frequencies of the filters
designed by obj. If there are M filters, then there are M center frequencies and M+1 band edge
frequencies.

[bandEdges,centerFrequencies] = getBandedgeFrequencies(obj) returns the center
frequencies of the filters designed by obj.

Examples

Get Bandedge Frequencies

Create a default octaveFilterBank object.

octFiltBank = octaveFilterBank;

Call getBandedgeFrequencies to return a vector of bandedge frequencies.

bE = getBandedgeFrequencies(octFiltBank)

bE = 1×11
104 ×

 0.0022 0.0045 0.0089 0.0178 0.0355 0.0708 0.1413 0.2818 0.5623 1.1220 2.2050

Call freqz to get the frequency response of the filter bank. Plot the magnitude frequency response.
Use the bandedge frequencies to label the frequency axis.

[H,f] = freqz(octFiltBank);
semilogx(f,abs(H))
xticks(round(bE))
xlabel('Frequency (Hz)')
ylabel('Magnitude')
grid on
h = gcf;
set(h,'Position',[h.Position(1) h.Position(2) h.Position(3)*2 h.Position(4)])

3 System Objects

3-54

Input Arguments
obj — Object to get filter information from
octaveFilterBank object

Object to get filter information from, specified as an object of octaveFilterBank.

Output Arguments
bandEdges — Bandedges of filters (Hz)
row vector

Bandedges of filters designed by obj in Hz, returned as a row vector.
Data Types: double | single

centerFrequencies — Center frequencies of filters (Hz)
row vector

Center frequencies of filters designed by obj in Hz, returned as a row vector.
Data Types: double | single

Version History
Introduced in R2019a

See Also
octaveFilterBank

 getBandedgeFrequencies

3-55

getCenterFrequencies
Center frequencies of filters

Syntax
cf = getCenterFrequencies(obj)

Description
cf = getCenterFrequencies(obj) returns the center frequencies of the filters created by obj,
in Hz.

Examples

Center Frequencies of gammatoneFilterBank

Create a gammatoneFilterBank and get the center frequencies of the filters in the filter bank.

gammaFiltBank = gammatoneFilterBank;

cf = getCenterFrequencies(gammaFiltBank)

cf = 1×32
103 ×

 0.0500 0.0822 0.1181 0.1581 0.2027 0.2525 0.3081 0.3700 0.4391 0.5162 0.6022 0.6980 0.8050 0.9242 1.0573 1.2056 1.3711 1.5557 1.7616 1.9912 2.2473 2.5329 2.8515 3.2069 3.6032 4.0453 4.5384 5.0883 5.7017 6.3858 7.1489 8.0000

Center frequencies of a gammatone filter bank are spaced evenly on the ERB scale. Convert the
center frequencies vector to the ERB scale and calculate the differences between center frequencies.

diff(hz2erb(cf))

ans = 1×31

 1.0130

Center Frequencies of octaveFilterBank

Create an octaveFilterBank and get the center frequencies of the filters in the filter bank.

octFiltBank = octaveFilterBank;

cf = getCenterFrequencies(octFiltBank)

cf = 1×10
104 ×

3 System Objects

3-56

 0.0032 0.0063 0.0126 0.0251 0.0501 0.1000 0.1995 0.3981 0.7943 1.5849

Center frequencies of an octave filter bank are spaced evenly on a logarithmic scale. Convert the
center frequencies vector to the log scale and calculate the differences between center frequencies.

diff(log10(cf))

ans = 1×9

 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000

Get Center Frequencies of Octave Filter Bank Used in splMeter

Create an octave bandwidth splMeter and get the center frequencies of the octave filter bank.
Round the center frequencies to two significant digits for display purposes.

SPL = splMeter('SampleRate',44100,'Bandwidth','1 octave');
cf = getCenterFrequencies(SPL);
round(cf,2,'significant')

ans = 1×10

 32 63 130 250 500 1000 2000 4000 7900 16000

Input Arguments
obj — Object to get filter bank center frequencies from
gammatoneFilterBank | octaveFilterBank | splMeter

Object to get filter bank center frequencies from, specified as an object of gammatoneFilterBank,
octaveFilterBank, or splMeter.

Output Arguments
cf — Filter bank center frequencies (Hz)
scalar | vector

Filter bank center frequencies in Hz, returned a scalar or vector.

Version History
Introduced in R2019a

See Also
gammatoneFilterBank | octaveFilterBank | splMeter

 getCenterFrequencies

3-57

getBandwidths
Get filter bandwidths

Syntax
bw = getBandwidths(obj)

Description
bw = getBandwidths(obj) returns the bandwidths of the filters created by obj, in Hz.

Examples

Get Filter Bandwidths of gammatoneFilterBank

Create a default gammatoneFilterBank. Call getBandwidths to get the bandwidths of the filters,
in Hz.

gammaFiltBank = gammatoneFilterBank;

bw = getBandwidths(gammaFiltBank)

bw = 1×32

 30.6688 34.2080 38.1555 42.5583 47.4691 52.9463 59.0554 65.8692 73.4690 81.9456 91.3999 101.9449 113.7064 126.8246 141.4561 157.7754 175.9773 196.2789 218.9225 244.1782 272.3473 303.7659 338.8089 377.8944 421.4887 470.1119 524.3441 584.8325 652.2986 727.5474 811.4768 905.0880

Input Arguments
obj — Object to get filter bandwidth from
gammatoneFilterBank

Object to get filter bandwidth from, specified as an object of gammatoneFilterBank.

Output Arguments
bw — Filter bandwidths (Hz)
scalar | vector

Filter bandwidths in Hz, returned a scalar or vector.

Version History
Introduced in R2019a

3 System Objects

3-58

See Also
gammatoneFilterBank

 getBandwidths

3-59

getGroupDelays
Get group delays

Syntax
groupDelays = getGroupDelays(obj)
[groupDelays,centerFrequencies] = getGroupDelays(obj)

Description
groupDelays = getGroupDelays(obj) returns the group delay of each filter at its center
frequency.

[groupDelays,centerFrequencies] = getGroupDelays(obj) returns the center frequency of
each filter.

Examples

Get Group Delays

Create a default octaveFilterBank object. Call getGroupDelays to get the group delay of each
octave filter at its center frequency.

octFiltBank = octaveFilterBank;
[gd,cf] = getGroupDelays(octFiltBank);

Plot the group delay as a function of filter center frequency.

loglog(cf,gd,'k-',cf,gd,'bo')
grid on
xlabel('Frequency (Hz)')
ylabel('Delay (samples)')
xticks(round(cf))
yticks(round(fliplr(gd)))

3 System Objects

3-60

Input Arguments
obj — Object to get group delays from
octaveFilterBank

Object to get group delays from, specified as an object of octaveFilterBank.

Output Arguments
groupDelays — Group delays (samples)
row vector

Group delay of each filter at its center frequency in samples, returned as a row vector.

centerFrequencies — Center frequencies of filters (Hz)
row vector

Center frequencies of filters designed by obj in Hz, returned as a row vector.
Data Types: double | single

Version History
Introduced in R2019a

See Also
octaveFilterBank

 getGroupDelays

3-61

octaveFilterBank
Octave and fractional-octave filter bank

Description
octaveFilterBank decomposes a signal into octave or fractional-octave subbands. An octave band
is a frequency band where the highest frequency is twice the lowest frequency. Octave-band and
fractional octave-band filters are commonly used to mimic how humans perceive loudness.

To apply a bank of octave-band or fractional octave-band filters:

1 Create the octaveFilterBank object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
octFiltBank = octaveFilterBank
octFiltBank = octaveFilterBank(bandwidth)
octFiltBank = octaveFilterBank(bandwidth,fs)
octFiltBank = octaveFilterBank(___ ,Name,Value)

Description

octFiltBank = octaveFilterBank returns an octave filter bank. The objects filters data
independently across each input channel over time.

3 System Objects

3-62

octFiltBank = octaveFilterBank(bandwidth) sets the Bandwidth property to bandwidth.

octFiltBank = octaveFilterBank(bandwidth,fs) sets the SampleRate property to fs.

octFiltBank = octaveFilterBank(___ ,Name,Value) sets each property Name to the
specified Value. Unspecified properties have default values.
Example: octFiltBank = octaveFilterBank('1/2 octave','FrequencyRange',
[62.5,12000]) creates a ½ octave-band filter bank, octFiltBank, with bandpass filters placed
between 62.5 Hz and 12,000 Hz.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Bandwidth — Filter bandwidth (octave)
'1 octave' (default) | '2/3 octave' | '1/2 octave' | '1/3 octave' | '1/6 octave' | '1/12
octave' | '1/24 octave' | '1/48 octave'

Filter bandwidth in octaves, specified as '1 octave', '2/3 octave', '1/2 octave', '1/3
octave', '1/6 octave', '1/12 octave', '1/24 octave', or '1/48 octave'.

Tunable: No
Data Types: char | string

SampleRate — Input sample rate (Hz)
44100 (default) | positive scalar

Input sample rate in Hz, specified as a positive scalar.

Tunable: Yes
Data Types: single | double

FrequencyRange — Frequency range of filter bank (Hz)
[22 22050] (default) | two-element row vector of positive monotonically increasing values

Frequency range of the filter bank in Hz, specified as a two-element row vector of positive
monotonically increasing values. The filter bank center frequencies are placed according to the
Bandwidth, RefererenceFrequency, and OctaveRatioBase properties. Filters that have a center
frequency outside FrequencyRange are ignored.

Tunable: No
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

ReferenceFrequency — Reference frequency (Hz)
1000 (default) | positive integer scalar

 octaveFilterBank

3-63

Reference frequency of the filter bank in Hz, specified as a positive integer scalar. The reference
frequency defines one of the center frequencies. All other center frequencies are set relative to the
reference frequency.

Tunable: No
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

FilterOrder — Order of octave filters
2 (default) | even integer

Order of the octave filters, specified as an even integer. The filter order applies to each individual
filter in the filter bank.

Tunable: No
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

OctaveRatioBase — Octave ratio base
10 (default) | 2

Octave ratio base, specified as 10 or 2. The octave ratio base determines the distribution of the
center frequencies of the octave filters. The ANSI S1.11 standard recommends base 10. Base 2 is
popular for music applications. Base 2 defines an octave as a factor of 2, and base 10 defines an
octave as a factor of 100.3.

Tunable: No
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Usage

Syntax
audioOut = octFiltBank(audioIn)

Description

audioOut = octFiltBank(audioIn) applies the octave filter bank on the input and returns the
filtered output.

Input Arguments

audioIn — Audio input to octave filter bank
scalar | vector | matrix

Audio input to the octave filter bank, specified as a scalar, vector, or matrix. If specified as a matrix,
the columns are treated as independent audio channels.
Data Types: single | double

Output Arguments

audioOut — Audio output from octave filter bank
matrix | 3-D array

3 System Objects

3-64

Audio output from octave filter bank, returned as a scalar, vector, matrix, or 3-D array. The shape of
audioOut depends on the shape of audioIn and the number of filters in the filter bank. If M is the
number of filters, and audioIn is an L-by-N matrix, then audioOut is returned as an L-by-M-by-N
array. If N is 1, then audioOut is a matrix.
Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to octaveFilterBank
coeffs Get filter coefficients
freqz Compute frequency response
fvtool Visualize filter bank
getBandedgeFrequencies Get filter bandedges
getCenterFrequencies Center frequencies of filters
getGroupDelays Get group delays
info Get filter information
isStandardCompliant Verify octave filter bank is ANSI S1.11-2004 compliant

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Apply Octave Filter Bank

Create a 1/3-octave filter bank for a signal sampled at 48 kHz. Set the frequency range to [18
22000] Hz.

octFilBank = octaveFilterBank("1/3 octave",48000, ...
 FrequencyRange=[18 22000]);

Use fvtool to visualize the response of the filter bank. To get a high-resolution view on the lower
frequencies, set the scale of the x-axis to log and NFFT to 2^16.

fvt = fvtool(octFilBank,"NFFT",2^16);
set(fvt,FrequencyScale="log")
zoom(fvt,[.01 24 -20 1])

 octaveFilterBank

3-65

Display the filter bank center frequencies.

fc = getCenterFrequencies(octFilBank);
cf = string(size(fc));
for ii = find(fc<1000)
 cf(ii) = sprintf("%.0f Hz",round(fc(ii),2,"significant"));
end
for ii = find(fc>=1000)
 cf(ii) = sprintf("%.1f kHz",fc(ii)/1000);
end
disp(cf)

 Columns 1 through 7

 "20 Hz" "25 Hz" "32 Hz" "40 Hz" "50 Hz" "63 Hz" "79 Hz"

 Columns 8 through 13

 "100 Hz" "130 Hz" "160 Hz" "200 Hz" "250 Hz" "320 Hz"

 Columns 14 through 19

 "400 Hz" "500 Hz" "630 Hz" "790 Hz" "1.0 kHz" "1.3 kHz"

 Columns 20 through 25

 "1.6 kHz" "2.0 kHz" "2.5 kHz" "3.2 kHz" "4.0 kHz" "5.0 kHz"

3 System Objects

3-66

 Columns 26 through 30

 "6.3 kHz" "7.9 kHz" "10.0 kHz" "12.6 kHz" "15.8 kHz"

 Column 31

 "20.0 kHz"

Process white Gaussian noise through the filter bank. Use a spectrum analyzer to view the spectrum
of the filter outputs.

sa = spectrumAnalyzer(SampleRate=16e3,...
 PlotAsTwoSidedSpectrum=false,...
 FrequencyScale="log");

for index = 1:500
 x = randn(256,1);
 y = octFilBank(x);
 sa(y);
end

 octaveFilterBank

3-67

Analysis and Synthesis

The octaveFilterBank enables good reconstruction of a signal after analyzing or modifying its
subbands.

Read in an audio file and listen to its contents.

[audioIn,fs] = audioread('RandomOscThree-24-96-stereo-13secs.aif');
sound(audioIn,fs)

Create a default octaveFilterBank. The default frequency range of the filter bank is 22 to 22,050
Hz. Frequencies outside of this range are attenuated in the reconstructed signal.

octFiltBank = octaveFilterBank('SampleRate',fs);

Pass the audio signal through the octave filter bank. The number of outputs depends on the
FrequencyRange, ReferenceFrequency, OctaveRatioBase, and Bandwidth properties of the
octave filter bank. Each channel of the input is passed through a filter bank independently and is
returned as a separate page in the output.

audioOut = octFiltBank(audioIn);

[N,numFilters,numChannels] = size(audioOut)

N = 1265935

numFilters = 10

numChannels = 2

The octave filter bank introduces various group delays. To compensate for the group delay, remove
the beginning delay from the individual filter outputs and zero-pad the ends of the signals so that they
are all the same size. Use getGroupDelays to get the group delays. Listen to the group delay-
compensated reconstruction.

groupDelay = round(getGroupDelays(octFiltBank)); % round for simplicity

audioPadded = [audioOut;zeros(max(groupDelay),numFilters,numChannels)];

for i = 1:numFilters
 audioOut(:,i,:) = audioPadded(groupDelay(i)+1:N+groupDelay(i),i,:);
end

To reconstruct the original signal, sum the outputs of the filter banks for each channel. Use squeeze
to move the second channel from the third dimension to the second in the reconstructed signal.

reconstructedSignal = squeeze(sum(audioOut,2));
sound(reconstructedSignal,fs)

Algorithms
The octaveFilterBank is implemented as a parallel structure of octave filters. Individual octave
filters are designed as described by octaveFilter. By default, the octave filter bank center
frequencies are placed as specified by the ANSI S1.11-2004 standard. You can modify the filter
placements using the Bandwidth, FrequencyRange, ReferenceFrequency, and
OctaveRatioBase properties.

3 System Objects

3-68

Version History
Introduced in R2019a

References
[1] Orfanidis, Sophocles J. Introduction to Signal Processing. Englewood Cliffs, NJ: Prentice Hall,

2010.

[2] Acoustical Society of America. American National Standard Specification for Octave-Band and
Fractional-Octave-Band Analog and Digital Filters. ANSI S1.11-2004. Melville, NY: Acoustical
Society of America, 2009.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

“System Objects in MATLAB Code Generation” (MATLAB Coder)

See Also
Octave Filter Bank | gammatoneFilterBank | octaveFilter | graphicEQ | splMeter

Topics
“Octave-Band and Fractional Octave-Band Filters”

 octaveFilterBank

3-69

isStandardCompliant
Verify octave filter bank is ANSI S1.11-2004 compliant

Syntax
[status,cf] = isStandardCompliant(ofb,ctype)
[statusall,cfref] = isStandardCompliant(ofb,ctype,'all')

Description
[status,cf] = isStandardCompliant(ofb,ctype) indicates whether each filter in ofb is
compliant with the minimum and maximum attenuation specifications of the ctype design specified
in the ANSI S1.11-2004 standard. The function also returns a vector of center frequencies.

[statusall,cfref] = isStandardCompliant(ofb,ctype,'all') returns a scalar that is true
only if all the filters in the filter bank are compliant.

Examples

Verify Standard Compliance

Use octaveFilterBank to design an octave filter bank. Use isStandardCompliant to verify if the
designed octave filter bank is compliant with the ANSI S1.11-2004 standard.

Create an octaveFilterBank object composed of 12th-order 1-octave filters.

Call isStandardCompliant, specifying the compliance class type as 'class 0'. Display the
compliance status and reference frequency for each filter.

ofb = octaveFilterBank('FilterOrder',12,'Bandwidth','1 octave');
[status,reffreq] = isStandardCompliant(ofb,'class 0')

status = 1x10 logical array

 1 1 1 1 1 1 1 1 1 1

reffreq = 1×10
104 ×

 0.0032 0.0063 0.0126 0.0251 0.0501 0.1000 0.1995 0.3981 0.7943 1.5849

Verify Octave Filter Bank Compliance

Use the 'all' option to return compliance verification of the complete filter bank. The 'all' option
also returns the ANSI reference frequency against which the function checks the mask.

3 System Objects

3-70

ofb = octaveFilterBank('FilterOrder',12,'Bandwidth','1/3 octave');
[status,reffreq] = isStandardCompliant(ofb,'class 0','all')

status = logical
 1

reffreq = 1000

Decrease the filter order to produce a noncompliant filter in the bank. Verify the last filter in the bank
is noncompliant.

ofb = octaveFilterBank('FilterOrder',8);
status = isStandardCompliant(ofb,'class 1')

status = 1x10 logical array

 1 1 1 1 1 1 1 1 1 0

Use the 'all' option to verify noncompliance of the bank.

isStandardCompliant(ofb,'class 1','all')

ans = logical
 0

Input Arguments
ofb — Input octave filter bank
octaveFilterBank object

Input filter bank, specified as an octaveFilterBank object.

ctype — Compliance class type
'class 0' | 'class 1' | 'class 2'

Compliance class type to verify, specified as 'class 0', 'class 1', or 'class 2'. For more
information on ANSI S1.11-2004 compliant filter classes, see “Octave-Band and Fractional Octave-
Band Filters”.
Data Types: char | string

Output Arguments
status — Compliance status
vector

Compliance status, returned as a logical vector. The compliance status indicates whether each filter
in the object ofb is compliant with the ANSI S1.11-2004 standard for ctype.
Data Types: logical

cf — Standard-compliant center frequencies
vector

 isStandardCompliant

3-71

Standard-compliant center frequencies, returned as a vector. The center frequencies are used to set
the class attenuation limits.

statusall — Aggregate compliance status
scalar

Aggregate compliance status, returned as a logical scalar. statusall is true only if all the filters in
the filter bank are compliant.
Data Types: logical

cfref — Standard-compliant reference frequency
scalar

Standard-compliant reference frequency, returned as a scalar. The reference frequency is used to set
the class attenuation limits.

Tips
• To meet compliance, set the reference frequency of the octave filter bank to one of the values

returned by the getANSICenterFrequencies(octaveFilter) method, increase the filter
order, limit the frequency range, or increase the sample rate.

Version History
Introduced in R2021a

See Also

3 System Objects

3-72

splMeter
Measure sound pressure level of audio signal

Description
The splMeter System object computes sound pressure level measurements. The object returns
measurements for:

• frequency-weighted sound levels
• fast or slow time-weighted sound levels
• equivalent-continuous sound levels
• peak sound levels
• maximum sound levels

To implement SPL metering:

1 Create the splMeter object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
SPL = splMeter
SPL = splMeter(Name,Value)

Description

SPL = splMeter creates a System object, SPL, that performs SPL metering.

 splMeter

3-73

SPL = splMeter(Name,Value) sets each property Name to the specified Value. Unspecified
properties have default values.
Example: SPL = splMeter('FrequencyWeighting','C-weighting','SampleRate',12000)
creates a System object, SPL, that performs C-weighting and operates at 12 kHz.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Bandwidth — Width of analysis bands
'Full band' (default) | '1 octave' | '2/3 octave' | '1/3 octave'

Width of analysis bands, specified as 'Full band', '1 octave', '2/3 octave', or '1/3
octave'. If Bandwidth is specified as 'Full band', the SPL meter returns one set of
measurements for the whole frequency band. If Bandwidth is specified as '1 octave', '2/3
octave', or '1/3 octave', the SPL meter returns one set of measurements per octave or
fractional-octave band.

Tunable: No
Data Types: char | string

FrequencyRange — Frequency range of filter bank (Hz)
[22 22050] (default) | two-element row vector of positive monotonically increasing values

Frequency range of the filter bank in Hz, specified as a two-element row vector of positive
monotonically increasing values. Frequency bands centered above SampleRate/2 are excluded.

Tunable: No
Dependencies

To enable this property, set Bandwidth to '1 octave', '2/3 octave', or '1/3 octave'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

OctaveFilterOrder — Order of octave filter
2 (default) | even integer

Order of the octave filter, specified as an even integer.

Tunable: No
Dependencies

To enable this property, set Bandwidth to '1 octave', '2/3 octave', or '1/3 octave'.
Data Types: single | double

FrequencyWeighting — Frequency weighting applied to input
'A-weighting' (default) | 'C-weighting' | 'Z-weighting' (no weighting)

3 System Objects

3-74

Frequency weighting applied to input, specified as 'A-weighting', 'C-weighting', or 'Z-
weighting', where Z-weighting corresponds to no weighting. The frequency weighting is designed
and implemented using the weightingFilter System object.

Tunable: No
Data Types: char | string

TimeWeighting — Time weighting (s)
'Fast' (default) | 'Slow'

Time weighting, in seconds, for calculation of time-weighted sound level and maximum time-weighted
sound level, specified as 'Fast' or 'Slow'. The TimeWeighting property is used to specify the
coefficient of a lowpass filter.

• 'Fast' – 1/8
• 'Slow' – 1

Tunable: Yes
Data Types: char | string

PressureReference — Reference pressure for dB calculations (Pa)
2e-5 (default) | positive scalar

Reference pressure for dB calculations in Pa, specified as a positive scalar.

Tunable: Yes
Data Types: single | double

TimeInterval — Time interval for reporting level measurements (s)
1 (default) | positive scalar

Time interval, in seconds, to report equivalent-continuous, peak, and maximum time-weighted sound
levels, specified as a positive scalar integer.

Tunable: No
Data Types: single | double

CalibrationFactor — Calibration factor multiplied by input
1 (default) | positive finite scalar or vector

Scalar (mono input) or vector (multichannel input) calibration factor multiplied by input.

To set the calibration factor using a reference tone, use calibrate.

Tunable: No
Data Types: single | double

SampleRate — Input sample rate (Hz)
44100 (default) | positive scalar

Input sample rate in Hz, specified as a positive scalar.

Tunable: No

 splMeter

3-75

Data Types: single | double

Usage

Syntax
[Lt,Leq,Lpeak,Lmax] = SPL(audioIn)

Description

[Lt,Leq,Lpeak,Lmax] = SPL(audioIn) returns measurement values for the time-weighted (Lt)
sound level of the current input frame, audioIn. The object also returns the equivalent-continuous
(Leq), peak (Lpeak), and maximum time-weighted (Lmax) sound levels of the input to your SPL
meter.

Input Arguments

audioIn — Audio input to SPL meter
column vector | matrix

Audio input to the SPL meter, specified as a column vector or matrix. The columns of the matrix are
treated as independent audio channels.
Data Types: single | double

Output Arguments

Lt — Time-weighted sound level (dB)
column vector | matrix | 3-D array

Time-weighted sound level in dB, returned as a column vector, matrix, or 3-D array the same type as
audioIn.

Size and interpretation of the outputs depend on what the Bandwidth property is set to:

• 'Full band' (default) –– Lt, Leq, Lpeak, and Lmax are returned as column vectors or matrices
the same size as audioIn.

• '1 octave', '2/3 octave', or '1/3 octave' –– Lt, Leq, Lpeak, and Lmax are returned as L-
by-B-by-C arrays.

• L –– Number of rows in audioIn
• B –– Number of octave bands
• C –– Number of columns in audioIn

Data Types: single | double

Leq — Equivalent-continuous sound level (dB)
column vector | matrix | 3-D array

Equivalent-continuous sound level in dB, returned as a column vector, matrix, or 3-D array the same
type as audioIn.

Size and interpretation of the outputs depend on what the Bandwidth property is set to:

3 System Objects

3-76

• 'Full band' (default) –– Lt, Leq, Lpeak, and Lmax are returned as column vectors or matrices
the same size as audioIn.

• '1 octave', '2/3 octave', or '1/3 octave' –– Lt, Leq, Lpeak, and Lmax are returned as L-
by-B-by-C arrays.

• L –– Number of rows in audioIn
• B –– Number of octave bands
• C –– Number of columns in audioIn

Data Types: single | double

Lpeak — Peak sound level (dB)
column vector | matrix | 3-D array

Peak sound level in dB, returned as a column vector, matrix, or 3-D array the same type as audioIn.

Size and interpretation of the outputs depend on what the Bandwidth property is set to:

• 'Full band' (default) –– Lt, Leq, Lpeak, and Lmax are returned as column vectors or matrices
the same size as audioIn.

• '1 octave', '2/3 octave', or '1/3 octave' –– Lt, Leq, Lpeak, and Lmax are returned as L-
by-B-by-C arrays.

• L –– Number of rows in audioIn
• B –– Number of octave bands
• C –– Number of columns in audioIn

Data Types: single | double

Lmax — Maximum time-weighted sound level (dB)
column vector | matrix | 3-D array

Maximum time-weighted sound level in dB, returned as a column vector, matrix, or 3-D array the
same type as audioIn.

Size and interpretation of the outputs depend on what the Bandwidth property is set to:

• 'Full band' (default) –– Lt, Leq, Lpeak, and Lmax are returned as column vectors or matrices
the same size as audioIn.

• '1 octave', '2/3 octave', or '1/3 octave' –– Lt, Leq, Lpeak, and Lmax are returned as L-
by-B-by-C arrays.

• L –– Number of rows in audioIn
• B –– Number of octave bands
• C –– Number of columns in audioIn

Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

 splMeter

3-77

release(obj)

Specific to splMeter
calibrate Calibrate meter using calibration tone with known level
getCenterFrequencies Center frequencies of filters

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Measure SPL of Audio Signal

Use the splMeter System object™ to measure the A-weighted sound pressure level of a streaming
audio signal. Specify a two second time-interval for reporting and a fast time-weighting. Visualize the
SPL measurements using the timescope object.

Create a dsp.AudioFileReader object to read in an audio file frame by frame. Create an
audioDeviceWriter object to listen to the audio signal. Create a timescope object to visualize
SPL measurements. Create an splMeter to measure the sound pressure level of the audio file. Use
the default calibration factor of 1.

source = dsp.AudioFileReader('Ambiance-16-44p1-mono-12secs.wav');
fs = source.SampleRate;

player = audioDeviceWriter('SampleRate',fs);

scope = timescope('SampleRate',fs, ...
 'TimeSpanOverrunAction','Scroll', ...
 'TimeSpanSource','Property','TimeSpan',3,'ShowGrid',true, ...
 'YLimits',[20 110],'AxesScaling','Auto', ...
 'ShowLegend',true,'BufferLength',4*3*fs, ...
 'ChannelNames', ...
 {'Lt_AF','Leq_A','Lpeak_A','Lmax_AF'}, ...
 'Name','Sound Pressure Level Meter');

SPL = splMeter('TimeWeighting','Fast', ...
 'FrequencyWeighting','A-weighting', ...
 'SampleRate',fs, ...
 'TimeInterval',2);

In an audio stream loop:

1 Read in the audio signal frame.
2 Play the audio signal to your output device.
3 Call the SPL meter to return the time-weighted, equivalent-continuous, peak, and maximum time-

weighted sound levels in dB.
4 Display the sound levels using the scope.

3 System Objects

3-78

As a best practice, release your objects once complete.

while ~isDone(source)
 x = source();
 player(x);
 [Lt,Leq,Lpeak,Lmax] = SPL(x);
 scope([Lt,Leq,Lpeak,Lmax])
end

release(source)
release(player)
release(SPL)
release(scope)

Octave SPL Metering

The splMeter enables you to monitor sound pressure level for octave and fractional-octave bands. In
this example, you monitor the equivalent-continuous sound pressure level of 1/3-octave bands.

Create a dsp.AudioFileReader object to read in an audio file frame by frame. Create an
audioDeviceWriter object so you can listen to the audio signal. Create an splMeter to measure
the octave sound pressure level of the audio file. Use the default calibration factor of 1. Create a
dsp.ArrayPlot object to visualize the equivalent-continuous SPL for each octave band.

 splMeter

3-79

source = dsp.AudioFileReader('JetAirplane-16-11p025-mono-16secs.wav');
fs = source.SampleRate;

player = audioDeviceWriter('SampleRate',fs);

SPL = splMeter(...
 'Bandwidth','1/3 octave', ...
 'SampleRate',fs);
centerFrequencies = getCenterFrequencies(SPL);

scope = dsp.ArrayPlot(...
 'XDataMode','Custom', ...
 'CustomXData',centerFrequencies, ...
 'XLabel','Octave Band Center Frequencies (Hz)', ...
 'YLabel','Equivalent-Continuous Sound Level (dB)', ...
 'YLimits',[20 90], ...
 'ShowGrid',true, ...
 'Name','Sound Pressure Level Meter');

In an audio stream loop:

1 Read in the audio signal frame.
2 Play the audio signal to your output device.
3 Call the SPL meter to return the equivalent-continuous sound pressure level in dB.
4 Display the sound levels using the scope. Update the scope only when the equivalent-continuous

sound pressure level has changed.

As a best practice, release your objects once complete.

LeqPrevious = zeros(size(centerFrequencies));
while ~isDone(source)
 x = source();
 player(x);
 [~,Leq] = SPL(x);

 for i = 1:size(Leq,1)
 if LeqPrevious ~= Leq(i,:)
 scope(Leq(i,:)')
 LeqPrevious = Leq(i,:);
 end
 end

end

release(source)
release(player)
release(SPL)
release(scope)

3 System Objects

3-80

Algorithms
Sound pressure level calculations follow the algorithms described in [1]. You can specify property
values to conform to standards [2] and [3].

Calibration

To account for environmental and input device effects in SPL measurements, the audio input is
multiplied by a calibration factor:

x = audioIn × CalibrationFactor

The CalibrationFactor property can be set directly, or by using the calibrate function, which
compares a known level with acquired data. The known level is determined using a physical
calibrator.

Frequency Weighting

A-, C-, or Z-frequency weighting is applied. The frequency weighting is implemented using the
weightingFilter System object.

 splMeter

3-81

Analysis Bands

If you specify the Bandwidth property as '1 octave', '2/3 octave' or '1/3 octave', then the
SPL calculations are applied to each octave or fractional-octave band. These analysis bands are
determined after frequency weighting.

Time-Weighted Sound Level

Time-weighted sound level is defined as the ratio of the time-weighted root mean squared sound
pressure to the reference sound pressure, converted to dB. That is,

Lt = 10log10

1 τ ∫tst
y(ξ)2e− t − ξ /τdξ

po
2

= 10log10
h(y2)

po
2

h(y2) can be interpreted as the convolution of y2 with a filter with impulse response 1 τ e−t τ. y is the
output of the frequency-weighting filter. The impulse response corresponds to a lowpass filter of the

form H s =
1 τ

s + 1 τ
. Using impulse invariance, the discrete filter can be interpreted as,

H z =
1 τ × f s

1− e−1 τ × f s z−1
.

• τ is specified by the time-weighting coefficient as 0.125 (if TimeWeighting is set to 'Fast') or 1
(if TimeWeighting is set to'Slow').

• fs is the sample rate specified by the SampleRate property.

Equivalent-Continuous Sound Level

Equivalent-continuous sound level is also called time-average sound level. It is defined as the ratio of
root mean squared sound pressure to the reference sound pressure, converted to dB. That is,

Leq = 10log10

1 T ∫t1
t2

y2dt

po
2

= 20log10 rms y /po

where

• y is the output of the frequency-weighting filter.
• po is the reference sound pressure, specified by the PressureReference property.

Peak Sound Level

Peak sound level is defined as the ratio of peak sound pressure to the reference sound pressure,
converted to dB. That is,

Lpeak = 20log10 max y /po

3 System Objects

3-82

where

• y is the output of the frequency-weighting filter.
• po is the reference sound pressure, specified by the PressureReference property.

Max Time-Weighted Sound Level

Maximum time-weighted sound level is defined as the greatest time-weighted sound level within a
stated time interval.

Version History
Introduced in R2018a

References
[1] Harris, Cyril M. Handbook of Acoustical Measurements and Noise Control. 3rd ed. American

Institute of Physics, 1998.

[2] International Electrotechnical Commission. Electroacoustics - Sound level meters - Part 1:
Specifications. IEC 61672-1:2013.

[3] American National Standards Institute. ANSI S1.4: Specification for Sound Level Meters. 1983.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

“System Objects in MATLAB Code Generation” (MATLAB Coder)

See Also
loudnessMeter | Loudness Meter | integratedLoudness

Topics
“Sound Pressure Measurement of Octave Frequency Bands”

 splMeter

3-83

calibrate
Calibrate meter using calibration tone with known level

Syntax
calibrate(SPL,micRecording,SPLreading)

Description
calibrate(SPL,micRecording,SPLreading) sets the CalibrationFactor property of the
splMeter object. The calibration factor is based on the computed sound pressure level (SPL) of
micRecording and the known SPLreading.

To calibrate, first set the SampleRate property of the splMeter object to match the micRecording,
and the PressureReference and FrequencyWeighting properties to match the values from the physical
SPL meter.

Input Arguments
SPL — splMeter System object
object

splMeter System object to be calibrated.

micRecording — Audio signal used to calibrate microphone
column vector

Audio signal used to calibrate microphone, specified as a column vector. micRecording must be
acquired from the microphone you want to calibrate. The recording should consist of a 1 kHz test
tone.
Data Types: single | double

SPLreading — Sound pressure level reported from physical meter (dB)
scalar

Sound pressure level (SPL) reported from physical meter in dB, specified as a scalar.
Data Types: single | double

Algorithms
To set the CalibrationFactor property on an splMeter object, the calibrate function uses:

• A calibration tone recorded from the microphone you want to calibrate
• The sample rate used by your sound card for AD conversion.
• The known loudness, usually determined using a physical SPL meter.
• The frequency weighting used by your physical SPL meter.

3 System Objects

3-84

• The atmospheric pressure at the recording location.

The diagram indicates a typical physical setup and the locations of required information.

The CalibrationFactor property is set according to the equation:

CalibrationFactor = 10 SPLreading−k /20

rms(x)

where x is the microphone recording passed through the weighting filter specified by the
FrequencyWeighting property of the splMeter object. k is 1 pascal relative to the reference pressure
calculated in dB:

k = 20log10
1

PressureReference .

Version History
Introduced in R2018a

See Also
splMeter | calibrateMicrophone

 calibrate

3-85

voiceActivityDetector

Detect presence of speech in audio signal

Description
The voiceActivityDetector System object detects the presence of speech in an audio segment.
You can also use the voiceActivityDetector System object to output an estimate of the noise
variance per frequency bin.

To detect the presence of speech:

1 Create the voiceActivityDetector object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
VAD = voiceActivityDetector
VAD = voiceActivityDetector(Name,Value)

Description

VAD = voiceActivityDetector creates a System object, VAD, that detects the presence of speech
independently across each input channel.

VAD = voiceActivityDetector(Name,Value) sets each property Name to the specified Value.
Unspecified properties have default values.
Example: VAD = voiceActivityDetector('InputDomain','Frequency') creates a System
object, VAD, that accepts frequency-domain input.

3 System Objects

3-86

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

InputDomain — Domain of input signal
'Time' (default) | 'Frequency'

Domain of the input signal, specified as 'Time' or 'Frequency'.

Tunable: No
Data Types: char | string

FFTLength — FFT length
[] (default) | positive scalar

FFT length, specified as a positive scalar. The default is [], which means that the FFTLength is
equal to the number of rows of the input.

Tunable: No

Dependencies

To enable this property, set InputDomain to 'Time'.
Data Types: single | double

Window — Window function for FFT
'Hann' (default) | 'Chebyshev' | 'Flat Top' | 'Hamming' | 'Kaiser' | 'Rectangular'

Time-domain window function applied before calculating the discrete-time Fourier transform (DTFT),
specified as 'Hann', 'Rectangular', 'Flat Top', 'Hamming', 'Chebyshev', or 'Kaiser'.

The window function is designed using the algorithms of the following functions:

• Hann –– hann
• Chebyshev –– chebwin
• Flat Top –– flattopwin
• Hamming –– hamming
• Kaiser –– kaiser

Tunable: No

Dependencies

To enable this property, set InputDomain to 'Time'.
Data Types: char | string

 voiceActivityDetector

3-87

SidelobeAttenuation — Sidelobe attenuation of window (dB)
60 (default) | real positive scalar

Sidelobe attenuation of the window in dB, specified as a real positive scalar.

Tunable: No

Dependencies

To enable this property, set InputDomain to 'Time' and Window to 'Chebyshev' or 'Kaiser'.
Data Types: single | double

SilenceToSpeechProbability — Probability of transition from a frame of silence to a
frame of speech
0.2 (default) | scalar in the range [0,1]

Probability of transition from a frame of silence to a frame of speech, specified as a scalar in the
range [0,1].

Tunable: Yes
Data Types: single | double

SpeechToSilenceProbability — Probability of transition from a frame of speech to a
frame of silence
0.1 (default) | scalar in the range [0,1]

Probability of transition from a frame of speech to a frame of silence, specified as a scalar in the
range [0,1].

Tunable: Yes
Data Types: single | double

Usage

Syntax
[probability,noiseEstimate] = VAD(audioIn)

Description

[probability,noiseEstimate] = VAD(audioIn) applies a voice activity detector on the input,
audioIn, and returns the probability that speech is present. It also returns the estimated noise
variance per frequency bin.

Input Arguments

audioIn — Audio input to voice activity detector
scalar | vector | matrix

Audio input to the voice activity detector, specified as a scalar, vector, or matrix. If audioIn is a
matrix, the columns are treated as independent audio channels.

3 System Objects

3-88

The size of the audio input is locked after the first call to the voiceActivityDetector object. To
change the size of audioIn, call release on the object.

If InputDomain is set to 'Time', audioIn must be real-valued. If InputDomain is set to
'Frequency', audioIn can be real-valued or complex-valued.
Data Types: single | double
Complex Number Support: Yes

Output Arguments

probability — Probability that speech is present
scalar | row vector

Probability that speech is present, returned as a scalar or row vector with the same number of
columns as audioIn.
Data Types: single | double

noiseEstimate — Estimate of noise variance per frequency bin
column vector | matrix

Estimate of the noise variance per frequency bin, returned as a column vector or matrix with the
same number of columns as audioIn.
Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
clone Create duplicate System object
isLocked Determine if System object is in use
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object
step Run System object algorithm

Examples

Detect Voice Activity

Use the default voiceActivityDetector System object™ to detect the presence of speech in a
streaming audio signal.

Create an audio file reader to stream an audio file for processing. Define parameters to chunk the
audio signal into 10 ms non-overlapping frames.

 voiceActivityDetector

3-89

fileReader = dsp.AudioFileReader('Counting-16-44p1-mono-15secs.wav');
fs = fileReader.SampleRate;
fileReader.SamplesPerFrame = ceil(10e-3*fs);

Create a default voiceActivityDetector System object to detect the presence of speech in the
audio file.

VAD = voiceActivityDetector;

Create a scope to plot the audio signal and corresponding probability of speech presence as detected
by the voice activity detector. Create an audio device writer to play the audio through your sound
card.

scope = timescope(...
 'NumInputPorts',2, ...
 'SampleRate',fs, ...
 'TimeSpanSource','Property','TimeSpan',3, ...
 'BufferLength',3*fs, ...
 'YLimits',[-1.5 1.5], ...
 'TimeSpanOverrunAction','Scroll', ...
 'ShowLegend',true, ...
 'ChannelNames',{'Audio','Probability of speech presence'});
deviceWriter = audioDeviceWriter('SampleRate',fs);

In an audio stream loop:

1 Read from the audio file.
2 Calculate the probability of speech presence.
3 Visualize the audio signal and speech presence probability.
4 Play the audio signal through your sound card.

while ~isDone(fileReader)
 audioIn = fileReader();
 probability = VAD(audioIn);
 scope(audioIn,probability*ones(fileReader.SamplesPerFrame,1))
 deviceWriter(audioIn);
end

3 System Objects

3-90

Detect Voice Activity Using Overlapped Frames

Use a voice activity detector to detect the presence of speech in an audio signal. Plot the probability
of speech presence along with the audio samples.

Create a dsp.AudioFileReader System object™ to read a speech file.

afr = dsp.AudioFileReader('Counting-16-44p1-mono-15secs.wav');
fs = afr.SampleRate;

Chunk the audio into 20 ms frames with 75% overlap between successive frames. Convert the frame
time in seconds to samples. Determine the hop size (the increment of new samples). In the audio file
reader, set the samples per frame to the hop size. Create a default dsp.AsyncBuffer object to
manage overlapping between audio frames.

frameSize = ceil(20e-3*fs);
overlapSize = ceil(0.75*frameSize);
hopSize = frameSize - overlapSize;
afr.SamplesPerFrame = hopSize;

inputBuffer = dsp.AsyncBuffer('Capacity',frameSize);

Create a voiceActivityDetector System object. Specify an FFT length of 1024.

VAD = voiceActivityDetector('FFTLength',1024);

 voiceActivityDetector

3-91

Create a scope to plot the audio signal and corresponding probability of speech presence as detected
by the voice activity detector. Create an audioDeviceWriter System object to play audio through
your sound card.

scope = timescope('NumInputPorts',2, ...
 'SampleRate',fs, ...
 'TimeSpanSource','Property','TimeSpan',3, ...
 'BufferLength',3*fs, ...
 'YLimits',[-1.5,1.5], ...
 'TimeSpanOverrunAction','Scroll', ...
 'ShowLegend',true, ...
 'ChannelNames',{'Audio','Probability of speech presence'});

player = audioDeviceWriter('SampleRate',fs);

Initialize a vector to hold the probability values.

pHold = ones(hopSize,1);

In an audio stream loop:

1 Read a hop worth of samples from the audio file and save the samples into the buffer.
2 Read a frame from the buffer with specified overlap from the previous frame.
3 Call the voice activity detector to get the probability of speech for the frame under analysis.
4 Set the last element of the probability vector to the new probability decision. Visualize the audio

and speech presence probability using the time scope.
5 Play the audio through your sound card.
6 Set the probability vector to the most recent result for plotting in the next loop.

while ~isDone(afr)
 x = afr();
 n = write(inputBuffer,x);

 overlappedInput = read(inputBuffer,frameSize,overlapSize);

 p = VAD(overlappedInput);

 pHold(end) = p;
 scope(x,pHold)

 player(x);

 pHold(:) = p;
end

3 System Objects

3-92

Release the player once the audio finishes playing.

release(player)

Determine Pitch Contour of Streaming Audio

Create a dsp.AudioFileReader object to read in audio frame-by-frame.

fileReader = dsp.AudioFileReader("SingingAMajor-16-mono-18secs.ogg");

Create a voiceActivityDetector object to detect the presence of voice in streaming audio.

VAD = voiceActivityDetector;

While there are unread samples, read from the file and determine the probability that the frame
contains voice activity. If the frame contains voice activity, call pitch to estimate the fundamental
frequency of the audio frame. If the frame does not contain voice activity, declare the fundamental
frequency as NaN.

f0 = [];
while ~isDone(fileReader)
 x = fileReader();

 if VAD(x) > 0.99
 decision = pitch(x,fileReader.SampleRate, ...

 voiceActivityDetector

3-93

 WindowLength=size(x,1), ...
 OverlapLength=0, ...
 Range=[200,340]);
 else
 decision = NaN;
 end
 f0 = [f0;decision];
end

Plot the detected pitch contour over time.

t = linspace(0,(length(f0)*fileReader.SamplesPerFrame)/fileReader.SampleRate,length(f0));
plot(t,f0)
ylabel("Fundamental Frequency (Hz)")
xlabel("Time (s)")
grid on

Algorithms
The voiceActivityDetector implements the algorithm described in [1].

3 System Objects

3-94

If InputDomain is specified as 'Time', the input signal is windowed and then converted to the
frequency domain according to the Window, SidelobeAttenuation, and FFTLength properties. If
InputDomain is specified as frequency, the input is assumed to be a windowed discrete time Fourier
transform (DTFT) of an audio signal. The signal is then converted to the power domain. Noise
variance is estimated according to [2]. The posterior and prior SNR are estimated according to the
Minimum Mean-Square Error (MMSE) formula described in [3]. A log likelihood ratio test and Hidden
Markov Model (HMM)-based hang-over scheme determine the probability that the current frame
contains speech, according to [1].

Version History
Introduced in R2018a

References
[1] Sohn, Jongseo., Nam Soo Kim, and Wonyong Sung. "A Statistical Model-Based Voice Activity

Detection." Signal Processing Letters IEEE. Vol. 6, No. 1, 1999.

[2] Martin, R. "Noise Power Spectral Density Estimation Based on Optimal Smoothing and Minimum
Statistics." IEEE Transactions on Speech and Audio Processing. Vol. 9, No. 5, 2001, pp. 504–
512.

[3] Ephraim, Y., and D. Malah. "Speech Enhancement Using a Minimum Mean-Square Error Short-
Time Spectral Amplitude Estimator." IEEE Transactions on Acoustics, Speech, and Signal
Processing. Vol. 32, No. 6, 1984, pp. 1109–1121.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

“System Objects in MATLAB Code Generation” (MATLAB Coder)

See Also
audioFeatureExtractor | mfcc | pitch | cepstralCoefficients | Voice Activity Detector

 voiceActivityDetector

3-95

cepstralFeatureExtractor

(To be removed) Extract cepstral features from audio segment

Note The cepstralFeatureExtractor System object™ will be removed in a future release. For
more information, see “Version History”.

Description
The cepstralFeatureExtractor System object extracts cepstral features from an audio segment.
Cepstral features are commonly used to characterize speech and music signals.

To extract cepstral features:

1 Create the cepstralFeatureExtractor object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
cepFeatures = cepstralFeatureExtractor
cepFeatures = cepstralFeatureExtractor(Name,Value)

Description

cepFeatures = cepstralFeatureExtractor creates a System object, cepFeatures, that
calculates cepstral features independently across each input channel. Columns of the input are
treated as individual channels.

cepFeatures = cepstralFeatureExtractor(Name,Value) sets each property Name to the
specified Value. Unspecified properties have default values.
Example: cepFeatures =
cepstralFeatureExtractor('InputDomain','Frequency','SampleRate',fs,'LogEnergy
','Replace') accepts a signal in the frequency domain, sampled at fs Hz. The first element of the
coefficients vector is replaced by the log energy value.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

3 System Objects

3-96

For more information on changing property values, see System Design in MATLAB Using System
Objects.

FilterBank — Type of filter bank
'Mel' (default) | 'Gammatone'

Type of filter bank, specified as either 'Mel' or 'Gammatone'. When FilterBank is set to Mel, the
object computes the mel frequency cepstral coefficients (MFCC). When FilterBank is set to
Gammatone, the object computes the gammatone cepstral coefficients (GTCC).
Data Types: char | string

InputDomain — Domain of input signal
'Time' (default) | 'Frequency'

Domain of the input signal, specified as either 'Time' or 'Frequency'.
Data Types: char | string

NumCoeffs — Number of coefficients to return
13 (default) | positive integer

Number of coefficients to return, specified as an integer in the range [2, v], where v is the number of
valid passbands. The number of valid passbands depends on the type of filter bank:

• Mel –– The number of valid passbands is defined as sum(BandEdges <= floor(SampleRate/
2))-2.

• Gammatone –– The number of valid passbands is defined as
ceil(hz2erb(FrequencyRange(2))-hz2erb(FrequencyRange(1))).

Data Types: single | double

Rectification — Nonlinear rectification type
'Log' (default) | 'Cubic-Root'

Nonlinear rectification type, specified as 'Log' or 'Cubic-Root'.
Data Types: char | string

FFTLength — FFT length
[] (default) | positive integer

FFT length, specified as a positive integer. The default, [], means that the FFT length is equal to the
number of rows in the input signal.
Dependencies

To enable this property, set InputDomain to 'Time'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

LogEnergy — Specify how the log energy is shown
'Append' (default) | 'Replace' | 'Ignore'

Specify how the log energy is shown in the coefficients vector output, specified as:

• 'Append' –– The object prepends the log energy to the coefficients vector. The length of the
coefficients vector is 1 + NumCoeffs.

 cepstralFeatureExtractor

3-97

• 'Replace' –– The object replaces the first coefficient with the log energy of the signal. The
length of the coefficients vector is NumCoeffs.

• 'Ignore' –– The object does not calculate or return the log energy.

Data Types: char | string

SampleRate — Input sample rate (Hz)
16000 (default) | positive scalar

Input sample rate in Hz, specified as a real positive scalar.
Data Types: single | double

Advanced properties

BandEdges — Band edges of mel filter bank (Hz)
row vector

Band edges of the filter bank in Hz, specified as a nonnegative monotonically increasing row vector in
the range [0, ∞). The maximum bandedge frequency can be any finite number. The number of
bandedges must be in the range [4, 80].

The default band edges are spaced linearly for the first ten and then logarithmically after. The default
band edges are set as recommended by [1].

Dependencies

To enable this property, set FilterBank to Mel.
Data Types: single | double

FrequencyRange — Frequency range of gammatone filter bank (Hz)
[50 8000] (default) | two-element row vector

Frequency range of the filter bank in Hz, specified as a positive, monotonically increasing two-
element row vector. The maximum frequency can be any finite number. The center frequencies of the
filter bank are equally spaced between hz2erb(FrequencyRange(1)) and
hz2erb(FrequencyRange(2)) on the ERB scale.

Dependencies

To enable this property, set FilterBank to Gammatone.
Data Types: single | double

FilterBankDesignDomain — Domain for mel filter bank design
'Hz' (default) | 'Bin'

Domain for filter bank design, specified as either 'Hz' or 'Bin'. The filter bank is designed as
overlapped triangles with band edges specified by the BandEdges property.

The BandEdges property is specified in Hz. When you set the design domain to:

• 'Hz' –– Filter bank triangles are drawn in Hz and are mapped onto bins.

Here is an example that plots the filter bank in bins when the FilterBankDesignDomain is set
to 'Hz':

3 System Objects

3-98

[audioFile, fs] = audioread('NoisySpeech-16-22p5-mono-5secs.wav');
duration = round(0.02*fs); % 20 ms audio segment
audioSegment = audioFile(5500:5500+duration-1);
cepFeatures = cepstralFeatureExtractor('SampleRate',fs)

cepFeatures =
 cepstralFeatureExtractor with properties:

 Properties
 InputDomain: 'Time'
 NumCoeffs: 13
 FFTLength: []
 LogEnergy: 'Append'
 SampleRate: 22500

 Advanced Properties
 BandEdges: [1×42 double]
 FilterBankDesignDomain: 'Hz'
 FilterBankNormalization: 'Bandwidth'

Pass the audio segment as an input to the cepstral feature extractor algorithm to lock the object.

[coeffs,delta,deltaDelta] = cepFeatures(audioSegment);

Use the getFilters function to get the filter bank. Plot the filter bank.

[filterbank, freq] = getFilters(cepFeatures);
plot(freq(1:150),filterbank(1:150,:))

 cepstralFeatureExtractor

3-99

For details, see [1].
• 'Bin' –– The bandedge frequencies in 'Hz' are converted to bins. The filter bank triangles are

drawn symmetrically in bins.

Change the FilterBankDesignDomain property to 'Bin':

release(cepFeatures);
cepFeatures.FilterBankDesignDomain = 'Bin';
[coeffs,delta,deltaDelta] = cepFeatures(audioSegment);
[filterbank, freq] = getFilters(cepFeatures);
plot(freq(1:150),filterbank(1:150,:))

3 System Objects

3-100

For details, see [2].

Dependencies

To enable this property, set FilterBank to Mel.
Data Types: char | string

FilterBankNormalization — Normalize filter bank
'Bandwidth' (default) | 'Area' | 'None'

Normalization technique used on the weights of the filter bank, specified as:

• 'Bandwidth' –– The weights of each bandpass filter are normalized by the corresponding
bandwidth of the filter.

• 'Area' –– The weights of each bandpass filter are normalized by the corresponding area of the
bandpass filter.

• 'None' –– The weights of the filter are not normalized.

Data Types: char | string

 cepstralFeatureExtractor

3-101

Usage

Syntax
[coeffs,delta,deltaDelta] = cepFeatures(audioIn)

Description

[coeffs,delta,deltaDelta] = cepFeatures(audioIn) returns the cepstral coefficients, the
log energy, the delta, and the delta-delta.

The log energy value prepends the coefficient vector or replaces the first element of the coefficients
vector based on whether you set the LogEnergy property to 'Append' or 'Replace'. For details,
see “coeffs” on page 3-0 .

Input Arguments

audioIn — Input signal
column vector | matrix

Input signal, specified as a column vector or matrix. If InputDomain is set to 'Time', specify
audioIn as a real-valued frame of audio data. If InputDomain is set to 'Frequency', specify
audioIn as a real- or complex-valued discrete Fourier transform. If specified as a matrix, the
columns are treated as independent audio channels.
Data Types: single | double
Complex Number Support: Yes

Output Arguments

coeffs — Cepstral coefficients
column vector | matrix

Cepstral coefficients, returned as a column vector or a matrix. If the coefficients matrix is an N-by-M
matrix, N is determined by the values you specify in NumCoeffs and LogEnergy properties. M
equals the number of input audio channels.

When the LogEnergy property is set to:

• 'Append' –– The object prepends the log energy value to the coefficients vector. The length of the
coefficients vector is 1 + NumCoeffs. This is the default setting of the LogEnergy property.

• 'Replace' –– The object replaces the first coefficient with the log energy of the signal. The
length of the coefficients vector is NumCoeffs.

• 'Ignore' –– The object does not calculate or return the log energy.

Data Types: single | double

delta — Change in coefficients
column vector | matrix

Change in coefficients over consecutive calls to the algorithm, returned as a vector or a matrix. The
delta array is of the same size and data type as the coeffs array.

3 System Objects

3-102

In this example, cepFeatures is the cepstral feature extractor that accepts audio input signal
sampled at 12 kHz. Stream in three segments of audio signal on three consecutive calls to the object
algorithm. Return the cepstral coefficients of the filter bank and the corresponding delta values.
cepFeatures = cepstralFeatureExtractor('SampleRate',12000);
[coeff1,delta1] = cepFeatures(audioIn);
[coeff2,delta2] = cepFeatures(audioIn);
[coeff3,delta3] = cepFeatures(audioIn);

delta2 is computed as coeff2-coeff1, while delta3 is computed as coeff3-coeff2. The initial
array, delta1, is an array of zeros.
Data Types: single | double

deltaDelta — Change in delta values
column vector | matrix

Change in delta values over consecutive calls to the algorithm, returned as a vector or a matrix. The
deltaDelta array is the same size and data type as the coeffs and delta arrays.

In this example, consecutive calls to the cepstral feature extractor algorithm return the deltaDelta
values in addition to the coefficients and the delta values.
cepFeatures = cepstralFeatureExtractor('SampleRate',12000);
[coeff1,delta1,deltaDelta1] = cepFeatures(audioIn);
[coeff2,delta2,deltaDelta2] = cepFeatures(audioIn);
[coeff3,delta3,deltaDelta3] = cepFeatures(audioIn);

deltaDelta2 is computed as delta2-delta1, while deltaDelta3 is computed as delta3-
delta2. The initial array, deltaDelta1, is an array of zeros.
Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to cepstralFeatureExtractor
getFilters Get auditory filter bank

Common to All System Objects
clone Create duplicate System object
isLocked Determine if System object is in use
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object
step Run System object algorithm

Examples

Get MFCC Data for Speech Segment

Extract the mel frequency cepstral coefficients and the log energy values of segments in a speech file.
Return delta, the difference between current and the previous cepstral coefficients, and

 cepstralFeatureExtractor

3-103

deltaDelta, the difference between the current and the previous delta values. The log energy
value the object computes can prepend the coefficients vector or replace the first element of the
coefficients vector. This is done based on whether you set the LogEnergy property of the
cepstralFeatureExtractor object to 'Replace' or 'Append'.

Read an audio signal from 'Counting-16-44p1-mono-15secs.wav' file. Extract a 40 ms segment
from the audio data. Create a cepstralFeatureExtractor object. The cepstral coefficients
computed by the default object are the mel frequency coefficients. In addition, the object computes
the log energy, delta, and delta-delta values of the audio segment.

[audioFile, fs] = audioread('Counting-16-44p1-mono-15secs.wav');
duration = round(0.04*fs); % 40 ms
audioSegment = audioFile(40000:40000+duration-1);
cepFeatures = cepstralFeatureExtractor('SampleRate',fs)

cepFeatures =
 cepstralFeatureExtractor with properties:

 Properties
 FilterBank: 'Mel'
 InputDomain: 'Time'
 NumCoeffs: 13
 Rectification: 'Log'
 FFTLength: []
 LogEnergy: 'Append'
 SampleRate: 44100

 Show all properties

The LogEnergy property is set to 'Append'. The first element in the coefficients vector is the log
energy value and the remaining elements are the 13 cepstral coefficients computed by the object. The
number of cepstral coefficients is determined by the value you specify in the NumCoeffs property.

[coeffs,delta,deltaDelta] = cepFeatures(audioSegment)

coeffs = 14×1

 5.2999
 -4.9406
 3.6130
 0.4397
 -0.2280
 -1.1068
 0.6679
 0.6367
 -0.3869
 0.6127
 ⋮

delta = 14×1

 0
 0
 0
 0
 0

3 System Objects

3-104

 0
 0
 0
 0
 0
 ⋮

deltaDelta = 14×1

 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 ⋮

The initial values for the delta and deltaDelta arrays are always zero. Consider another 40 ms
audio segment in the file and extract the cepstral features from this segment.

audioSegmentTwo = audioFile(5820:5820+duration-1);
[coeffsTwo,deltaTwo,deltaDeltaTwo] = cepFeatures(audioSegmentTwo)

coeffsTwo = 14×1

 -0.1582
 -15.9507
 2.4295
 0.2835
 0.4345
 0.4382
 0.6040
 0.4168
 0.1846
 0.2636
 ⋮

deltaTwo = 14×1

 -5.4581
 -11.0101
 -1.1836
 -0.1561
 0.6625
 1.5449
 -0.0639
 -0.2199
 0.5715
 -0.3491
 ⋮

 cepstralFeatureExtractor

3-105

deltaDeltaTwo = 14×1

 -5.4581
 -11.0101
 -1.1836
 -0.1561
 0.6625
 1.5449
 -0.0639
 -0.2199
 0.5715
 -0.3491
 ⋮

Verify that the difference between coeffsTwo and coeffs vectors equals deltaTwo.

isequal(coeffsTwo-coeffs,deltaTwo)

ans = logical
 1

Verify that the difference between deltaTwo and delta vectors equals deltaDeltaTwo.

isequal(deltaTwo-delta,deltaDeltaTwo)

ans = logical
 1

Algorithms
Auditory Cepstrum Coefficients

Auditory cepstrum coefficients are popular features extracted from speech signals for use in
recognition tasks. In the source-filter model of speech, cepstral coefficients are understood to
represent the filter (vocal tract). The vocal tract frequency response is relatively smooth, whereas the
source of voiced speech can be modeled as an impulse train. As a result, the vocal tract can be
estimated by the spectral envelope of a speech segment.

The motivating idea of cepstral coefficients is to compress information about the vocal tract
(smoothed spectrum) into a small number of coefficients based on an understanding of the cochlea.
Although there is no hard standard for calculating the coefficients, the basic steps are outlined by the
diagram.

3 System Objects

3-106

Two popular implementations of the filter bank are the mel filter bank and the gammatone filter bank.

Mel Filter Bank

The default mel filter bank linearly spaces the first 10 triangular filters and logarithmically spaces the
remaining filters.

Gammatone Filter Bank

The default gammatone filter bank is composed of gammatone filters spaced linearly on the ERB
scale between 50 and 8000 Hz. The filter bank is designed by gammatoneFilterBank.

 cepstralFeatureExtractor

3-107

Log Energy

If the input (x) is a time-domain signal, the log energy is computed using the following equation:

logE = log(sum(x2))

If the input (x) is a frequency-domain signal, the log energy is computed using the following equation:

logE = log sum x 2 /FFTLength

Version History
Introduced in R2018a

Warns
Warns starting in R2022b

The cepstraFeatureExtractor object issues a warning that it will be removed in a future release.
Use the mfcc and gtcc functions to compute the same features for batch signals. For streaming
applications, improve performance by designing the filter bank once with
designAuditoryFilterBank, and then apply the filter bank and extract the same features with
cepstralCoefficients and audioDelta in the streaming loop. If you are extracting multiple
audio features, use the audioFeatureExtractor object.

3 System Objects

3-108

cepstralFeatureExtractor
Configuration

Recommended Replacement

FilterBank property set to "Mel" Use the mfcc function.

[audioIn,fs] = audioread("Counting-16-44p1-mono-15secs.wav");
[coeffs,delta,deltaDelta] = mfcc(audioIn,fs);

Alternatively, use a combination of
designAuditoryFilterBank and
cepstralCoefficients. See “Mel Frequency Cepstral
Coefficients” on page 2-192 for an example. To extract delta
features with this approach, use audioDelta.

FilterBank property set to
"Gammatone"

Use the gtcc function.

[audioIn,fs] = audioread("Counting-16-44p1-mono-15secs.wav");
[coeffs,delta,deltaDelta] = gtcc(audioIn,fs);

Alternatively, use a combination of
designAuditoryFilterBank and
cepstralCoefficients. See “Gammatone Frequency
Cepstral Coefficients” on page 2-192 for an example. To
extract delta features with this approach, use audioDelta.

FilterBankDesignDomain
property set to "Bin"

No replacement

FilterBankNormalization
property set to "Area" or "None"

Use the designAuditoryFilterBank function, with the
Normalization name-value argument set to "area" or
"none", combined with the cepstralCoefficients
function.

To be removed
Not recommended starting in R2020b

The cepstraFeatureExtractor object runs without warning, but it will be removed in a future
release.

References
[1] Auditory Toolbox. https://engineering.purdue.edu/~malcolm/interval/1998-010/

AuditoryToolboxTechReport.pdf

[2] ETSI ES 201 108 V1.1.3 (2003-09). https://www.etsi.org/deliver/etsi_es/
201100_201199/201108/01.01.03_60/es_201108v010103p.pdf

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

“System Objects in MATLAB Code Generation” (MATLAB Coder)

 cepstralFeatureExtractor

3-109

https://engineering.purdue.edu/~malcolm/interval/1998-010/AuditoryToolboxTechReport.pdf
https://engineering.purdue.edu/~malcolm/interval/1998-010/AuditoryToolboxTechReport.pdf
https://www.etsi.org/deliver/etsi_es/201100_201199/201108/01.01.03_60/es_201108v010103p.pdf
https://www.etsi.org/deliver/etsi_es/201100_201199/201108/01.01.03_60/es_201108v010103p.pdf

See Also
mfcc | gtcc | gammatoneFilterBank | cepstralCoefficients | audioFeatureExtractor

3 System Objects

3-110

getFilters
Get auditory filter bank

Note The cepstralFeatureExtractor System object™ and getFilters object function will be
removed in a future release.

Syntax
[filterbank,freq] = getFilters(cepFeatures)

Description
[filterbank,freq] = getFilters(cepFeatures) returns the filter bank and the
corresponding frequency bins in Hz. Each column of the filter bank corresponds to a single bandpass
filter. The filter bank is undefined until the object is locked.

Examples

Get Auditory Filter Bank

The auditory filter bank contains a set of bandpass filters. The getFilters function returns the
auditory filter bank and the corresponding frequency bins.

Read an audio signal from 'SpeechDFT-16-8-mono-5secs.wav' file. Extract a 40 ms segment
from the audio data. Create a cepstralFeatureExtractor System object™ that accepts a time-
domain audio input signal sampled at 8 kHz.

[audioFile, fs] = audioread('SpeechDFT-16-8-mono-5secs.wav');
duration = round(0.04*fs); % 40 ms
audioSegment = audioFile(5500:5500+duration-1);
cepFeatures = cepstralFeatureExtractor('SampleRate',fs)

cepFeatures =
 cepstralFeatureExtractor with properties:

 Properties
 FilterBank: 'Mel'
 InputDomain: 'Time'
 NumCoeffs: 13
 Rectification: 'Log'
 FFTLength: []
 LogEnergy: 'Append'
 SampleRate: 8000

 Show all properties

 getFilters

3-111

Pass the 40 ms audio segment as an input to the cepstralFeatureExtractor algorithm. The
algorithm computes the mel frequency coefficients, log energy, delta, and delta-delta values of the
audio segment.

[coeffs,delta,deltaDelta] = cepFeatures(audioSegment);

Input Arguments
cepFeatures — Input cepstral feature extractor System object
cepstralFeatureExtractor System object

Input cepstral feature extractor, specified as a cepstralFeatureExtractor System object. To use
the getFilters function, the object must be locked. The filter bank is defined only when the object
is locked. The object is locked when you call the object algorithm.

Output Arguments
filterbank — Auditory filter bank
matrix

Filter bank used to calculate cepstral features, returned as a matrix. Each column of the matrix
corresponds to a single bandpass filter in the filter bank. The number of columns in the matrix is
given by m – 2, where m is the length of the vector you specify in the BandEdges property of the
System object. The number of rows in the matrix corresponds to the FFT length. By default, the FFT
length equals the number of rows in the input signal. You can also specify the FFT length through the
FFTLength property of the System object.
Data Types: single | double

freq — Frequency bins corresponding to filter bank (Hz)
row vector

Frequency bins corresponding to the filter bank in Hz, returned as a row vector. The length of the
vector equals the FFT length.
Data Types: single | double

Version History
Introduced in R2018a

To be removed
Warns starting in R2022b

The cepstralFeatureExtractor object and getFilters object function will be removed in a
future release.

See Also
cepstralFeatureExtractor

3 System Objects

3-112

staticCharacteristic
Return static characteristic of dynamic range controller

Syntax
outputLevel = staticCharacteristic(dynamicRangeController)
outputLevel = staticCharacteristic(dynamicRangeController,inputRange)

Description
outputLevel = staticCharacteristic(dynamicRangeController) returns the static
characteristic of the dynamic range control object.

outputLevel = staticCharacteristic(dynamicRangeController,inputRange) enables
you to specify the input range.

Examples

Get Output Level From Static Characteristic

Create a limiter System object™. Get the output level of the static characteristic over a specified
range.

dynamicRangeLimiter = limiter;
inputLevel = -15:1:-5

inputLevel = 1×11

 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5

outputLevel = staticCharacteristic(dynamicRangeLimiter,inputLevel)

outputLevel = 1×11

 -15 -14 -13 -12 -11 -10 -10 -10 -10 -10 -10

Plot the static characteristic. Modify the title to state that the object is a limiter.

hvsz = visualize(dynamicRangeLimiter,inputLevel);
hvsz.Title = "Limiter Static Characteristic";

 staticCharacteristic

3-113

Input Arguments
dynamicRangeController — Dynamic range control object
object

Dynamic range control object, specified as a compressor, expander, or limiter System object.

inputRange — Range to calculate static characteristic output
[-50:0.01:0] (default) | vector of monotonically increasing values

Range over which to calculate the output of the static characteristic, specified as a vector of
monotonically increasing values expressed in dB. The default input range is [-50:0.01:0] dB.

Output Arguments
outputLevel — Output level (dB)
vector

Output level in dB, returned as a vector the same size as inputRange.

Version History
Introduced in R2022a

3 System Objects

3-114

See Also
compressor | expander | limiter

Topics
“Dynamic Range Control”

 staticCharacteristic

3-115

visualize
Visualize static characteristic of dynamic range controller

Syntax
visualize(dynamicRangeController)
visualize(dynamicRangeController,inputRange)
hvsz = visualize(___)

Description
visualize(dynamicRangeController) plots the static characteristic of the dynamic range
control object. The plot is updated automatically when properties of the object change.

visualize(dynamicRangeController,inputRange) enables you to specify the input range.

hvsz = visualize(___) returns a handle to the visualizer when called with any of the previous
syntaxes.

Examples

Plot Static Characteristic

Create a compressor System object™, and then plot the static characteristic.

dynamicRangeCompressor = compressor;
visualize(dynamicRangeCompressor)

3 System Objects

3-116

The static characteristic plot updates automatically if you modify a property of the object.

dynamicRangeCompressor.Threshold = -30;

 visualize

3-117

Specify Range of Static Characteristic Plot

Create an expander System object™. Plot the static characteristic over the range –15 to –5, in 0.001
dB increments.

dynamicRangeExpander = expander;
visualize(dynamicRangeExpander,-15:0.001:-5)

3 System Objects

3-118

Get Output Level From Static Characteristic

Create a limiter System object™. Get the output level of the static characteristic over a specified
range.

dynamicRangeLimiter = limiter;
inputLevel = -15:1:-5

inputLevel = 1×11

 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5

outputLevel = staticCharacteristic(dynamicRangeLimiter,inputLevel)

outputLevel = 1×11

 -15 -14 -13 -12 -11 -10 -10 -10 -10 -10 -10

Plot the static characteristic. Modify the title to state that the object is a limiter.

hvsz = visualize(dynamicRangeLimiter,inputLevel);
hvsz.Title = "Limiter Static Characteristic";

 visualize

3-119

Input Arguments
dynamicRangeController — Dynamic range control object
object

Dynamic range control object, specified as a compressor, expander, limiter, or noiseGate
System object.

inputRange — Range to calculate static characteristic output
[-50:0.01:0] (default) | vector of monotonically increasing values

Range over which to calculate the output of the static characteristic, specified as a vector of
monotonically increasing values expressed in dB. The default input range is [-50:0.01:0] dB.

Output Arguments
hvsz — Visualizer handle
dsp.ArrayPlot object

Visualizer handle, returned as a dsp.ArrayPlot object.

3 System Objects

3-120

Version History
Introduced in R2016a

visualize object function outputs figure handles
Behavior changed in R2022a

In previous releases, calling the visualize function of the dynamic range control System objects
with an output argument returned static characteristic data. Starting in R2022a, that syntax returns
a figure handle instead. Use the new staticCharacteristic function to compute static dynamic
range characteristics.

visualize plots static characteristics of noiseGate System objects in dB
Behavior changed in R2022a

In previous releases, the visualize function plotted the static characteristic of a noiseGate
System object in linear units. Starting in R2022a, the function plots all static characteristics in dB.

See Also
compressor | expander | limiter | noiseGate

Topics
“Dynamic Range Control”

 visualize

3-121

createAudioPluginClass
Create audio plugin class that implements functionality of System object

Syntax
createAudioPluginClass(obj)
createAudioPluginClass(obj,pluginName)

Description
createAudioPluginClass(obj) creates a System object plugin that implements the functionality
of the Audio Toolbox System object, obj. The name of the created class is the System object variable
name, obj, followed by 'Plugin', for example, objPlugin.

If the object is locked, the number of input and output channels of the plugin is equal to the number
of channels of the object. Otherwise, the number of channels is equal to 2.

createAudioPluginClass(obj,pluginName) specifies the name of your created System object
plugin class.
Example: createAudioPluginClass(obj,'coolEffect') creates a System object plugin with
class name 'coolEffect'.

Examples

Create an Audio Plugin Class From a System Object

Create a compressor object. Call createAudioPluginClass to create a System object™ plugin
class that implements the functionality of the compressor object.

cmpr = compressor;
createAudioPluginClass(cmpr)

Specify Name of Created Plugin Class

Create an object of the reverberator System object™. Call createAudioPluginClass to create a
System object™ plugin class that implements the functionality of the reverberator object,
specifying the plugin class name as the second argument.

reverb = reverberator;
createAudioPluginClass(reverb,'Garage');

Input Arguments
obj — System object to create plugin class from
Audio Toolbox System object

3 System Objects

3-122

System object from which to create a plugin class.

pluginName — Name of created plugin class
character vector

Name of created plugin class, specified as a character vector with fewer than 64 elements.
Data Types: char

Version History
Introduced in R2016a

See Also
Objects
compressor | audioOscillator | crossoverFilter | expander | graphicEQ | limiter |
multibandParametricEQ | noiseGate | octaveFilter | reverberator |
wavetableSynthesizer | weightingFilter

Apps
Audio Test Bench

Functions
parameterTuner

Topics
“Audio Plugins in MATLAB”
“Export a MATLAB Plugin to a DAW”

 createAudioPluginClass

3-123

getFilter
Return biquad filter object with design parameters set

Syntax
biquad = getFilter(obj)

Description
biquad = getFilter(obj) returns a dsp.BiquadFilter object, biquad. The SOSMatrix and
ScaleValues properties of the biquad filter object are set as specified by the obj System object.

Use getFilter for the design capabilities of the obj System object and the processing capabilities
of the dsp.BiquadFilter System object.

Examples

Get Biquad Filter for Octave Filter Design

Create an octaveFilter System object™. Call getFilter on your object to return a
dsp.BiquadFilter object with design parameters specified by your octaveFilter System object.

octFilt = octaveFilter;
biquad = getFilter(octFilt)

biquad =
 dsp.SOSFilter with properties:

 Structure: 'Direct form II transposed'
 CoefficientSource: 'Property'
 Numerator: [3x3 double]
 Denominator: [3x3 double]
 HasScaleValues: false

 Show all properties

Get Biquad Filter for Weighting Filter Design

Create a weightingFilter System object™.

weightFilt = weightingFilter;

Call getFilter on your object to return a dsp.BiquadFilter object with design parameters
specified by your weightingFilter System object. Use fvtool to visualize the biquad filter.

biquad = getFilter(weightFilt)

3 System Objects

3-124

biquad =
 dsp.SOSFilter with properties:

 Structure: 'Direct form II transposed'
 CoefficientSource: 'Property'
 Numerator: [3x3 double]
 Denominator: [3x3 double]
 HasScaleValues: true
 ScaleValues: [4x1 double]

 Show all properties

fvtool(biquad,'FrequencyScale','log')

Input Arguments
obj — System object to get filter from
System object

System object that you want to get a biquad filter object from.

 getFilter

3-125

Output Arguments
biquad — Object of dsp.BiquadFilter
object

dsp.BiquadFilter object.

Version History
Introduced in R2016b

See Also
weightingFilter | octaveFilter | dsp.BiquadFilter

Topics
“Audio Weighting Filters”
“Octave-Band and Fractional Octave-Band Filters”
“Sound Pressure Measurement of Octave Frequency Bands”

3 System Objects

3-126

info
Get audio device information

Syntax
infoStruct = info(obj)

Description
infoStruct = info(obj) returns a structure, infoStruct, containing information about the
System object, obj.

Examples

Get Input Audio Device Information

Create an object of the audioDeviceReader System object™ and then call info to return a
structure containing information about the selected driver, device name, and the maximum number of
input channels.

deviceReader = audioDeviceReader;
info(deviceReader)

Get Output Audio Device Information

Create an object of the audioDeviceWriter System object™ and then call info to return a
structure containing information about the selected driver, device name, and the maximum number of
output channels.

deviceWriter = audioDeviceWriter;
info(deviceWriter)

Get Audio I/O Device Information

Create an object of the audioPlayerRecorder System object™ and then call info to return a
structure containing information about the selected driver, device name, and the maximum number of
input and output channels.

playRec = audioPlayerRecorder;
info(playRec)

 info

3-127

Input Arguments
obj — System object to get information from
System object

System object to get information from.

Output Arguments
infoStruct — Struct containing object information
struct

Struct containing information about the System object, obj. Fields of the struct depend on the
System object.

Version History
Introduced in R2016a

See Also
audioDeviceWriter | audioDeviceReader | audioPlayerRecorder

3 System Objects

3-128

cost
Estimate implementation cost of audio System objects

Syntax
implementationCost = cost(audioObj)

Description
implementationCost = cost(audioObj) returns a structure, implementationCost, whose
fields contain information about the computation cost of implementing the audio System object,
audioObj.

Examples

Estimate Implementation Cost of Crossover Filter

Create a crossover filter with 2 crossovers with 48 dB/octave slopes. Call cost to get an estimate of
the implementation cost.

crossFilt = crossoverFilter('NumCrossovers',2,'CrossoverSlopes',48);
cost1 = cost(crossFilt)

cost1 = struct with fields:
 NumCoefficients: 120
 NumStates: 48
 MultiplicationsPerInputSample: 120
 AdditionsPerInputSample: 97

Reduce the crossover slopes for both crossovers to 12 dB/octave. Call cost to get an estimate of the
new implementation cost.

crossFilt.CrossoverSlopes = 12;
cost2 = cost(crossFilt)

cost2 = struct with fields:
 NumCoefficients: 36
 NumStates: 12
 MultiplicationsPerInputSample: 36
 AdditionsPerInputSample: 25

Input Arguments
audioObj — Audio System object
crossoverFilter object

Specify the input as a supported audio System object.

 cost

3-129

Data Types: object

Output Arguments
implementationCost — Estimate of implementation cost
struct

Estimate of the implementation cost of a filter, returned as struct:

Structure Field Description
NumCoefficients Number of filter coefficients (excluding

coefficients with values 0, 1 or -1)
NumStates Number of states
MultiplicationsPerInputSample Number of multiplication per input sample
AdditionsPerInputSample Number of additions per input sample

Version History
Introduced in R2016a

See Also
crossoverFilter

3 System Objects

3-130

audioPlayerRecorder
Simultaneously play and record using an audio device

Description
The audioPlayerRecorder System object reads and writes audio samples using your computer’s
audio device. To use audioPlayerRecorder, you must have an audio device and driver capable of
simultaneous playback and record.

See “Audio I/O: Buffering, Latency, and Throughput” for a detailed explanation of the data flow.

To simultaneously play and record:

1 Create the audioPlayerRecorder object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
playRec = audioPlayerRecorder
playRec = audioPlayerRecorder(sampleRateValue)
playRec = audioPlayerRecorder(___ ,Name,Value)

Description

playRec = audioPlayerRecorder returns a System object, playRec, that plays audio samples to
an audio device and records samples from the same audio device, in real time.

 audioPlayerRecorder

3-131

playRec = audioPlayerRecorder(sampleRateValue) sets the SampleRate property to
sampleRateValue.

playRec = audioPlayerRecorder(___ ,Name,Value) sets each property Name to the specified
Value. Unspecified properties have default values.
Example: playRec = audioPlayerRecorder(48000,'BitDepth','8-bit integer') creates
a System object, playRec, that operates at a 48 kHz sample rate and an 8-bit integer bit depth.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Device — Device used to play and record audio data
default audio device (default) | character vector | string

Device used to play and record audio data, specified as a character vector or string. The object
supports only devices enabled for simultaneous playback and recording (full-duplex mode). Use
getAudioDevices to list available devices.

Supported drivers for audioPlayerRecorder are platform-specific:

• Windows –– ASIO
• Mac –– CoreAudio
• Linux –– ALSA

Note The default audio device is the default device of your machine only if it supports full-duplex
mode. If your machine’s default audio device does not support full-duplex mode,
audioPlayerRecorder specifies as the default device the first available device it detects that is
capable of full-duplex mode. Use the info method to get the device name associated with your
audioPlayerRecorder object.

Data Types: char | string

SampleRate — Sample rate used by device to record and play audio data (Hz)
44100 (default) | positive integer

Sample rate used by device to record and play audio data, in Hz, specified as a positive integer. The
range of SampleRate depends on your audio hardware.
Data Types: single | double

BitDepth — Data type used by device
'16-bit integer' (default) | '8-bit integer' | '32-bit float' | '24-bit integer'

Data type used by device, specified as a character vector or string.

3 System Objects

3-132

Data Types: char | string

SupportVariableSize — Support variable frame size
false (default) | true

Option to support variable frame size, specified as false or true.

• false –– If the audioPlayerRecorder object is locked, the input must have the same frame size
at each call. The buffer size of your audio device is the same as the input frame size. If you are
using the object on Windows, open the ASIO UI to set the sound card buffer to the frame size
value.

• true –– If the audioPlayerRecorder object is locked, the input frame size can change at each
call. The buffer size of your audio device is specified through the BufferSize property.

To minimize latency, set SupportVariableSize to false. If variable-size input is required by your
audio system, set SupportVariableSize to true.
Data Types: logical

BufferSize — Buffer size of audio device
1024 (default) | positive integer

Buffer size of audio device, specified as a positive integer.

Note If you are using the object on a Windows machine, use asiosettings to set the sound card
buffer size to the BufferSize value of your audioPlayerRecorder System object.

Dependencies

To enable this property, set SupportVariableSize to true.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

PlayerChannelMapping — Mapping between columns of played data and channels of device
[] (default) | scalar | vector

Mapping between columns of played data and channels of output device, specified as a scalar or as a
vector of valid channel indices. The default value of this property is [], which means that the default
channel mapping is used.

Note To ensure mono output on only one channel of a stereo device, use the default
PlayerChannelMapping setting and provide a stereo signal where one channel is all zeros.

Example: outputLeftOnly = [x(:,1) zeros(size(x,1),1)];

Example: outputRightOnly = [zeros(size(x,1),1) x(:,1)];

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

RecorderChannelMapping — Mapping between channels of device and columns of recorded
data
1 (default) | scalar | vector

 audioPlayerRecorder

3-133

Mapping between channels of your audio device and columns of recorded data, specified as a scalar
or as a vector of valid channel indices. The default value is 1, which means that the first recording
channel on the device is used to acquire data and is mapped to a single-column matrix.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Usage

Syntax
audioFromDevice = playRec(audioToDevice)
[audioFromDevice,numUnderrun] = playRec(audioToDevice)
[audioFromDevice,numUnderrun,numOverrun] = playRec(audioToDevice)

Description

audioFromDevice = playRec(audioToDevice) writes one frame of audio samples,
audioToDevice, to the selected audio device, and returns one frame of audio, audioFromDevice.

[audioFromDevice,numUnderrun] = playRec(audioToDevice) returns the number of
samples overrun since the last call to playRec.

[audioFromDevice,numUnderrun,numOverrun] = playRec(audioToDevice) returns the
number of samples underrun since the last call to playRec.

Note: When you call the audioPlayerRecorder System object, the audio device specified by the
Device property is locked. An audio device can be locked by only one audioPlayerRecorder at a
time. To release the audio device, call release on the audioPlayerRecorder System object.

Input Arguments

audioToDevice — Audio to device
matrix

Audio signal to write to device, specified as a matrix. The columns of the matrix are treated as
independent audio channels.
Data Types: single | double | int8 | int16 | int32 | uint8

Output Arguments

audioFromDevice — Audio from device
matrix

Audio signal read from device, returned as a matrix the same size and data type as audioToDevice.
Data Types: single | double | int16 | int32 | uint8

numUnderrun — Number of samples underrun
scalar

Number of samples by which the player queue was underrun since the last call to playRec.
Underrun refers to output signal silence. Output signal silence occurs if the device buffer is empty
when it is time for digital-to-analog conversion. This results when the processing loop in MATLAB
does not supply samples at the rate the sound card demands.

3 System Objects

3-134

Data Types: uint32

numOverrun — Number of samples overrun
scalar

Number of samples by which the recorder queue was overrun since the last call to playRec. Overrun
refers to input signal drops. Input signal drops occur when the processing stage does not keep pace
with the acquisition of samples.
Data Types: uint32

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to audioPlayerRecorder
getAudioDevices List available audio devices
info Get audio device information

Common to All System Objects
clone Create duplicate System object
isLocked Determine if System object is in use
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object
step Run System object algorithm
setup One-time set up tasks for System objects

Examples

Synchronize Playback and Recording

Synchronize playback and recording using a single audio device. If synchronization is lost, print
information about samples dropped.

Create objects to read from and write to an audio file. Create an audioPlayerRecorder object to
play an audio signal to your device and simultaneously record audio from your device.

fileReader = dsp.AudioFileReader('Counting-16-44p1-mono-15secs.wav', ...
 'SamplesPerFrame',512);
fs = fileReader.SampleRate;

fileWriter = dsp.AudioFileWriter('Counting-PlaybackRecorded.wav', ...
 'SampleRate',fs);

aPR = audioPlayerRecorder('SampleRate',fs);

In a frame-based loop:

 audioPlayerRecorder

3-135

1 Read an audio signal from your file.
2 Play the audio signal to your device and simultaneously record audio from your device. Use the

optional nUnderruns and nOverruns output arguments to track any loss of synchronization.
3 Write your recorded audio to a file.

Once the loop is completed, release the objects to free devices and resources.

while ~isDone(fileReader)
 audioToPlay = fileReader();

 [audioRecorded,nUnderruns,nOverruns] = aPR(audioToPlay);

 fileWriter(audioRecorded)

 if nUnderruns > 0
 fprintf('Audio player queue was underrun by %d samples.\n',nUnderruns);
 end
 if nOverruns > 0
 fprintf('Audio recorder queue was overrun by %d samples.\n',nOverruns);
 end
end

Audio player queue was underrun by 512 samples.

release(fileReader)
release(fileWriter)
release(aPR)

Specify Nondefault Channel Mapping

The audioPlayerRecorder System object™ enables you to specify a nondefault mapping between
the channels of your audio device and the data sent to and received from your audio device. To run
this example, your audio device must have at least two channels and be capable of full-duplex mode.

Using Default Settings

Create an audioPlayerRecorder object with default settings. The audioPlayerRecorder is
automatically configured to a compatible device and driver.

aPR = audioPlayerRecorder;

The audioPlayerRecorder combines reading from your device and writing to your device in a
single call: audioFromDevice = aPR(audioToDevice). Calling the audioPlayerRecorder with
default settings:

• Maps columns of audioToDevice to output channels of your device
• Maps input channels of your device to columns of audioFromDevice

By default, audioFromDevice is a one-column matrix corresponding to channel 1 of your audio
device. To view the maximum number of input and output channels of your device, use the info
method.

aPRInfo = info(aPR);

3 System Objects

3-136

aPRInfo is returned as a structure with fields containing information about your selected driver,
audio device, and the maximum number of input and output channels in your configuration.

Call the audioPlayerRecorder with a two-column matrix. By default, column 1 is mapped to output
channel 1, and column 2 is mapped to output channel 2. The audioPlayerRecorder returns a one-
column matrix with the same number of rows as the audioToDevice matrix.

highToneGenerator = audioOscillator('Frequency',600,'SamplesPerFrame',256);
lowToneGenerator = audioOscillator('Frequency',200,'SamplesPerFrame',256);

for i = 1:250
 C = highToneGenerator();
 D = lowToneGenerator();
 audioToDevice = [C,D];
 audioFromDevice = aPR(audioToDevice);
end

Nondefault Channel Mapping for Audio Output

Specify a nondefault channel mapping for your audio output. Specify that column 1 of
audioToDevice maps to channel 2, and that column 2 of audioToDevice maps to channel 1. To
modify the channel mapping, the audioPlayerRecorder object must be unlocked.

Run the audioPlayerRecorder object. If you are using headphones or stereo speakers, notice that
the high frequency and low frequency tones have switched speakers.

release(aPR)
aPR.PlayerChannelMapping = [2,1];

for i = 1:250
 C = highToneGenerator();
 D = lowToneGenerator();
 audioToDevice = [C,D];
 audioFromDevice = aPR(audioToDevice);
end

 audioPlayerRecorder

3-137

Nondefault Channel Mapping for Audio Input

Specify a nondefault channel mapping for your audio input. Record data from only channel two of
your device. In this case, channel 2 is mapped to a one-column matrix. Use size to verify that
audioFromDevice is a 256-by-1 matrix.

release(aPR)
aPR.RecorderChannelMapping = 2;

audioFromDevice = aPR(audioToDevice);

[rows,col] = size(audioFromDevice)

rows =

 256

col =

 1

As a best practice, release your audio device once complete.

release(aPR)

Version History
Introduced in R2017a

3 System Objects

3-138

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• “System Objects in MATLAB Code Generation” (MATLAB Coder)
• The executable generated from this System object relies on prebuilt dynamic library files (.dll
files) included with MATLAB. Use the packNGo function to package the code generated from this
object and all the relevant files in a compressed zip file. Using this zip file, you can relocate,
unpack, and rebuild your project in another development environment where MATLAB is not
installed. For more details, see “Run Audio I/O Features Outside MATLAB and Simulink”.

See Also
Functions
asiosettings | getAudioDevices | audioDeviceWriter | audioDeviceReader |
dsp.AudioFileReader

Blocks
Audio Device Reader | Audio Device Writer

Topics
“Audio I/O: Buffering, Latency, and Throughput”
“Run Audio I/O Features Outside MATLAB and Simulink”
“Real-Time Audio in MATLAB”

 audioPlayerRecorder

3-139

audioDeviceReader
Record from sound card

Description
The audioDeviceReader System object reads audio samples using your computer’s audio input
device.

See “Audio I/O: Buffering, Latency, and Throughput” for a detailed explanation of the audio device
reader data flow.

The audio device reader specifies the driver, the device and its attributes, and the data type and size
output from your System object.

To stream data from an audio device:

1 Create the audioDeviceReader object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation
Syntax
deviceReader = audioDeviceReader
deviceReader = audioDeviceReader(sampleRateValue)
deviceReader = audioDeviceReader(sampleRateValue,sampPerFrameValue)
deviceReader = audioDeviceReader(___ ,Name,Value)

Description

deviceReader = audioDeviceReader returns a System object, deviceReader, that reads audio
samples using an audio input device in real time.

3 System Objects

3-140

deviceReader = audioDeviceReader(sampleRateValue) sets the SampleRate property to
sampleRateValue.

deviceReader = audioDeviceReader(sampleRateValue,sampPerFrameValue) sets the
SamplesPerFrame property to sampPerFrameValue.

deviceReader = audioDeviceReader(___ ,Name,Value) sets each property Name to the
specified Value. Unspecified properties have default values.
Example: deviceReader = audioDeviceReader(16000,'BitDepth','8-bit integer')
creates a System object, deviceReader, that operates at a 16 kHz sample rate and an 8-bit integer
bit depth.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Driver — Driver used to access audio device (Windows only)
'DirectSound' (default) | 'ASIO' | 'WASAPI'

Driver used to access your audio device, specified as 'DirectSound', 'ASIO', or 'WASAPI'.

• ASIO drivers do not come pre-installed on Windows machines. To use the 'ASIO' driver option,
install an ASIO driver outside of MATLAB.

Note If Driver is specified as 'ASIO', use asiosettings to set the sound card buffer size to
the SamplesPerFrame value of your audioDeviceReader System object.

• WASAPI drivers are supported for exclusive-mode only.

ASIO and WASAPI drivers do not provide sample rate conversion. For ASIO and WASAPI drivers, set
SampleRate to a sample rate supported by your audio device.

This property applies only on Windows machines. Linux machines always use the ALSA driver. Mac
machines always use the CoreAudio driver.
Data Types: char | string

Device — Device used to acquire audio samples
default audio device (default) | character vector | string

Device used to acquire audio samples, specified as a character vector or string. Use
getAudioDevices to list available devices for the selected driver.
Data Types: char | string

NumChannels — Number of input channels acquired by audio device
1 (default) | integer

 audioDeviceReader

3-141

Number of input channels acquired by audio device, specified as an integer. The range of
NumChannels depends on your audio hardware.
Dependencies

To enable this property, set ChannelMappingSource to 'Auto'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

SamplesPerFrame — Frame size read from audio device
1024 (default) | integer

Frame size read from audio device, specified as a positive integer. SamplesPerFrame is also the size
of your device buffer and the number of columns of the output matrix returned by your
audioDeviceReader object.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

SampleRate — Sample rate used by device to acquire audio data (Hz)
44100 (default) | positive integer

Sample rate used by device to acquire audio data, in Hz, specified as a positive integer. The range of
SampleRate depends on your audio hardware.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

BitDepth — Data type used by device to acquire audio data
'16-bit integer' (default) | '8-bit integer' | '32-bit float' | '24-bit integer'

Data type used by device to acquire audio data, specified as a character vector or string.
Data Types: char | string

ChannelMappingSource — Source of mapping between device channels and output matrix
'Auto' (default) | 'Property'

Source of mapping between the channels of your audio input device and columns of the output
matrix, specified as 'Auto' or 'Property'.

• 'Auto' –– The default settings determine the mapping between device channels and output
matrix. For example, suppose that your audio device has six channels available, and you set
NumChannels to 6. The output from a call to your audio device reader is a six-column matrix.
Column 1 corresponds to channel 1, column 2 corresponds to channel 2, and so on.

• 'Property' –– The ChannelMapping property determines the mapping between channels of your
audio device and columns of the output matrix.

Data Types: char | string

ChannelMapping — Nondefault mapping between device channels and output matrix
[1:MaximumInputChannels] (default) | scalar | vector

Nondefault mapping between channels of your audio input device and columns of the output matrix,
specified as a vector of valid channel indices. See “Specify Channel Mapping for audioDeviceReader”
on page 3-147 for more information.
Dependencies

To enable this property, set ChannelMappingSource to 'Property'.

3 System Objects

3-142

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

OutputDataType — Data type of the output
'double' (default) | 'single' | 'int32' | 'int16' | 'uint8'

Data type of the output, specified as a character vector or string.

Note If OutputDataType is specified as 'double' or 'single', the audio device reader outputs
data in the range [–1, 1]. For other data types, the range is [min, max] of the specified data type.

Data Types: char | string

Usage

Syntax
audioFromDevice = deviceReader()
[audioFromDevice,numOverrun] = deviceReader()

Description

audioFromDevice = deviceReader() returns one frame of audio samples from the selected
audio input device.

[audioFromDevice,numOverrun] = deviceReader() returns the number of samples by which
the audio reader's queue was overrun since the last call to deviceReader.

Note: When you call the audioDeviceReader System object, the audio device specified by the
Device property is locked. An audio device can be locked by only one audioDeviceReader at a time.
To release the audio device, call release on your audioDeviceReader object.

Output Arguments

audioFromDevice — Audio from device
matrix

Audio signal read from device, returned as a matrix. The specified number of channels and the
SamplesPerFrame property determine the matrix size. The data type of the matrix depends on the
OutputDataType property.
Data Types: single | double | int16 | int32 | uint8

numOverrun — Number of samples overrun
scalar

Number of samples by which the audio reader's queue was overrun since the last call to
deviceReader.
Data Types: uint32

 audioDeviceReader

3-143

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to audioDeviceReader
getAudioDevices List available audio devices
info Get audio device information

Common to All System Objects
clone Create duplicate System object
isLocked Determine if System object is in use
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object
step Run System object algorithm
setup One-time set up tasks for System objects

Examples

Read from Microphone and Write to Audio File

Record 10 seconds of speech with a microphone and send the output to a WAV file.

Create an audioDeviceReader object with default settings. Call setup to reduce the computational
load of initialization in an audio stream loop.

deviceReader = audioDeviceReader;
setup(deviceReader)

Create a dsp.AudioFileWriter System object. Specify the file name and type to write.

fileWriter = dsp.AudioFileWriter('mySpeech.wav','FileFormat','WAV');

Record 10 seconds of speech. In an audio stream loop, read an audio signal frame from the device,
and write the audio signal frame to a specified file. The file saves to your current folder.

disp('Speak into microphone now.')

Speak into microphone now.

tic
while toc < 10
 acquiredAudio = deviceReader();
 fileWriter(acquiredAudio);
end
disp('Recording complete.')

Recording complete.

Release the audio device and close the output file.

3 System Objects

3-144

release(deviceReader)
release(fileWriter)

Reduce Latency Due to Input Device Buffer

Latency due to the input device buffer is the time delay of acquiring one frame of data. In this
example, you modify default properties of your audioDeviceReader object to reduce latency.

Create an audioDeviceReader object with default settings.

deviceReader = audioDeviceReader

deviceReader =
 audioDeviceReader with properties:

 Driver: 'DirectSound'
 Device: 'Default'
 NumChannels: 1
 SamplesPerFrame: 1024
 SampleRate: 44100

 Show all properties

Calculate the latency due to your device buffer.

fprintf('Latency due to device buffer: %f seconds.\n',deviceReader.SamplesPerFrame/deviceReader.SampleRate)

Latency due to device buffer: 0.023220 seconds.

Set the SamplesPerFrame property of your audioDeviceReader object to 64. Calculate the
latency.

deviceReader.SamplesPerFrame = 64;
fprintf('Latency due to device buffer: %f seconds.\n',deviceReader.SamplesPerFrame/deviceReader.SampleRate)

Latency due to device buffer: 0.001451 seconds.

Set the SampleRate property of your audioDeviceReader System object to 96000. Calculate the
latency.

deviceReader.SampleRate = 96000;
fprintf('Latency due to device buffer: %f seconds.\n',deviceReader.SamplesPerFrame/deviceReader.SampleRate)

Latency due to device buffer: 0.000667 seconds.

Determine and Decrease Overrun

Overrun refers to input signal drops, which occur when the audio stream loop does not keep pace
with the device. Determine overrun of an audio stream loop, add an artificial computational load to
the audio stream loop, and then modify properties of your audioDeviceReader object to decrease
overrun. Your results depend on your computer.

 audioDeviceReader

3-145

Create an audioDeviceReader System object with SamplesPerFrame set to 256 and SampleRate
set to 44100. Call setup to reduce the computational load of initialization in an audio stream loop.

deviceReader = audioDeviceReader(...
 'SamplesPerFrame',256, ...
 'SampleRate',44100);
setup(deviceReader)

Create a dsp.AudioFileWriter object. Specify the file name and data type to write.

fileWriter = dsp.AudioFileWriter('mySpeech.wav','FileFormat','WAV');

Record 5 seconds of speech. In an audio stream loop, read an audio signal frame from your device,
and write the audio signal frame to a specified file.

totalOverrun = 0;
disp('Speak into microphone now.')

Speak into microphone now.

tic
while toc < 5
 [input,numOverrun] = deviceReader();
 totalOverrun = totalOverrun + numOverrun;
 fileWriter(input);
end
fprintf('Recording complete.\n')

Recording complete.

fprintf('Total number of samples overrun: %d.\n',totalOverrun)

Total number of samples overrun: 0.

fprintf('Total seconds overrun: %d.\n',double(totalOverrun)/double(deviceReader.SampleRate))

Total seconds overrun: 0.

Release your audioDeviceReader and dsp.AudioDeviceWriter objects and zero your counter
variable.

release(fileWriter)
release(deviceReader)
totalOverrun = 0;

Use pause to add an artificial computational load to your audio stream loop. The computational load
causes the audio stream loop to go slower than the device, which causes acquired samples to be
dropped.

disp('Speak into microphone now.')

Speak into microphone now.

tic
while toc < 5
 [input,numOverrun] = deviceReader();
 totalOverrun = totalOverrun + numOverrun;
 fileWriter(input);
 pause(0.01)

3 System Objects

3-146

end
fprintf('Recording complete.\n')

Recording complete.

fprintf('Total number of samples overrun: %d.\n',totalOverrun)

Total number of samples overrun: 97536.

fprintf('Total seconds overrun: %d.\n',double(totalOverrun)/double(deviceReader.SampleRate))

Total seconds overrun: 2.211701e+00.

Release your audioDeviceReader and dsp.AudioFileWriter objects, and set the
SamplePerFrame property to 512. The device buffer size increases so that the device now takes
longer to acquire a frame of data. Set your counter variable to zero.

release(fileWriter)
release(deviceReader)
deviceReader.SamplesPerFrame = 512;
totalOverrun = 0;

Calculate the total overrun of the audio stream loop using your modified SamplesPerFrame
property.

disp('Speak into microphone now.')

Speak into microphone now.

tic
while toc < 5
 [input,numOverrun] = deviceReader();
 totalOverrun = totalOverrun + numOverrun;
 fileWriter(input);
 pause(0.01)
end
fprintf('Recording complete.\n')

Recording complete.

fprintf('Total number of samples overrun: %d.\n',totalOverrun)

Total number of samples overrun: 0.

fprintf('Total seconds overrun: %f.\n',totalOverrun/deviceReader.SampleRate)

Total seconds overrun: 0.000000.

Specify Channel Mapping for audioDeviceReader

Specify nondefault channel mapping for an audioDeviceReader object. This example is hardware
specific. It assumes that your computer has a default audio input device with two available channels.

Create an audioDeviceReader object with default settings.

deviceReader = audioDeviceReader;

 audioDeviceReader

3-147

The default number of channels is 1. Call your audioDeviceReader object like a function with no
arguments to read one frame of data from your audio device. Verify that the output data matrix has
one column.

x = deviceReader();
[frameLength,numChannels] = size(x)

frameLength = 1024

numChannels = 1

Use info to determine the maximum number of input channels available with your specified Driver
and Device configuration.

info(deviceReader)

ans = struct with fields:
 Driver: 'DirectSound'
 DeviceName: 'Primary Sound Capture Driver'
 MaximumInputChannels: 2

Set ChannelMappingSource to 'Property'. The audioDeviceReader object must be unlocked to
change this property.

release(deviceReader)
deviceReader.ChannelMappingSource = 'Property'

deviceReader =
 audioDeviceReader with properties:

 Driver: 'DirectSound'
 Device: 'Default'
 SamplesPerFrame: 1024
 SampleRate: 44100

 Show all properties

By default, if ChannelMappingSource is set to 'Property', all available channels are mapped to
the output. Call your audioDeviceReader object to read one frame of data from your audio device.
Verify that the output data matrix has two columns.

x = deviceReader();
[frameLength,numChannels] = size(x)

frameLength = 1024

numChannels = 2

Use the ChannelMapping property to specify an alternative mapping between channels of your
device and columns of the output matrix. Indicate the input channel number at an index
corresponding to the output column. To change this property, first unlock the audioDeviceReader
object.

release(deviceReader)
deviceReader.ChannelMapping = [2,1];

Now when you call your audioDeviceReader:

3 System Objects

3-148

• Input channel 1 of your device maps to the second column of your output matrix.
• Input channel 2 of your device maps to the first column of your output matrix.

Acquire a specific channel from your input device.

deviceReader.ChannelMapping = 2;

If you call your audioDeviceReader, input channel 2 of your device maps to an output vector.

Version History
Introduced in R2016a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• “System Objects in MATLAB Code Generation” (MATLAB Coder)
• The executable generated from this System object relies on prebuilt dynamic library files (.dll
files) included with MATLAB. Use the packNGo function to package the code generated from this
object and all the relevant files in a compressed zip file. Using this zip file, you can relocate,
unpack, and rebuild your project in another development environment where MATLAB is not
installed. For more details, see “Run Audio I/O Features Outside MATLAB and Simulink”.

See Also
Functions
asiosettings | getAudioDevices | audioDeviceWriter | audioPlayerRecorder |
dsp.AudioFileReader

Blocks
Audio Device Reader

Topics
“Audio I/O: Buffering, Latency, and Throughput”
“Run Audio I/O Features Outside MATLAB and Simulink”
“Real-Time Audio in MATLAB”

 audioDeviceReader

3-149

audioDeviceWriter
Play to sound card

Description
The audioDeviceWriter System object writes audio samples to an audio output device. Properties
of the audio device writer specify the driver, the device, and device attributes such as sample rate, bit
depth, and buffer size.

See “Audio I/O: Buffering, Latency, and Throughput” for a detailed explanation of the audio device
writer data flow.

To stream data to an audio device:

1 Create the audioDeviceWriter object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation
Syntax
deviceWriter = audioDeviceWriter
deviceWriter = audioDeviceWriter(sampleRateValue)
deviceWriter = audioDeviceWriter(___ ,Name,Value)

Description

deviceWriter = audioDeviceWriter returns a System object, deviceWriter, that writes audio
samples to an audio output device in real time.

deviceWriter = audioDeviceWriter(sampleRateValue) sets the SampleRate property to
sampleRateValue.

3 System Objects

3-150

deviceWriter = audioDeviceWriter(___ ,Name,Value) sets each property Name to the
specified Value. Unspecified properties have default values.
Example: deviceWriter = audioDeviceWriter(48000,'BitDepth','8-bit integer')
creates a System object, deviceWriter, that operates at a 48 kHz sample rate and an 8-bit integer
bit depth.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Driver — Driver used to access audio device (Windows only)
'DirectSound' (default) | 'ASIO' | 'WASAPI'

Driver used to access your audio device, specified as 'DirectSound', 'ASIO', or 'WASAPI'.

• ASIO drivers do not come pre-installed on Windows machines. To use the 'ASIO' driver option,
install an ASIO driver outside of MATLAB.

Note If Driver is specified as 'ASIO', use asiosettings to set the sound card buffer size to
the buffer size of your audioDeviceWriter System object.

• WASAPI drivers are supported for exclusive-mode only.

ASIO and WASAPI drivers do not provide sample rate conversion. For ASIO and WASAPI drivers, set
SampleRate to a sample rate supported by your audio device.

This property applies only on Windows machines. Linux machines always use the ALSA driver. Mac
machines always use the CoreAudio driver.

To specify nondefault Driver values, you must have an Audio Toolbox license. If the toolbox is not
installed, specifying nondefault Driver values returns an error.
Data Types: char | string

Device — Device used to play audio samples
default audio device (default) | character vector | string scalar

Device used to play audio samples, specified as a character vector or string scalar. Use
getAudioDevices to list available devices for the selected driver.
Data Types: char | string

SampleRate — Sample rate of signal sent to audio device (Hz)
44100 (default) | positive integer

Sample rate of signal sent to audio device, in Hz, specified as a positive integer. The range of
SampleRate depends on your audio hardware.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

 audioDeviceWriter

3-151

BitDepth — Data type used by the device
'16-bit integer' (default) | '8-bit integer' | '24-bit integer' | '32-bit float'

Data type used by the device, specified as a character vector or string scalar. Before performing
digital-to-analog conversion, the input data is cast to a data type specified by BitDepth.

To specify a nondefault BitDepth, you must have an Audio Toolbox license. If the toolbox is not
installed, specifying a nondefault BitDepth returns an error.
Data Types: char | string

SupportVariableSizeInput — Support variable frame size
false (default) | true

Option to support variable frame size, specified as true or false.

• false –– If the audioDeviceWriter object is locked, the input must have the same frame size at
each call. The buffer size of your audio device is the same as the input frame size.

• true –– If the audioDeviceWriter object is locked, the input frame size can change at each call.
The buffer size of your audio device is specified through the BufferSize property.

Data Types: char

BufferSize — Buffer size of audio device
4096 (default) | positive integer

Buffer size of audio device, specified as a positive integer.

Note If Driver is specified as 'ASIO', open the ASIO UI to set the sound card buffer size to the
BufferSize value of your audioDeviceWriter System object.

Dependencies

To enable this property, set SupportVariableSizeInput to true.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

ChannelMappingSource — Source of mapping between input matrix and device channels
'Auto' (default) | 'Property'

Source of mapping between columns of input matrix and channels of audio output device, specified as
'Auto' or 'Property'.

• 'Auto' –– Default settings determine the mapping between columns of input matrix and channels
of audio output device. For example, suppose that your input is a matrix with four columns, and
your audio device has four channels available. Column 1 of your input data writes to channel 1 of
your device, column 2 of your input data writes to channel 2 of your device, and so on.

• 'Property' –– The ChannelMapping property determines the mapping between columns of input
matrix and channels of audio output device.

Data Types: char | string

ChannelMapping — Nondefault mapping between input matrix and device channels
[1:MaximumOutputChannels] (default) | scalar | vector

3 System Objects

3-152

Nondefault mapping between columns of input matrix and channels of output device, specified as a
scalar or vector of valid channel indices. See the “Specify Channel Mapping for audioDeviceWriter”
on page 3-158 example for more information.

To selectively map between columns of the input matrix and your sound card's output channels, you
must have an Audio Toolbox license. If the toolbox is not installed, specifying a nondefault
ChannelMapping returns an error.

Note To ensure mono output on only one channel of a stereo device, use the default
ChannelMapping setting and provide a stereo signal where one channel is all zeros.

Example: outputLeftOnly = [x(:,1) zeros(size(x,1),1)];

Example: outputRightOnly = [zeros(size(x,1),1) x(:,1)];

Dependencies

To enable this property, set ChannelMappingSource to 'Property'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Usage

Syntax
numUnderrun = deviceWriter(audioToDevice)

Description

numUnderrun = deviceWriter(audioToDevice) writes one frame of audio samples,
audioToDevice, to the selected audio device and returns the number of audio samples underrun
since the last call to deviceWriter.

Note: When you call the audioDeviceWriter System object, the audio device specified by the
Device property is locked. An audio device can be locked by only one audioDeviceWriter at a
time. To release the audio device, call release on your audioDeviceWriter System object.

Input Arguments

audioToDevice — Audio to device
matrix

Audio signal to write to device, specified as a matrix. The columns of the matrix are treated as
independent audio channels.

If audioToDevice is of data type 'double' or 'single', the audio device writer clips values
outside the range [–1, 1]. For other data types, the allowed input range is [min, max] of the specified
data type.
Data Types: single | double | int16 | int32 | uint8

 audioDeviceWriter

3-153

Output Arguments

numUnderrun — Number of samples underrun
scalar

Number of samples by which the audio device writer queue was underrun since the last call to
deviceWriter.
Data Types: uint32

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to audioDeviceWriter
getAudioDevices List available audio devices
info Get audio device information

Common to All System Objects
clone Create duplicate System object
isLocked Determine if System object is in use
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object
step Run System object algorithm
setup One-time set up tasks for System objects

Examples

Read from File and Write to Audio Device

Read an MP3 audio file and play it through your default audio output device.

Create a dsp.AudioFileReader object with default settings. Use the audioinfo function to return
a structure containing information about the audio file.

fileReader = dsp.AudioFileReader('speech_dft.mp3');
fileInfo = audioinfo('speech_dft.mp3')

fileInfo = struct with fields:
 Filename: 'B:\matlab\toolbox\dsp\samples\speech_dft.mp3'
 CompressionMethod: 'MP3'
 NumChannels: 1
 SampleRate: 22050
 TotalSamples: 112893
 Duration: 5.1199
 Title: []
 Comment: []
 Artist: []

3 System Objects

3-154

 BitRate: 64

Create an audioDeviceWriter object and specify the sample rate.

deviceWriter = audioDeviceWriter('SampleRate',fileInfo.SampleRate);

Call setup to reduce the computational load of initialization in an audio stream loop.

setup(deviceWriter,zeros(fileReader.SamplesPerFrame,...
 fileInfo.NumChannels))

Use the info function to obtain the characteristic information about the device writer.

info(deviceWriter)

ans = struct with fields:
 Driver: 'DirectSound'
 DeviceName: 'Primary Sound Driver'
 MaximumOutputChannels: 2

In an audio stream loop, read an audio signal frame from the file, and write the frame to your device.

while ~isDone(fileReader)
 audioData = fileReader();
 deviceWriter(audioData);
end

Close the input file and release the device.

release(fileReader)
release(deviceWriter)

Reduce Latency due to Output Device Buffer

Latency due to the output device buffer is the time delay of writing one frame of data. Modify default
properties of your audioDeviceWriter System object™ to reduce latency due to device buffer size.

Create a dsp.AudioFileReader System object to read an audio file with default settings.

fileReader = dsp.AudioFileReader('speech_dft.mp3');

Create an audioDeviceWriter System object and specify the sample rate to match that of the audio
file reader.

deviceWriter = audioDeviceWriter(...
 'SampleRate',fileReader.SampleRate);

Calculate the latency due to your device buffer, in seconds.

bufferLatency = fileReader.SamplesPerFrame/deviceWriter.SampleRate %#ok

bufferLatency = 0.0464

Set the SamplesPerFrame property of your dsp.AudioFileReader System object to 256.
Calculate the buffer latency in seconds.

 audioDeviceWriter

3-155

fileReader.SamplesPerFrame = 256;
bufferLatency = fileReader.SamplesPerFrame/deviceWriter.SampleRate

bufferLatency = 0.0116

Determine and Decrease Underrun

Underrun refers to output signal silence, which occurs when the audio stream loop does not keep
pace with the output device. Determine the underrun of an audio stream loop, add artificial
computational load to the audio stream loop, and then modify properties of your
audioDeviceWriter object to decrease underrun. Your results depend on your computer.

Create a dsp.AudioFileReader object, and specify the file to read. Use the audioinfo function to
return a structure containing information about the audio file.

fileReader = dsp.AudioFileReader('speech_dft.mp3');
fileInfo = audioinfo('speech_dft.mp3');

Create an audioDeviceWriter object. Use the SampleRate of the file reader as the SampleRate
of the device writer. Call setup to reduce the computational load of initialization in an audio stream
loop.

deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);
setup(deviceWriter,zeros(fileReader.SamplesPerFrame,...
 fileInfo.NumChannels))

Run your audio stream loop with input from file and output to device. Print the total samples
underrun and the underrun in seconds.

totalUnderrun = 0;
while ~isDone(fileReader)
 input = fileReader();
 numUnderrun = deviceWriter(input);
 totalUnderrun = totalUnderrun + numUnderrun;
end
fprintf('Total samples underrun: %d.\n',totalUnderrun)

Total samples underrun: 0.

fprintf('Total seconds underrun: %d.\n',double(totalUnderrun)/double(deviceWriter.SampleRate))

Total seconds underrun: 0.

Release your dsp.AudioFileReader and audioDeviceWriter objects and set your counter
variable to zero.

release(fileReader)
release(deviceWriter)
totalUnderrun = 0;

Use pause to mimic an algorithm that takes 0.075 seconds to process. The pause causes the audio
stream loop to go slower than the device, which results in periods of silence in the output audio
signal.

while ~isDone(fileReader)
 input = fileReader();

3 System Objects

3-156

 numUnderrun = deviceWriter(input);
 totalUnderrun = totalUnderrun + numUnderrun;
 pause(0.075)
end
fprintf('Total samples underrun: %d.\n',totalUnderrun)

Total samples underrun: 68608.

fprintf('Total seconds underrun: %d.\n',double(totalUnderrun)/double(deviceWriter.SampleRate))

Total seconds underrun: 3.111474e+00.

Release your audioDeviceReader and dsp.AudioFileWriter and set the counter variable to
zero.

release(fileReader)
release(deviceWriter)
totalUnderrun = 0;

Set the frame size of your audio stream loop to 2048. Because the SupportVariableSizeInput
property of your audioDeviceWriter System object is set to false, the buffer size of your audio
device is the same size as the input frame size. Increasing your device buffer size decreases
underrun.

fileReader = dsp.AudioFileReader('speech_dft.mp3');
fileReader.SamplesPerFrame = 2048;
fileInfo = audioinfo('speech_dft.mp3');

deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);
setup(deviceWriter,zeros(fileReader.SamplesPerFrame,fileInfo.NumChannels))

Calculate the total underrun.

while ~isDone(fileReader)
 input = fileReader();
 numUnderrun = deviceWriter(input);
 totalUnderrun = totalUnderrun + numUnderrun;
 pause(0.075)
end
fprintf('Total samples underrun: %d.\n',totalUnderrun)

Total samples underrun: 0.

fprintf('Total seconds underrun: %d.\n',double(totalUnderrun)/double(deviceWriter.SampleRate))

Total seconds underrun: 0.

The increased frame size reduces the total underrun of your audio stream loop. However, increasing
the frame size also increases latency. Other approaches to reduce underrun include:

• Increasing the buffer size independent of input frame size. To increase buffer size independent of
input frame size, you must first set SupportVariableSizeInput to true. This approach also
increases latency.

• Decreasing the sample rate. Decreasing the sample rate reduces both latency and underrun at the
cost of signal resolution.

• Choosing an optimal driver and device for your system.

 audioDeviceWriter

3-157

Specify Channel Mapping for audioDeviceWriter

Specify nondefault channel mapping for an audioDeviceWriter object. This example is hardware
specific. It assumes that your computer has a default audio output device with two available channels.

Create an audioDeviceWriter object with default settings.

deviceWriter = audioDeviceWriter;

By default, the audioDeviceWriter object writes the maximum number of channels available,
corresponding to the columns of the input matrix. Use info to get the maximum number of channels
of your device.

info(deviceWriter)

ans = struct with fields:
 Driver: 'DirectSound'
 DeviceName: 'Primary Sound Driver'
 MaximumOutputChannels: 2

If deviceWriter is called with one column of data, two channels are written to your audio output
device. Both channels correspond to the one column of data.

Use the audioOscillator object to output a tone to your audioDeviceWriter object. Your object,
sineGenerator, returns a vector when called.

sineGenerator = audioOscillator;

Write the sine tone to your audio device. If you are using headphones, you can hear the tone from
both channels.

count = 0;
while count < 500
 sine = sineGenerator();
 deviceWriter(sine);
 count = count + 1;
end

If your audioDeviceWriter object is called with two columns of data, two channels are written to
your audio output device. The first column corresponds to channel 1 of your audio output device, and
the second column corresponds to channel 2 of your audio output device.

Write a two-column matrix to your audio output device. Column 1 corresponds to the sine tone, and
column 2 corresponds to a static signal. If you are using headphones, you can hear the tone from one
speaker and the static from the other speaker.

count = 0;
while count < 500
 sine = sineGenerator();
 static = randn(length(sine),1);
 deviceWriter([sine,static]);
 count = count + 1;
end

3 System Objects

3-158

Specify alternative mappings between channels of your device and columns of the output matrix by
indicating the output channel number at an index corresponding to the input column. Set
ChannelMappingSource to 'Property'. Indicate that the first column of your input data writes to
channel 2 of your output device, and that the second column of your input data writes to channel 1 of
your output device. To modify the channel mapping, you must first unlock the audioDeviceReader
object.

release(deviceWriter)
deviceWriter.ChannelMappingSource = 'Property';
deviceWriter.ChannelMapping = [2,1];

Play your audio signals with reversed mapping. If you are using headphones, notice that the tone and
static have switched speakers.

count = 0;
while count < 500
 sine = sineGenerator();
 static = randn(length(sine),1);
 deviceWriter([sine,static]);
 count = count + 1;
end

Version History
Introduced in R2016a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• “System Objects in MATLAB Code Generation” (MATLAB Coder)
• The executable generated from this System object relies on prebuilt dynamic library files (.dll
files) included with MATLAB. Use the packNGo function to package the code generated from this
object and all the relevant files in a compressed zip file. Using this zip file, you can relocate,
unpack, and rebuild your project in another development environment where MATLAB is not
installed. For more details, see “Run Audio I/O Features Outside MATLAB and Simulink”.

See Also
asiosettings | getAudioDevices | Audio Device Writer | audioDeviceReader |
audioPlayerRecorder | dsp.AudioFileWriter | dsp.AudioFileReader

Topics
“Run Audio I/O Features Outside MATLAB and Simulink”
“Audio I/O: Buffering, Latency, and Throughput”
“Measure Audio Latency”
“Real-Time Audio in MATLAB”

 audioDeviceWriter

3-159

audioOscillator

Generate sine, square, and sawtooth waveforms

Description
The audioOscillator System object generates tunable waveforms. Typical uses include the
generation of test signals for test benches, and the generation of control signals for audio effects.
Properties of the audioOscillator System object specify the type of waveform generated.

To generate tunable waveforms:

1 Create the audioOscillator object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
osc = audioOscillator
osc = audioOscillator(signalTypeValue)
osc = audioOscillator(signalTypeValue,frequencyValue)
osc = audioOscillator(___ ,Name,Value)

Description

osc = audioOscillator creates an audio oscillator System object, osc, with default property
values.

osc = audioOscillator(signalTypeValue) sets the SignalType property to
signalTypeValue.

osc = audioOscillator(signalTypeValue,frequencyValue) sets the Frequency property to
frequencyValue.

3 System Objects

3-160

osc = audioOscillator(___ ,Name,Value) sets each property Name to the specified Value.
Unspecified properties have default values.
Example: osc =
audioOscillator('SignalType','sine','Frequency',8000,'DCOffset',1) creates a
System object, osc, which generates 8 kHz sinusoids with a DC offset of one.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

SignalType — Type of generated waveform
'sine' (default) | 'square' | 'sawtooth'

Type of waveform generated by your audioOscillator object, specified as 'sine', 'square', or
'sawtooth'.

The waveforms are generated using the algorithms specified by the sin, square, and sawtooth
functions.

Tunable: No
Data Types: char | string

Frequency — Frequency of generated waveform (Hz)
100 (default) | real scalar | vector of real scalars

Frequency of generated waveform in Hz, specified as a real scalar or vector of real scalars greater
than or equal to 0.

• For sine waveforms, specify Frequency as a scalar or as a vector of length NumTones.
• For square waveforms, specify Frequency as a scalar.
• For sawtooth waveforms, specify Frequency as a scalar.

Tunable: Yes
Data Types: single | double

Amplitude — Amplitude of generated waveform
1 (default) | real scalar | vector of real scalars

Amplitude of generated waveform, specified as a real scalar or vector of real scalars greater than or
equal to 0.

• For sine waveforms, specify Amplitude as a vector of length NumTones.
• For square waveforms, specify Amplitude as a scalar.
• For sawtooth waveforms, specify Amplitude as a scalar.

 audioOscillator

3-161

The generated waveform is multiplied by the value specified by Amplitude at the output, before
DCOffset is applied.

Tunable: Yes
Data Types: single | double

PhaseOffset — Normalized phase offset of generated waveform
0 (default) | real scalar | vector of real scalars

Normalized phase offset of generated waveform, specified as a real scalar or vector of real scalars
with values in the range [0, 1]. The range is a normalized 2π-radian interval.

• For sine waveforms, specify PhaseOffset as a vector of length NumTones.
• For square waveforms, specify PhaseOffset as a scalar.
• For sawtooth waveforms, specify PhaseOffset as a scalar.

Tunable: No
Data Types: single | double

DCOffset — Value added to each element of generated waveform
0 (default) | real scalar | vector of real scalars

Value added to each element of generated waveform, specified as a real scalar or vector of real
scalars.

• For sine waveforms, specify DCOffset as a vector of length NumTones.
• For square waveforms, specify DCOffset as a scalar.
• For sawtooth waveforms, specify DCOffset as a scalar.

Tunable: Yes
Data Types: single | double

NumTones — Number of pure sine waveform tones
1 (default) | positive integer

Number of pure sine waveform tones summed and then generated by the audio oscillator.

Individual tones are generated based on values specified by Frequency, Amplitude, PhaseOffset,
and DCOffset.

Tunable: No

Dependencies

To enable this property, set SignalType to 'sine'.
Data Types: single | double

DutyCycle — Square waveform duty cycle
0.5 (default) | scalar in the range [0, 1]

Square waveform duty cycle, specified as a scalar in the range [0, 1].

3 System Objects

3-162

Square waveform duty cycle is the percentage of one period in which the waveform is above the
median amplitude. A DutyCycle of 1 or 0 is equivalent to a DC offset.

Tunable: Yes

Dependencies

To enable this property, set SignalType to 'square'.
Data Types: single | double

Width — Sawtooth width
1 (default) | scalar in the range [0, 1]

Sawtooth width, specified as a scalar in the range [0, 1].

Sawtooth width determines the point in a sawtooth waveform period at which the maximum occurs.

Tunable: Yes

Dependencies

To enable this property, set SignalType to 'sawtooth'.
Data Types: single | double

SamplesPerFrame — Number of samples per frame
512 (default) | positive integer

Number of samples per frame, specified as a positive integer in the range [1,
MaxSamplesPerFrame].

This property determines the vector length that your audioOscillator object outputs.

Tunable: Yes
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

MaxSamplesPerFrame — Maximum number of samples per frame
192000 (default) | positive integer

Maximum number of samples per frame, specified as a positive integer. Setting this property to a
lower value can save memory when using code generation.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

SampleRate — Sample rate of generated waveform (Hz)
44100 (default) | positive scalar

Sample rate of generated waveform in Hz, specified as a positive scalar greater than twice the value
specified by Frequency.

Tunable: Yes
Data Types: single | double

OutputDataType — Data type of generated waveform
'double' (default) | 'single'

 audioOscillator

3-163

Data type of generated waveform, specified as 'double' or 'single'.

Tunable: Yes
Data Types: char | string

Usage

Syntax
waveform = osc()

Description

waveform = osc() generates a waveform output, waveform. The type of waveform is specified by
the algorithm and properties of the System object, osc.

Output Arguments

waveform — Waveform output from oscillator
column vector

Waveform output from the audio oscillator, returned as a column vector with length specified by the
SamplesPerFrame property.
Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to audioOscillator
createAudioPluginClass Create audio plugin class that implements functionality of System object
parameterTuner Tune object parameters while streaming

MIDI
configureMIDI Configure MIDI connections between audio object and MIDI controller
disconnectMIDI Disconnect MIDI controls from audio object
getMIDIConnections Get MIDI connections of audio object

Common to All System Objects
clone Create duplicate System object
isLocked Determine if System object is in use
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object
step Run System object algorithm

3 System Objects

3-164

The createAudioPluginClass and configureMIDI functions map tunable properties of the
audioOscillator System object to user-facing parameters:

Property Range Mapping Units
Frequency [0.1, 20000] log Hz
Amplitude [0, 10] linear no units
DCOffset [–10, 10] linear no units
DutyCycle (available
when you set
SignalType to
'square')

[0, 1] linear no units

Width (available when
you set SignalType to
'sawtooth')

[0, 1] linear no units

Examples

Generate Variable-Frequency Sine Wave

Use the audioOscillator to generate a variable-frequency sine wave.

Create an audio oscillator to generate a sine wave. Use the default settings.

osc = audioOscillator;

Create a time scope to visualize the variable-frequency sine wave generated by the audio oscillator.

scope = timescope(...
 'SampleRate',osc.SampleRate, ...
 'TimeSpanSource','Property','TimeSpan',0.1, ...
 'YLimits',[-1.5,1.5], ...
 'TimeSpanOverrunAction','Scroll', ...
 'ShowGrid',true, ...
 'Title','Variable-Frequency Sine Wave');

Place the audio oscillator in an audio stream loop. Increase the frequency of your sine wave in 50-Hz
increments.

counter = 0;
while (counter < 1e4)
 counter = counter + 1;
 sineWave = osc();
 scope(sineWave);
 if mod(counter,1000)==0
 osc.Frequency = osc.Frequency + 50;
 end
end

 audioOscillator

3-165

Create a Melody by Tuning Oscillation Frequency

Tune the frequency of an audio oscillator at regularly spaced intervals to create a melody. Play the
melody to your audio output device.

Create a structure to hold the frequency values of notes in a melody.

notes = struct('C4',261.63,'E4',329.63,'G4sharp',415.30,'A4',440,'B4',493.88, ...
 'C5',523.25,'D5',587.25,'D5sharp',622.25,'E5',659.25,'Silence',0);

Create audioOscillator and audioDeviceWriter objects. Use the default settings.

osc = audioOscillator;
aDW = audioDeviceWriter;

Create a vector with the initial melody of Fur Elise.

melody = [notes.Silence notes.Silence,...
 notes.E5 notes.D5sharp notes.E5 notes.D5sharp notes.E5 notes.B4 ...
 notes.D5 notes.C5 notes.A4 notes.A4 notes.Silence ...
 notes.C4 notes.E4 notes.A4 notes.B4 notes.B4 notes.Silence ...
 notes.E4 notes.G4sharp notes.B4 notes.C5 notes.C5 notes.Silence];

3 System Objects

3-166

Specify the note duration in seconds. In an audio stream loop, call your audio oscillator and write the
sound to your audio device. Update the frequency of the audio oscillator in noteDuration time steps
to follow the melody. As a best practice, release your objects once complete.

noteDuration = 0.3;

i = 1;
tic
while i < numel(melody)
 tone = osc();
 aDW(tone);
 if toc >= noteDuration
 i = i + 1;
 osc.Frequency = melody(i);
 tic
 end
end

release(osc)
release(aDW)

Control Cutoff Frequency of Lowpass Filter

Create a low-frequency oscillator (LFO) lowpass filter, using the audioOscillator as a control
signal.

Create dsp.AudioFileReader and audioDeviceWriter System objects to read from an audio file
and write to your audio device. Create a biquad filter object to apply lowpass filtering to your audio
signal.

fileReader = dsp.AudioFileReader('Filename','Engine-16-44p1-stereo-20sec.wav');
deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);
lowpassFilter = dsp.BiquadFilter(...
 'SOSMatrixSource','Input port', ...
 'ScaleValuesInputPort',false);

Create an audio oscillator object. Your audio oscillator controls the cutoff frequency of the lowpass
filter in an audio stream loop.

osc = audioOscillator('SignalType','sawtooth', ...
 'DCOffset',0.05, ...
 'Amplitude',0.03, ...
 'SamplesPerFrame',fileReader.SamplesPerFrame, ...
 'SampleRate',fileReader.SampleRate, ...
 'Frequency',5);

In a loop, filter the audio signal through the lowpass filter. Write the output signal to your audio
device.

while ~isDone(fileReader)
 audioIn = fileReader();
 ctrlSignal = osc();
 [B,A] = designVarSlopeFilter(48,ctrlSignal(end));
 audioOut = lowpassFilter(audioIn,B,A);

 audioOscillator

3-167

 deviceWriter(audioOut);
end

As a best practice, release objects once complete.

release(osc)
release(fileReader)
release(deviceWriter)

For a more complete implementation of an LFO Filter, see audiopluginexample.LFOFilter in the
“Audio Plugin Example Gallery”.

Version History
Introduced in R2016a

New MaxSamplesPerFrame property

Use the MaxSamplesPerFrame property to specify the maximum number of samples per frame.
Setting the property to a lower value can save memory when using code generation.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

“System Objects in MATLAB Code Generation” (MATLAB Coder)

See Also
wavetableSynthesizer | Audio Oscillator

3 System Objects

3-168

crossoverFilter
Audio crossover filter

Description
The crossoverFilter System object implements an audio crossover filter, which is used to split an
audio signal into two or more frequency bands. Crossover filters are multiband filters whose overall
magnitude frequency response is flat.

To implement an audio crossover filter:

1 Create the crossoverFilter object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
crossFilt = crossoverFilter
crossFilt = crossoverFilter(nCrossovers)
crossFilt = crossoverFilter(nCrossovers,xFrequencies)
crossFilt = crossoverFilter(nCrossovers,xFrequencies,xSlopes)
crossFilt = crossoverFilter(nCrossovers,xFrequencies,xSlopes,Fs)
crossFilt = crossoverFilter(___ ,Name,Value)

Description

crossFilt = crossoverFilter creates a System object, crossFilt, that implements an audio
crossover filter.

 crossoverFilter

3-169

crossFilt = crossoverFilter(nCrossovers) sets the NumCrossovers property to
nCrossovers.

crossFilt = crossoverFilter(nCrossovers,xFrequencies) sets the CrossoverFrequencies
property to xFrequencies.

crossFilt = crossoverFilter(nCrossovers,xFrequencies,xSlopes) sets the
CrossoverSlopes property to xSlopes.

crossFilt = crossoverFilter(nCrossovers,xFrequencies,xSlopes,Fs) sets the
SampleRate property to Fs.

crossFilt = crossoverFilter(___ ,Name,Value) sets each property Name to the specified
Value. Unspecified properties have default values.
Example: crossFilt = crossoverFilter(2,'CrossoverFrequencies',
[100,800],'CrossoverSlopes',[6,48]) creates a System object, crossFilt, with two
crossovers located at 100 Hz and 800 Hz, and crossover slopes of 6 dB/octave and 48 dB/octave,
respectively.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

NumCrossovers — Number of magnitude response band crossings
1 (default) | 2 | 3 | 4

Number of magnitude response band crossings, specified as a scalar integer in the range 1 to 4.

The number of bands output when implementing crossover filtering is one more than the
NumCrossovers value.

Number of magnitude response band
crossings

Number of bands output

1 two-band
2 three-band
3 four-band
4 five-band

Tunable: No
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

CrossoverFrequencies — Crossover frequencies (Hz)
100 (default) | scalar | vector

Crossover frequencies in Hz, specified as a scalar or vector of real values of length NumCrossovers.

3 System Objects

3-170

Crossover frequencies are the intersections of magnitude response bands of the individual two-band
crossover filters used in the multiband crossover filter.

Tunable: Yes
Data Types: single | double

CrossoverSlopes — Crossover slopes (dB/octave)
12 (default) | scalar | vector

Crossover slopes in dB/octave, specified as a scalar or vector of real values in the range [6:6:48]. If a
specified crossover slope is not inside the range, the slope is rounded to the nearest allowed value.

• If CrossoverSlopes is a scalar, all two-band component crossover slopes take that value.
• If CrossoverSlopes is a vector of length NumCrossovers, the respective two-band component

crossover slopes take those values.

Crossover slopes are the slopes of individual bands at the associated crossover frequency, as specified
in the two-band component crossover.

Tunable: Yes
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

SampleRate — Input sample rate (Hz)
44100 (default) | positive scalar

Input sample rate in Hz, specified as a positive scalar.

Tunable: Yes
Data Types: single | double

Usage

Syntax
[band1,...,bandN] = crossFilt(audioIn)

Description

[band1,...,bandN] = crossFilt(audioIn) applies a crossover filter on the input, audioIn,
and returns the filtered output bands, [band1,...,bandN], where N = NumCrossovers + 1.

Input Arguments

audioIn — Audio input to crossover filter
matrix

Audio input to the crossover filter, specified as a matrix. The columns of the matrix are treated as
independent audio channels.
Data Types: single | double

 crossoverFilter

3-171

Output Arguments

[band1,...,bandN] — Audio bands output from crossover filter
set of matrices

Audio bands output from the crossover filter, returned as a set of N bands. The NumCrossovers
property determines the number of return arguments: N = NumCrossovers + 1. The size of each
output argument is the same size as audioIn.
Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to crossoverFilter
visualize Visualize magnitude response of crossover filter
cost Estimate implementation cost of audio System objects
createAudioPluginClass Create audio plugin class that implements functionality of System object
parameterTuner Tune object parameters while streaming

MIDI
configureMIDI Configure MIDI connections between audio object and MIDI controller
disconnectMIDI Disconnect MIDI controls from audio object
getMIDIConnections Get MIDI connections of audio object

Common to All System Objects
clone Create duplicate System object
isLocked Determine if System object is in use
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object
step Run System object algorithm

The createAudioPluginClass and configureMIDI functions map tunable properties of the
crossoverFilter System object to user-facing parameters:

Property Range Mapping Unit
CrossoverFrequenci
es

[20, 20000] linear Hz

CrossoverSlopes [6, 48] linear dB/octave

Examples

Pass Noise Signal Through Crossover Filter

Use the crossoverFilter object to split Gaussian noise into three separate frequency bands.

3 System Objects

3-172

Create a 5 second noise signal that assumes a 24 kHz sample rate.

fs = 24e3;
noise = randn(fs*5,1);

Create a crossoverFilter object with 2 crossovers (3 bands), crossover frequencies at 4 kHz and 8
kHz, a slope of 48 dB/octave, and a sample rate of 24 kHz.

crossFilt = crossoverFilter(...
 'NumCrossovers',2, ...
 'CrossoverFrequencies',[4000,8000], ...
 'CrossoverSlopes',48, ...
 'SampleRate',fs);

Visualize the magnitude response of your crossover filter object.

visualize(crossFilt)

Call your crossover filter like a function with the noise signal as the argument.

[y1,y2,y3] = crossFilt(noise);

Visualize the results using a spectrogram.

figure('Position',[100,100,800,700])

subplot(4,1,1)

 crossoverFilter

3-173

spectrogram(noise,120,100,6000,fs,'yaxis')
title('Noise')

subplot(4,1,2)
spectrogram(y1,120,100,6000,fs,'yaxis')
title('y1')

subplot(4,1,3)
spectrogram(y2,120,100,6000,fs,'yaxis')
title('y2')

subplot(4,1,4)
spectrogram(y3,120,100,6000,fs,'yaxis')
title('y3')

3 System Objects

3-174

Split Audio Signal into Three Bands

Use the crossoverFilter object to split an audio signal into three frequency bands.

Create the dsp.AudioFileReader and audioDeviceWriter objects. Use the sample rate of the
reader as the sample rate of the writer.

samplesPerFrame = 256;

fileReader = dsp.AudioFileReader(...
 "RockGuitar-16-44p1-stereo-72secs.wav", ...
 SamplesPerFrame=samplesPerFrame);
deviceWriter = audioDeviceWriter(...
 SampleRate=fileReader.SampleRate);

Create a crossoverFilter object with 2 crossovers (3 bands), crossover frequencies at 500 Hz and
1 kHz, and a slope of 18 dB/octave. Use the sample rate of the reader as the sample rate of the
crossover filter.

crossFilt = crossoverFilter(...
 NumCrossovers=2, ...
 CrossoverFrequencies=[500,1000], ...
 CrossoverSlopes=18, ...
 SampleRate=fileReader.SampleRate);

Visualize the bands of the crossover filter.

visualize(crossFilt)

 crossoverFilter

3-175

Get the cost of the crossover filter.

cost(crossFilt)

ans = struct with fields:
 NumCoefficients: 48
 NumStates: 18
 MultiplicationsPerInputSample: 48
 AdditionsPerInputSample: 37

Create a spectrum analyzer to visualize the effect of the crossover filter.

scope = spectrumAnalyzer(...
 SampleRate=fileReader.SampleRate, ...
 PlotAsTwoSidedSpectrum=false, ...
 FrequencyScale="log", ...
 Title="Crossover Bands and Reconstructed Signal", ...
 ShowLegend=true, ...
 ChannelNames=["Original Signal","Band 1","Band 2","Band 3","Sum"]);

Play 10 seconds of the audio signal. Visualize the spectrum of the original audio, the crossover bands,
and the reconstructed signal (sum of bands).

setup(scope,ones(samplesPerFrame,5))
count = 0;
while count < (fileReader.SampleRate/samplesPerFrame)*10

3 System Objects

3-176

 originalSignal = fileReader();
 [band1,band2,band3] = crossFilt(originalSignal);
 sumOfBands = band1 + band2 + band3;
 scope([originalSignal(:,1), ...
 band1(:,1), ...
 band2(:,1), ...
 band3(:,1), ...
 sumOfBands(:,1)])
 deviceWriter(sumOfBands);
 count = count + 1;
end

release(fileReader)
release(crossFilt)
release(deviceWriter)
release(scope)

Apply Split-Band De-Essing

De-essing is the process of diminishing sibilant sounds in an audio signal. Sibilance refers to the s, z,
and sh sounds in speech, which can be disproportionately emphasized during recording. es sounds
fall under the category of unvoiced speech with all consonants and have a higher frequency than
voiced speech. In this example, you apply split-band de-essing to a speech signal by separating the

 crossoverFilter

3-177

signal into high and low frequencies, applying an expander to diminish the sibilant frequencies, and
then remixing the channels.

Create a dsp.AudioFileReader object and an audioDeviceWriter object to read from a sound
file and write to an audio device. Listen to the unprocessed signal. Then release the file reader and
device writer.

fileReader = dsp.AudioFileReader(...
 'Sibilance.wav');
deviceWriter = audioDeviceWriter;

while ~isDone(fileReader)
 audioIn = fileReader();
 deviceWriter(audioIn);
end

release(deviceWriter)
release(fileReader)

Create an expander System object to de-ess the audio signal. Set the sample rate of the expander to
the sample rate of the audio file. Create a two-band crossover filter with a crossover of 3000 Hz.
Sibilance is usually found in this range. Set the crossover slope to 12. Plot the frequency response of
the crossover filter to confirm your design visually.

dRExpander = expander(...
 'Threshold',-50, ...
 'AttackTime',0.05, ...
 'ReleaseTime',0.05, ...
 'HoldTime',0.005, ...
 'SampleRate',fileReader.SampleRate);

crossFilt = crossoverFilter(...
 'NumCrossovers',1, ...
 'CrossoverFrequencies',3000, ...
 'CrossoverSlopes',12);
visualize(crossFilt)

3 System Objects

3-178

Create a timescope object to visualize the original and processed audio signals.

scope = timescope(...
 'SampleRate',fileReader.SampleRate, ...
 'TimeSpanOverrunAction','Scroll', ...
 'TimeSpanSource','Property','TimeSpan',4, ...
 'BufferLength',fileReader.SampleRate*8, ...
 'YLimits',[-1 1], ...
 'ShowGrid',true, ...
 'ShowLegend',true, ...
 'ChannelNames',{'Original','Processed'});

In an audio stream loop:

1 Read in a frame of the audio file.
2 Split the audio signal into two bands.
3 Apply dynamic range expansion to the upper band.
4 Remix the channels.
5 Write the processed audio signal to your audio device for listening.
6 Visualize the processed and unprocessed signals on a time scope.

As a best practice, release your objects once done.

while ~isDone(fileReader)
 audioIn = fileReader();

 crossoverFilter

3-179

 [band1,band2] = crossFilt(audioIn);

 band2processed = dRExpander(band2);

 procAudio = band1 + band2processed;

 deviceWriter(procAudio);

 scope([audioIn procAudio]);
end

release(deviceWriter)
release(fileReader)
release(scope)

release(crossFilt)
release(dRExpander)

Diminish Plosives from Speech Signal

Plosives are consonant sounds resulting from a sudden release of airflow. They are most pronounced
in words beginning with p, d, and g sounds. Plosives can be emphasized by the recording process and

3 System Objects

3-180

are often displeasurable to hear. In this example, you minimize the plosives of a speech signal by
applying highpass filtering and low-band compression.

Create a dsp.AudioFileReader object and a audioDeviceWriter object to read an audio signal
from a file and write an audio signal to a device. Play the unprocessed signal. Then release the file
reader and device writer.

fileReader = dsp.AudioFileReader('audioPlosives.wav');
deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);

while ~isDone(fileReader)
 audioIn = fileReader();
 deviceWriter(audioIn);
end
release(deviceWriter)
release(fileReader)

Design a highpass filter with a steep rolloff of all frequencies below 120 Hz. Use a
dsp.BiquadFilter object to implement the highpass filter design. Create a crossover filter with
one crossover at 250 Hz. The crossover filter enables you to separate the band of interest for
processing. Create a dynamic range compressor to compress the dynamic range of plosive sounds. To
apply no make-up gain, set the MakeUpGainMode to "Property" and use the default 0 dB
MakeUpGain property value. Create a time scope to visualize the processed and unprocessed audio
signal.

[B,A] = designVarSlopeFilter(48,120/(fileReader.SampleRate/2),"hi");
biquadFilter = dsp.BiquadFilter(...
 "SOSMatrixSource","Input port", ...
 "ScaleValuesInputPort",false);

crossFilt = crossoverFilter(...
 "SampleRate",fileReader.SampleRate, ...
 "NumCrossovers",1, ...
 "CrossoverFrequencies",250, ...
 "CrossoverSlopes",48);

dRCompressor = compressor(...
 "Threshold",-35, ...
 "Ratio",10, ...
 "KneeWidth",20, ...
 "AttackTime",1e-4, ...
 "ReleaseTime",3e-1, ...
 "MakeUpGainMode","Property", ...
 "SampleRate",fileReader.SampleRate);

scope = timescope(...
 "SampleRate",fileReader.SampleRate, ...
 "TimeSpanSource","property","TimeSpan",3, ...
 "BufferLength",fileReader.SampleRate*3*2, ...
 "YLimits",[-1 1], ...
 "ShowGrid",true, ...
 "ShowLegend",true, ...
 "ChannelNames",{'Original','Processed'});

In an audio stream loop:

1 Read in a frame of the audio file.

 crossoverFilter

3-181

2 Apply highpass filtering using your biquad filter.
3 Split the audio signal into two bands.
4 Apply dynamic range compression to the lower band.
5 Remix the channels.
6 Write the processed audio signal to your audio device for listening.
7 Visualize the processed and unprocessed signals on a time scope.

As a best practice, release your objects once done.

while ~isDone(fileReader)
 audioIn = fileReader();
 audioIn = biquadFilter(audioIn,B,A);
 [band1,band2] = crossFilt(audioIn);
 band1compressed = dRCompressor(band1);
 audioOut = band1compressed + band2;
 deviceWriter(audioOut);
 scope([audioIn audioOut])
end

As a best practice, release your objects once done.

release(deviceWriter)
release(fileReader)
release(crossFilt)
release(dRCompressor)
release(scope)

3 System Objects

3-182

Tune Crossover Filter Parameters

Create a dsp.AudioFileReader to read in audio frame-by-frame. Create a audioDeviceWriter to
write audio to your sound card. Create a crossoverFilter to process the audio data. Call visualize
to plot the frequency responses of the filters.

frameLength = 1024;
fileReader = dsp.AudioFileReader('RockDrums-44p1-stereo-11secs.mp3', ...
 'SamplesPerFrame',frameLength);
deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);

xFilt = crossoverFilter('SampleRate',fileReader.SampleRate);
visualize(xFilt)

 crossoverFilter

3-183

Call parameterTuner to open a UI to tune parameters of the crossover filter while streaming.

parameterTuner(xFilt)

In an audio stream loop:

1 Read in a frame of audio from the file.
2 Apply crossover filtering.
3 Write the frame of audio to your audio device for listening.

While streaming, tune parameters of the crossover filter and listen to the effect.

while ~isDone(fileReader)
 audioIn = fileReader();

3 System Objects

3-184

 [low,high] = xFilt(audioIn);
 deviceWriter([low(:,1),high(:,1)]);
 drawnow limitrate % required to update parameter
end

As a best practice, release your objects once done.

release(deviceWriter)
release(fileReader)
release(xFilt)

Algorithms
The crossover System object is implemented as a binary tree of crossover pairs with additional phase-
compensating sections [1]. Odd-order crossovers are implemented with Butterworth filters, while
even-order crossovers are implemented with cascaded Butterworth filters (Linkwitz-Riley filters).

Odd-Order Crossover Pair

Odd-order two-band (one crossover) filters are implemented as parallel complementary highpass and
lowpass filters.

LP and HP are Butterworth filters of order N, implemented as direct-form Ⅱ transposed second-order
sections. The shared cutoff frequency used in their design corresponds to the crossover of the
resulting bands.

Even-Order Crossover Pair

Even-order two-band (one crossover) filters are implemented as parallel complementary highpass and
lowpass filters.

LP and HP are Butterworth filters of order N/2, where N is the order of the overall filter. The filters
are implemented as direct-form Ⅱ transposed second-order sections.

 crossoverFilter

3-185

For overall filters of orders 2 and 6, XHI is multiplied by –1 internally so that the branches of your
crossover pair are in-phase.

Even-Order Three-Band Filter

Even-order three-band (two crossovers) filters are implemented as parallel complementary highpass
and lowpass filters organized in a tree structure.

The phase-compensating section is equivalent to an allpass filter.

The design of four-band and five-band filters (three and four crossovers) are extensions of the pattern
developed for even-order and odd-order crossovers and the tree structure specified for three-band
(two crossover) filters.

Version History
Introduced in R2016a

References
[1] D’Appolito, Joseph A. "Active Realization of Multiway All-Pass Crossover Systems." Journal of

Audio Engineering Society. Vol. 35, Issue 4, 1987, pp. 239–245.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

“System Objects in MATLAB Code Generation” (MATLAB Coder)

3 System Objects

3-186

See Also
Objects
multibandParametricEQ

Blocks
Crossover Filter

 crossoverFilter

3-187

visualize
Visualize magnitude response of crossover filter

Syntax
visualize(crossFilt)
visualize(crossFilt,NFFT)
hvsz = visualize(___)

Description
visualize(crossFilt) plots the magnitude response of the crossoverFilter. The plot is
updated automatically when properties of the object change.

visualize(crossFilt,NFFT) specifies an N-point FFT used to calculate the magnitude response.

hvsz = visualize(___) returns a handle to the visualizer as a
dsp.DynamicFilterVisualizer object when called with any of the previous syntaxes.

Examples

Visualize Magnitude Response of Crossover Filter

Create a crossoverFilter object, and then call visualize to plot the magnitude response of the
filter.

crossFilt = crossoverFilter;
visualize(crossFilt)

3 System Objects

3-188

Modify the crossover frequency and observe that the plot is updated automatically.

crossFilt.CrossoverFrequencies = 500;

 visualize

3-189

Input Arguments
crossFilt — Crossover filter to visualize
object of crossoverFilter System object

Crossover filter whose magnitude response you want to plot.

NFFT — N-point FFT
2048 (default) | positive scalar

Number of bins used to calculate the DFT, specified as a positive scalar.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Version History
Introduced in R2016a

See Also
crossoverFilter

3 System Objects

3-190

graphicEQ
Standards-based graphic equalizer

Description
The graphicEQ System object implements a graphic equalizer that can tune the gain on individual
octave or fractional octave bands. The object filters the data independently across each input channel
over time using the filter specifications. Center and edge frequencies of the bands are based on the
ANSI S1.11-2004 standard.

To equalize an audio signal:

1 Create the graphicEQ object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation
Syntax
equalizer = graphicEQ

 graphicEQ

3-191

equalizer = graphicEQ(Name,Value)

Description

equalizer = graphicEQ creates a graphic equalizer with default values.

equalizer = graphicEQ(Name,Value) sets each property Name to the specified Value.
Unspecified properties have default values.
Example: equalizer = graphicEQ('Structure','Parallel','EQOrder','1/3 octave')
creates a System object, equalizer, which implements filtering using a parallel structure and one-
third octave filter bandwidth.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Gains — Gain of each octave or fractional octave band (dB)
[0 0 0 0 0 0 0 0 0 0] (default) | 10-, 15-, or 30-element row vector

Gain of each octave of fractional octave band in dB, specified as a row vector with a length
determined by the Bandwidth property:

• '1 octave' –– Specify gains as a 10-element row vector.
• '2/3 octave' –– Specify gains as a 15-element row vector.
• '1/3 octave' –– Specify gains as a 30-element row vector.

Example: equalizer = graphicEQ('Bandwidth','2/3 octave','Gains',
[5,5,5,5,5,0,0,0,0,0,-5,-5,-5,-5,-5]) creates a two-third octave graphic equalizer with
specified gains.

You can tune the gains of your graphic equalizer when the object is locked. However, you cannot tune
the length of the gains when the object is locked.

Tunable: Yes
Data Types: single | double

EQOrder — Order of individual equalizer bands
2 (default) | positive even integer

Order of individual equalizer bands, specified as a positive even integer. All equalizer bands have the
same order.

Tunable: No
Data Types: single | double

Bandwidth — Filter bandwidth (octaves)
'1 octave' (default) | '2/3 octave' | '1/3 octave'

3 System Objects

3-192

Filter bandwidth in octaves, specified as '1 octave', '2/3 octave', or '1/3 octave'.

The ANSI S1.11-2004 standard defines the center and edge frequencies of your equalizer. The ISO
266:1997(E) standard specifies corresponding preferred frequencies for labeling purposes.

1-Octave Bandwidth

Center frequencies 32 63 126 251 501 1000 1995 3981 7943
15849

Edge frequencies 22 45 89 178 355 708 1413 2818 5623
1122 22387

Preferred frequencies 31.5 63 125 250 500 1000 2000 4000
8000 16000

2/3-Octave Bandwidth

Center frequencies 25 40 63 100 158 251 398 631 1000 1585
2512 3981 6310 10000 15849

Edge frequencies 20 32 50 79 126 200 316 501 794 1259
1995 3162 5012 7943 12589 19953

Preferred frequencies 25 40 63 100 160 250 400 630 1000 1600
2500 4000 6300 10000 16000

1/3-Octave Bandwidth

Center frequencies 25 32 40 50 63 79 100 126 158 200 251
316 398 501 631 794 1000 1259 1585
1995 2512 3162 3981 5012 6310 7943
10000 12589 15849 19953

Edge frequencies 22 28 35 45 56 71 89 112 141 178 224
282 355 447 562 708 891 1122 1413 1778
2239 2818 3548 4467 5623 7079 8913
11220 14125 17783 22387

Preferred frequencies 25 31.5 40 50 63 80 100 125 160 200
250 315 400 500 630 800 1000 1250 1600
2000 2500 3150 4000 5000 6300 8000
10000 12500 16000 20000

Tunable: No
Data Types: char | string

Structure — Type of implementation
'Cascade' (default) | 'Parallel'

Type of implementation, specified as 'Cascade' or 'Parallel'. See “Algorithms” on page 3-199
and “Graphic Equalization” for information about these implementation structures.

Tunable: No
Data Types: char | string

 graphicEQ

3-193

SampleRate — Input sample rate (Hz)
44100 (default) | positive scalar

Input sample rate in Hz, specified as a positive scalar.

Tunable: Yes
Data Types: single | double

Usage

Syntax
audioOut = equalizer(audioIn)

Description

audioOut = equalizer(audioIn) performs graphic equalization on the input signal, audioIn,
and returns the equalized signal, audioOut. The type of equalization is specified by the algorithm
and properties of the graphicEQ System object, equalizer.

Input Arguments

audioIn — Audio input to graphic equalizer
matrix

Audio input to the graphic equalizer, specified as a matrix. The columns of the matrix are treated as
independent audio channels.
Data Types: single | double

Output Arguments

audioOut — Audio output from graphic equalizer
matrix

Audio output from the graphic equalizer, returned as a matrix the same size as audioIn.
Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to graphicEQ
createAudioPluginClass Create audio plugin class that implements functionality of System object
coeffs Get filter coefficients
info Get filter information
visualize Visualize magnitude response of graphic equalizer
parameterTuner Tune object parameters while streaming

3 System Objects

3-194

MIDI
configureMIDI Configure MIDI connections between audio object and MIDI controller
disconnectMIDI Disconnect MIDI controls from audio object
getMIDIConnections Get MIDI connections of audio object

Common to All System Objects
clone Create duplicate System object
isLocked Determine if System object is in use
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object
step Run System object algorithm

The createAudioPluginClass and configureMIDI functions map tunable properties of the
graphicEQ System object to user-facing parameters:

Property Range Mapping Unit
Gains [–20, 20] linear dB

Examples

Perform Graphic Equalization

Create objects to read from an audio file and write to your audio device. Use the sample rate of the
reader as the sample rate of the writer.

frameLength = 512;
reader = dsp.AudioFileReader('RockDrums-48-stereo-11secs.mp3','SamplesPerFrame',frameLength);
player = audioDeviceWriter('SampleRate',reader.SampleRate);

In an audio stream loop, read audio from a file and play the audio through your audio device.

while ~isDone(reader)
 x = reader();
 player(x);
end
release(reader)
release(player)

Create a one-octave graphic equalizer implemented with a cascade structure. Use the sample rate of
the reader as the sample rate of the equalizer.

equalizer = graphicEQ(...
 'Bandwidth','1 octave', ...
 'Structure','Cascade', ...
 'SampleRate',reader.SampleRate);

Specify to increase the gain on low frequencies and then visualize the equalizer.

equalizer.Gains = [5,5,5,5,0,0,0,0,0,0];
visualize(equalizer)

 graphicEQ

3-195

3 System Objects

3-196

In an audio stream loop, read audio from a file, apply equalization, and then play the equalized audio
through your audio device.

while ~isDone(reader)
 x = reader();
 y = equalizer(x);
 player(y);
end
release(reader)
release(player)

Tune Graphic EQ Parameters

Create a dsp.AudioFileReader to read in audio frame-by-frame. Create an audioDeviceWriter
to write audio to your sound card. Create a graphicEQ to process the audio data. Call visualize to
plot the frequency response of the graphic equalizer.

frameLength = 1024;
fileReader = dsp.AudioFileReader('RockDrums-44p1-stereo-11secs.mp3','SamplesPerFrame',frameLength);
deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);

equalizer = graphicEQ('SampleRate',fileReader.SampleRate,'Gains',[0,10,-10,5,-5,2,-2,1,-1,0]);
visualize(equalizer)

 graphicEQ

3-197

Call parameterTuner to open a UI to tune parameters of the equalizer while streaming.

parameterTuner(equalizer)

In an audio stream loop:

1 Read in a frame of audio from the file.

3 System Objects

3-198

2 Apply equalization.
3 Write the frame of audio to your audio device for listening.

While streaming, tune parameters of the equalizer and listen to the effect.

while ~isDone(fileReader)
 audioIn = fileReader();
 audioOut = equalizer(audioIn);
 deviceWriter(audioOut);
 drawnow limitrate % required to update parameter
end

As a best practice, release your objects once done.

release(deviceWriter)
release(fileReader)
release(equalizer)

Algorithms
The implementation of your graphic equalizer depends on the Structure property. See “Graphic
Equalization” for a discussion of the pros and cons of the parallel and cascade implementations. Refer
to the following sections to understand how these algorithms are implemented in Audio Toolbox.

Parallel Structure

Filter Bank Design

The parallel implementation designs the individual equalizers using the octaveFilter design
method and spaces them on the spectrum according to the ANSI S1.11-2004 standard.

If you set the SampleRate property so that the Nyquist frequency (SampleRate/2) is less than the
final bandpass edge defined by the ANSI S1.11-2004 standard, then:

• The final bandpass filter is the one whose upper bandpass edge is less than the Nyquist frequency.
• The final filter is implemented as a highpass filter designed by the designParamEQ function.

 graphicEQ

3-199

Real-Time Computation

1 The input signal is fed into a filterbank of M filters, where M depends on the specified
Bandwidth and SampleRate properties.

2 Each branch of the filterbank is multiplied by the linear form of the corresponding element of the
Gains property.

3 The branches are summed and the output signal is returned.

Cascade Structure

Filter Bank Design

The cascade implementation designs the graphic equalizer filter bank using the
multibandParametricEQ System object.

Gain Setting

If the EQOrder property is set to 2, then a gain correction is calculated according to [1]. The gain
correction is independent of the requested gains. The gain correction is recomputed during the real-
time processing only if the SampleRate property is modified.

If the EQOrder property is not set to 2, no gain correction is applied, and the requested gains are
passed on to the multibandParametricEQ object.

Real-Time Computation

The input signal is fed into a cascade of M biquad filters, where M depends on the specified
Bandwidth and SampleRate properties.

Version History
Introduced in R2017b

References
[1] Oliver, Richard J., and Jean-Marc Jot. "Efficient Multi-Band Digital Audio Graphic Equalizer with

Accurate Frequency Response Control." Presented at the 139th Convention of the AES, New
York, October 2015.

3 System Objects

3-200

[2] Acoustical Society of America. American National Standard Specification for Octave-Band and
Fractional-Octave-Band Analog and Digital Filters. ANSI S1.11-2004. Melville, NY: Acoustical
Society of America, 2009.

[3] International Organization for Standardization. Acoustics –– Preferred frequencies. ISO
266:1997(E). Second Edition. 1997.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

“System Objects in MATLAB Code Generation” (MATLAB Coder)

See Also
Blocks
Graphic EQ | Single-Band Parametric EQ | Multiband Parametric EQ

Functions
multibandParametricEQ | designParamEQ | designShelvingEQ | designVarSlopeFilter

Topics
“Graphic Equalization”
“Equalization”

 graphicEQ

3-201

info
Get filter information

Syntax
infoStruct = info(obj)

Description
infoStruct = info(obj) returns a structure, infoStruct, containing information about obj.

Examples

Get Graphic Equalizer Standards-Based Frequencies

Create a graphicEQ System object™. Call info to return a structure containing standards-based
center, edge, and preferred frequencies.

equalizer = graphicEQ;
info(equalizer)

ans = struct with fields:
 CenterFrequencies: [31.6228 63.0957 125.8925 251.1886 501.1872 ...]
 EdgeFrequencies: [22.3872 44.6684 89.1251 177.8279 354.8134 ...]
 PreferredFrequencies: [31.5000 63 125 250 500 1000 2000 4000 8000 16000]

octaveFilterBank Info

Create a default octaveFilterBank. Call info to return a struct containing information about the
octave filter bank.

octFiltBank = octaveFilterBank;

infoStruct = info(octFiltBank)

infoStruct = struct with fields:
 CenterFrequencies: [31.6228 63.0957 125.8925 251.1886 501.1872 ...]
 BandedgeFrequencies: [22.3872 44.6684 89.1251 177.8279 354.8134 ...]
 GroupDelays: [630.0160 315.7551 158.2517 79.3121 39.7471 ...]

gammatoneFilterBank Info

Create a default gammatoneFilterBank. Call info to return a struct containing information about
the octave filter bank.

3 System Objects

3-202

gammaFiltBank = gammatoneFilterBank;

infoStruct = info(gammaFiltBank)

infoStruct = struct with fields:
 CenterFrequencies: [50.0000 82.1776 118.0670 158.0966 202.7439 ...]
 Bandwidths: [30.6688 34.2080 38.1555 42.5583 47.4691 52.9463 ...]
 GroupDelays: [330.1033 295.5650 264.8688 237.2999 212.5619 ...]

Input Arguments
obj — Object to get information from
graphicEQ | gammatoneFilterBank | octaveFilterBank

Object to get information from, specified as an object of gammatoneFilterBank,
octaveFilterBank, or graphicEQ.

Output Arguments
infoStruct — Struct containing object information
struct

Struct containing information about the input obj.

Version History
Introduced in R2017b

See Also
graphicEQ | octaveFilterBank | gammatoneFilterBank

 info

3-203

visualize
Visualize magnitude response of graphic equalizer

Syntax
visualize(equalizer)
visualize(equalizer,NFFT)
hvsz = visualize(___)

Description
visualize(equalizer) plots the magnitude response of the graphicEQ object, equalizer. The
plot is updated automatically when properties of the object change.

visualize(equalizer,NFFT) specifies an N-point FFT used to calculate the magnitude response.

hvsz = visualize(___) returns a handle to the visualizer as a
dsp.DynamicFilterVisualizer object when called with any of the previous syntaxes.

Examples

Visualize Magnitude Response of Graphic Equalizer

Create a default graphicEQ System object™ and then call visualize.

equalizer = graphicEQ;
visualize(equalizer)

3 System Objects

3-204

Set the gains of the graphic equalizer to new values. The visualization of the magnitude response
updates automatically.

equalizer.Gains = [-1,1,2,3,3,2,-10,5,5,-10];

 visualize

3-205

Input Arguments
equalizer — Graphic equalizer to visualize
object of graphicEQ System object

Graphic equalizer whose magnitude response you want to plot.

NFFT — N-point FFT
2048 (default) | positive scalar

Number of bins used to calculate the DFT, specified as a positive scalar.
Data Types: single | double

Version History
Introduced in R2017b

See Also
graphicEQ

3 System Objects

3-206

loudnessMeter
Standard-compliant loudness measurements

Description
The loudnessMeter System object computes the loudness, loudness range, and true-peak of an
audio signal in accordance with EBU R 128 and ITU-R BS.1770-4 standards.

To implement loudness metering:

1 Create the loudnessMeter object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation
Syntax
loudMtr = loudnessMeter
loudMtr = loudnessMeter(Name,Value)

Description

loudMtr = loudnessMeter creates a System object, loudMtr, that performs loudness metering
independently across each input channel.

loudMtr = loudnessMeter(Name,Value) sets each property Name to the specified Value.
Unspecified properties have default values.
Example: loudMtr = loudnessMeter('ChannelWeights',[1.2,
0.8],'SampleRate',12000) creates a System object, loudMtr, with channel weights of 1.2 and
0.8, and a sample rate of 12 kHz.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

 loudnessMeter

3-207

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

ChannelWeights — Linear weighting applied to each input channel
[1, 1, 1, 1.41, 1.41] (default) | nonnegative row vector

Linear weighting applied to each input channel, specified as a row vector of nonnegative values. The
number of elements in the row vector must be equal to or greater than the number of input channels.
Excess values in the vector are ignored.

The default channel weights follow the ITU-R BS.1170-4 standard. To use the default channel weights,
specify the input signal channels as a matrix in this order: [Left, Right, Center, Left surround, Right
surround].

As a best practice, specify the ChannelWeights property in order: [Left, Right, Center, Left
surround, Right surround].

Tunable: Yes
Data Types: single | double

UseRelativeScale — Use relative scale for loudness measurements
false (default) | true

Use relative scale for loudness measurements, specified as a logical scalar.

• false –– The loudness measurements are absolute and returned in loudness units full scale
(LUFS).

• true –– The loudness measurements are relative to the TargetLoudness value and returned in
loudness units (LU).

Tunable: No
Data Types: logical

TargetLoudness — Target loudness level for relative scale (LUFS)
-23 (default) | real scalar

Target loudness level for relative scale in LUFS, specified as a real scalar.

For example, if the TargetLoudness is –23 LUFS, then a loudness value of –23 LUFS is reported as
0 LU.

Tunable: Yes

Dependencies

To enable this property, set UseRelativeScale to true.
Data Types: single | double

SampleRate — Input sample rate (Hz)
44100 (default) | positive scalar

Input sample rate in Hz, specified as a positive scalar.

3 System Objects

3-208

Tunable: Yes
Data Types: single | double

Usage

Syntax
[momentary,shortTerm,integrated,range,peak] = loudMtr(audioIn)

Description

[momentary,shortTerm,integrated,range,peak] = loudMtr(audioIn) returns
measurement values for momentary and short-term loudness of the input to your loudness meter, and
the true-peak value of the current input frame, audioIn. It also returns the integrated loudness and
loudness range of the input to your loudness meter since the last time reset was called.

Input Arguments

audioIn — Audio input to loudness meter
matrix

Audio input to the loudness meter, specified as a matrix. The columns of the matrix are treated as
independent audio channels.

Note If you use the default ChannelWeights of the loudnessMeter, as a best practice, specify
the input channels in this order: [Left, Right, Center, Left surround, Right surround].

Data Types: single | double

Output Arguments

momentary — Momentary loudness (LUFS)
column vector

Momentary loudness in loudness units relative to full scale (LUFS), returned as a column vector with
the same number of rows as audioIn.

By default, loudness measurements are returned in LUFS. If you set the UseRelativeScale
property to true, loudness measurements are returned in loudness units (LU).
Data Types: single | double

shortTerm — Short-term loudness (LUFS)
column vector

Short-term loudness in loudness units relative to full scale (LUFS), returned as a column vector with
the same number of rows as audioIn.

By default, loudness measurements are returned in LUFS. If you set the UseRelativeScale
property to true, loudness measurements are returned in loudness units (LU).
Data Types: single | double

 loudnessMeter

3-209

integrated — Integrated loudness (LUFS)
column vector

Integrated loudness in loudness units relative to full scale (LUFS), returned as a column vector with
the same number of rows as audioIn.

By default, loudness measurements are returned in LUFS. If you set the UseRelativeScale
property to true, loudness measurements are returned in loudness units (LU).
Data Types: single | double

range — Loudness range (LU)
column vector

Loudness range in loudness units (LU), returned as a column vector with the same number of rows as
audioIn.
Data Types: single | double

peak — True-peak loudness (dB-TP)
scalar

True-peak loudness in dB-TP, returned as a column vector with the same number of rows as audioIn.
Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to loudnessMeter
visualize Open 'EBU Mode' meter display

Common to All System Objects
clone Create duplicate System object
isLocked Determine if System object is in use
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object
step Run System object algorithm

Examples

Loudness of Audio Signal

Create a dsp.AudioFileReader System object™ to read in an audio file. Create a loudnesMeter
System object. Use the sample rate of the audio file as the sample rate of the loudnessMeter.

fileReader = dsp.AudioFileReader('RockDrums-44p1-stereo-11secs.mp3');
loudMtr = loudnessMeter('SampleRate',fileReader.SampleRate);

3 System Objects

3-210

Read in the audio file in an audio stream loop. Use the loudness meter to determine the momentary,
short-term, and integrated loudness of the audio signal. Cache the loudness measurements for
analysis.

momentary = [];
shortTerm = [];
integrated = [];

while ~isDone(fileReader)
 x = fileReader();
 [m,s,i] = loudMtr(x);
 momentary = [momentary;m];
 shortTerm = [shortTerm;s];
 integrated = [integrated;i];
end

release(fileReader)

Plot the momentary, short-term, and integrated loudness of the audio signal.

t = linspace(0,11,length(momentary));
plot(t,[momentary,shortTerm,integrated])
title('Loudness Measurements')
legend('Momentary','Short-term','Integrated')
xlabel('Time (seconds)')
ylabel('LUFS')

 loudnessMeter

3-211

Plot Momentary Loudness and Loudness Range of Audio Stream

Create an audio file reader and an audio device writer.

fileReader = dsp.AudioFileReader('FunkyDrums-44p1-stereo-25secs.mp3', ...
 'SamplesPerFrame',1024);
fs = fileReader.SampleRate;
deviceWriter = audioDeviceWriter('SampleRate',fs);

Create a time scope to visualize your audio stream loop.

timeScope = timescope('NumInputPorts',2, ...
 'SampleRate',fs, ...
 'TimeSpanOverrunAction','Scroll', ...
 'LayoutDimensions',[2,1], ...
 'TimeSpanSource','Property','TimeSpan',5, ...
 'BufferLength',5*fs);

% Top subplot of scope
timeScope.Title = 'Momentary Loudness';
timeScope.YLabel = 'LUFS';
timeScope.YLimits = [-40, 0];

% Bottom subplot of scope
timeScope.ActiveDisplay = 2;
timeScope.Title = 'Loudness Range';
timeScope.YLabel = 'LU';
timeScope.YLimits = [-1, 2];

Create a loudness meter. Use the sample rate of your input file as the sample rate of your loudness
meter. Call visualize to open an 'EBU-mode' visualization for your loudness meter.

loudMtr = loudnessMeter('SampleRate',fs);
visualize(loudMtr)

In an audio stream loop:

• Read in your audio file.

3 System Objects

3-212

• Compute the momentary loudness and loudness range.
• Visualize the momentary loudness and loudness range on your time scope.
• Play the audio signal.

The 'EBU-mode' loudness meter visualization updates automatically while it is open. As a best
practice, release your file reader and device writer once the loop is completed.

while ~isDone(fileReader)
 audioIn = fileReader();
 [momentaryLoudness,~,~,LRA] = loudMtr(audioIn);
 timeScope(momentaryLoudness,LRA);
 deviceWriter(audioIn);
end

release(fileReader)
release(deviceWriter)

 loudnessMeter

3-213

Relative Scale for Loudness Measurements

Create an audio file reader to read in an audio file. Create an audio device writer to write the audio
file to your audio device. Use the sample rate of your file reader as the sample rate of your device
writer.

fileReader = dsp.AudioFileReader('Counting-16-44p1-mono-15secs.wav',...
 'SamplesPerFrame',1024);
fs = fileReader.SampleRate;
deviceWriter = audioDeviceWriter('SampleRate',fs);

Create a loudness meter with the target loudness set to the default -23 LUFS. Open the 'EBU-mode'
loudness meter visualization.

loudMtr = loudnessMeter('UseRelativeScale',true);
visualize(loudMtr)

Create a time scope to visualize your audio signal and its measured relative momentary and short-
term loudness.

scope = timescope(...
 'NumInputPorts',3, ...

3 System Objects

3-214

 'SampleRate',fs, ...
 'TimeSpanOverrunAction','Scroll', ...
 'TimeSpanSource','Property','TimeSpan',5, ...
 'BufferLength',5*fs, ...
 'Title','Audio Signal, Momentary Loudness, and Short-Term Loudness', ...
 'ChannelNames',{'Audio signal','Momentary loudness','Short-term loudness'}, ...
 'YLimits',[-16,16], ...
 'YLabel','Amplitude / LU', ...
 'ShowLegend',true);

In an audio stream loop, listen to and visualize the audio signal.

while ~isDone(fileReader)
 x = fileReader();
 [momentary,shortTerm] = loudMtr(x);
 scope(x,momentary,shortTerm)
 deviceWriter(x);
end

release(deviceWriter)
release(fileReader)

 loudnessMeter

3-215

Algorithms
The loudnessMeter System object calculates the momentary loudness, short-term loudness,
integrated loudness, loudness range (LRA), and true-peak value of an audio signal. You can specify
any number of channels and nondefault channel weights used for loudness measurements. The
loudnessMeter algorithm is described for the general case of n channels with default channel
weights.

Loudness Measurements

The input channels, x, pass through a K-weighted weightingFilter. The K-weighted filter shapes
the frequency spectrum to reflect perceived loudness.

3 System Objects

3-216

Momentary Loudness and Integrated Loudness

1 The K-weighted channels, y, are divided into 0.4-second segments with 0.3-second overlap. If the
required number of samples have not been collected yet, the loudnessMeter System object
returns the last computed values for momentary and integrated loudness. If enough samples
have been collected, then the power (mean square) of each segment of the K-weighted channels
is calculated:

mPi = 1
w ∑

k = 1

w
yi

2[k]

• mPi is the momentary power of the ith segment.
• w is the segment length in samples.

2 The momentary loudness, mL, is computed in LUFS for each segment:

mLi = − 0.691 + 10log10 ∑
c = 1

n
Gc × mP i, c

• Gc is the weighting for channel c.

mL is the momentary loudness returned by your loudnessMeter System object. It is also used
internally to calculate the integrated loudness (steps 3–6).

3 The integrated loudness measurement considers the audio signal since the last reset of your
loudness meter. To calculate integrated loudness, the momentary power is passed through a
gating system. The gate system pauses the measurement during periods of low sound, such as
stretches of silence in a movie.

The momentary power segment is gated using the corresponding momentary loudness segment
calculation:

mPi mP j

j = i mLi ≥ − 70

mPj is cached until your loudnessMeter is reset.
4 The momentary power subset, mPj, passes through a relative threshold gate.

a The relative threshold, Γ, is computed:

Γ = − 0.691 + 10log10 ∑
c = 1

n
Gc × lc − 10

 loudnessMeter

3-217

lc is the mean momentary power of channel c:

lc = 1
j ∑j mP j, c

b The momentary power subset, mPj, is gated using relative threshold Γ:

mP j mPk

k = j mP j ≥ Γ

The relative threshold is recomputed during each call to your loudnessMeter object. The
cached values of mPj are gated again depending on the updated value of Γ.

5 The momentary power segments are averaged:

P = 1
k ∑k mPk

6 The integrated loudness is computed in LUFS by passing the mean momentary power, P, through
the Compute Loudness system:

Integrated Loudness = − 0.691 + 10log10 ∑
c = 1

n
Gc × Pc

Short-Term Loudness and Loudness Range

1 The K-weighted channels, y, are divided into 3-second segments with 2.9-second overlap. If the
required number of samples have not been collected yet, the loudnessMeter System object
returns the last computed values for short-term loudness and loudness range. If enough samples
have been collected, then the power (mean square) of each K-weighted channel is calculated:

sPi = 1
w ∑

k = 1

w
yi

2[k]

• sPi is the short-term power of the ith segment of a channel.
• w is the segment length in samples.

2 The short-term loudness, sL, is computed in LUFS for each segment:

sLi = − 0.691 + 10 log10 ∑
c = 1

n
Gc × sP i, c

• Gc is the weighting for channel c.

sL is the short-term loudness returned by your loudnessMeter System object. It is also used
internally to calculate the loudness range (steps 3–5).

3 The short-term loudness is gated using an absolute threshold:

sLi sL j

j = i sLi ≥ − 70

sLj is cached until your loudnessMeter is reset.

3 System Objects

3-218

4 The short-term loudness subset, sLj passes through a relative threshold gate.

a The gated short-term loudness is converted back to linear and then the mean is taken:

sP j = 1
j ∑j 10

sL j 10

The relative threshold, K, is computed:

K = − 20 + 10log10 sP j

b The short-term loudness subset, sLj, is gated using the relative threshold:

sL j sLk

k = j sL j ≥ K

The relative threshold, K, is recomputed during each call to your loudnessMeter object. The
cached values of sLj are gated again depending on the updated value of K.

5 The short-term loudness subset, sLk, is sorted. The loudness range is calculated as between the
10th and 95th percentiles of the distribution and is returned in loudness units (LU).

True-Peak

The true-peak measurement considers only the current input frame of a call to your loudness meter.

1 The signal is oversampled to at least 192 kHz. To optimize processing, the input sample rate
determines the exact oversampling. An input sample rate below 750 Hz is not considered.

Input Sample Rate (kHz) Upsample Factor
[0.75, 1.5) 256
[1.5, 3) 128
[3, 6) 64
[6,12) 32
[12, 24) 16

 loudnessMeter

3-219

Input Sample Rate (kHz) Upsample Factor
[24, 48) 8
[48, 96) 4
[96,192) 2
[192, ∞) Not required

2 The oversampled signal, a, passes through a lowpass filter with a half-polyphase length of 12 and
stopband attenuation of 80 dB. The filter design uses designMultirateFIR.

3 The filtered signal, b, is rectified and converted to the dB TP scale:

c = 20 × log10 b
4 The true-peak is determined as the maximum of the converted signal, c.

Version History
Introduced in R2016b

References
[1] International Telecommunication Union; Radiocommunication Sector. Algorithms to Measure

Audio Programme Loudness and True-Peak Audio Level. ITU-R BS.1770-4. 2015.

[2] European Broadcasting Union. Loudness Normalisation and Permitted Maximum Level of Audio
Signals. EBU R 128. 2014.

[3] European Broadcasting Union. Loudness Metering: 'EBU Mode' Metering to Supplement EBU R
128 Loudness Normalization. EBU R 128 Tech 3341. 2014.

[4] European Broadcasting Union. Loudness Range: A Measure to Supplement EBU R 128 Loudness
Normalization. EBU R 128 Tech 3342. 2016.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

“System Objects in MATLAB Code Generation” (MATLAB Coder)

Supports MATLAB Function block: No

Dynamic Memory Allocation must not be turned off.

See Also
Blocks
Loudness Meter

3 System Objects

3-220

Functions
octaveFilter | weightingFilter | integratedLoudness

 loudnessMeter

3-221

visualize
Open 'EBU Mode' meter display

Syntax
visualize(loudMtr)
hvsz = visualize(loudMtr)

Description
visualize(loudMtr) opens an 'EBU Mode' loudness meter display. The values of momentary
loudness, short-term loudness, integrated loudness, loudness range, and true-peak are updated as the
simulation progresses. The display also shows the maximum value of momentary and short-term
loudness, and the time since the last call to reset.

hvsz = visualize(loudMtr) returns a handle to the display.

Examples

Open an 'EBU Mode' Loudness Meter Display

Create a loudnessMeter System object™, and then call visualize to open an 'EBU Mode'
loudness meter display.

loudMtr = loudnessMeter;
visualize(loudMtr)

Create an audio file reader System object and specify the audio file to analyze. Create an audio device
writer System object to play the audio to your output device.

fileReader = dsp.AudioFileReader('RockDrums-48-stereo-11secs.mp3');
deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);

3 System Objects

3-222

In an audio stream loop, read the audio from the file and play it to your device. The loudness meter
visualization updates at each call.

while ~isDone(fileReader)
 audioIn = fileReader();
 loudMtr(audioIn);
 deviceWriter(audioIn);
end

Input Arguments
loudMtr — Object of loudnessMeter
object

Object of the loudnessMeter System object.

Version History
Introduced in R2016b

See Also
Blocks
Loudness Meter

Functions
integratedLoudness

 visualize

3-223

multibandParametricEQ
Multiband parametric equalizer

Description
The multibandParametricEQ System object performs multiband parametric equalization
independently across each channel of input using specified center frequencies, gains, and quality
factors. You can configure the System object with up to 10 bands. You can add low-shelf and high-
shelf filters, as well as highpass (low-cut) and lowpass (high-cut) filters.

To implement a multiband parametric equalizer:

1 Create the multibandParametricEQ object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation
Syntax
mPEQ = multibandParametricEQ
mPEQ = multibandParametricEQ(Name,Value)

Description

mPEQ = multibandParametricEQ creates a System object, mPEQ, that performs multiband
parametric equalization.

mPEQ = multibandParametricEQ(Name,Value) sets each construction argument or property
Name to the specified Value. Unspecified properties and creation arguments have default values.

3 System Objects

3-224

Example: mPEQ = multibandParametricEQ('NumEQBands',3,'Frequencies',
[300,1200,5000]) creates a multiband parametric equalizer System object, mPEQ, with
NumEQBands set to 3 and the Frequencies property set to [300,1200,5000].

Note The value specified by NumEQBands must be the length of the row vectors specified by
Frequencies, QualityFactors, and PeakGains. During creation of the System object, the first property
you specify locks the value.

Creation Arguments

Creation arguments are properties which are set during creation of the System object and cannot be
modified later. If you do not explicitly set a creation argument value, the property takes a default
value.

NumEQBands — Number of equalizer bands
3 (default) | integer in the range [1, 10]

Number of equalizer bands, specified as an integer in the range [1, 10]. The number of equalizer
bands does not include shelving filters, highpass filters, or lowpass filters.

NumEQBands is set during creation of the System object and cannot be modified later. If you do not
explicitly set its value, the property takes the default value.
Example: mPEQ = multibandParametricEQ('NumEQBands',5) creates a multiband parametric
equalizer with 5 bands.
Data Types: single | double

EQOrder — Order of individual equalizer bands
2 (default) | even integer

Order of individual equalizer bands, specified as an even integer. All equalizer bands have the same
order.

EQOrder is set during creation of the System object and cannot be modified later. If you do not
explicitly set its value, the property takes the default value.
Example: mPEQ = multibandParametricEQ('EQOrder',6) creates a multiband parametric
equalizer with the default 3 bands, all of order 6.
Data Types: single | double

HasLowShelfFilter — Low-shelf filter toggle
false (default) | true

Low-shelf filter toggle, specified as false or true.

• false –– Do not enable low-shelf filtering in multiband parametric equalizer implementation.
• true –– Enable low-shelf filtering in multiband parametric equalizer implementation.

HasLowShelfFilter is set during creation of the System object and cannot be modified later. If you
do not explicitly set its value, the property takes the default value.
Example: mPEQ = multibandParametricEQ('HasLowShelfFilter',true) creates a default
multiband parametric equalizer with low-shelf filtering enabled.

 multibandParametricEQ

3-225

Data Types: logical

HasHighShelfFilter — High-shelf filter toggle
false (default) | true

High-shelf filter toggle, specified as false or true.

• false –– Do not enable high-shelf filtering in multiband parametric equalizer implementation.
• true –– Enable high-shelf filtering in multiband parametric equalizer implementation.

HasHighShelfFilter is set during creation of the System object and cannot be modified later. If
you do not explicitly set its value, the property takes the default value.
Example: mPEQ = multibandParametricEQ('HasHighShelfFilter',true) creates a default
multiband parametric equalizer with high-shelf filtering enabled.
Data Types: logical

HasLowpassFilter — Lowpass filter toggle
false (default) | true

Lowpass filter toggle, specified as false or true.

• false –– Do not enable lowpass filtering in multiband parametric equalizer implementation.
• true –– Enable lowpass filtering in multiband parametric equalizer implementation.

HasLowpassFilter is set during creation of the System object and cannot be modified later. If you
do not explicitly set its value, the property takes the default value.
Example: mPEQ = multibandParametricEQ('HasLowpassFilter',true) creates a default
multiband parametric equalizer with lowpass filtering enabled.
Data Types: logical

HasHighpassFilter — Highpass filter toggle
false (default) | true

Highpass filter toggle, specified as false or true.

• false –– Do not enable highpass filtering in multiband parametric equalizer implementation.
• true –– Enable highpass filtering in multiband parametric equalizer implementation.

HasHighpassFilter is set during creation of the System object and cannot be modified later. If you
do not explicitly set its value, the property takes the default value.
Example: mPEQ = multibandParametricEQ('HasHighpassFilter',true) creates a default
multiband parametric equalizer with highpass filtering enabled.
Data Types: logical

Oversample — Oversample toggle
false (default) | true

Oversample toggle, specified as false or true.

• false –– Runs the multiband parametric equalizer at the input sample rate.

3 System Objects

3-226

• true –– Runs the multiband parametric equalizer at two times the input sample rate.
Oversampling minimizes the frequency-warping effects introduced by the bilinear transformation.

A halfband interpolator implements oversampling before equalization. A halfband decimator
reduces the sample rate back to the input sampling rate after equalization.

Oversample is set during creation of the System object and cannot be modified later. If you do not
explicitly set its value, the property takes the default value.
Example: mPEQ = multibandParametricEQ('Oversample',true) creates a default multiband
parametric equalizer with oversampling enabled.
Data Types: logical

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Multiband Equalizer

Frequencies — Center frequencies of equalizer bands (Hz)
[100, 181, 325] (default) | row vector of length NumEQBands

Center frequencies of equalizer bands in Hz, specified as a row vector of length NumEQBands. The
vector consists of real scalars in the range 0 to SampleRate/2.

Tunable: Yes
Data Types: single | double

QualityFactors — Quality factors of equalizer bands
[1.6,1.6,1.6] (default) | row vector of length NumEQBands

Quality factors of equalizer bands, specified as a row vector of length NumEQBands.

Tunable: Yes
Data Types: single | double

PeakGains — Peak or dip filter gains (dB)
[0,0,0] (default) | row vector of length NumEQBands

Peak or dip filter gains in dB, specified as a row vector of length NumEQBands. The vector consists of
real scalars in the range [–inf, 20].

Tunable: Yes
Data Types: single | double

 multibandParametricEQ

3-227

Low-Shelf Filter

LowShelfCutoff — Low-shelf filter cutoff (Hz)
200 (default) | scalar

Low-shelf filter cutoff in Hz, specified as a scalar greater than or equal to 0.

Tunable: Yes
Dependencies

To enable this property, set HasLowShelfFilter to true during creation.
Data Types: single | double

LowShelfSlope — Low-shelf filter slope coefficient
1.5 (default) | positive scalar

Low-shelf filter slope coefficient, specified as a positive scalar.

Tunable: Yes
Dependencies

To enable this property, set HasLowShelfFilter to true during creation.
Data Types: single | double

LowShelfGain — Low-shelf filter gain (dB)
0 (default) | real scalar

Low-shelf filter gain in dB, specified as a real scalar.

Tunable: Yes
Dependencies

To enable this property, set HasLowShelfFilter to true during creation.
Data Types: single | double

High-Shelf Filter

HighShelfCutoff — High-shelf filter cutoff (Hz)
15000 (default) | nonnegative real scalar

High-shelf filter cutoff in Hz, specified as a real scalar greater than or equal to 0.

Tunable: Yes
Dependencies

To enable this property, set HasHighShelfFilter to true during creation.
Data Types: single | double

HighShelfSlope — High-shelf slope coefficient
1.5 (default) | positive scalar

High-shelf filter slope coefficient, specified as a positive scalar.

3 System Objects

3-228

Tunable: Yes

Dependencies

To enable this property, set HasHighShelfFilter to true during creation.
Data Types: single | double

HighShelfGain — High-shelf filter gain (dB)
0 (default) | real scalar

High-shelf filter gain in dB, specified as a real scalar.

Tunable: Yes

Dependencies

To enable this property, set HasHighShelfFilter to true during creation.
Data Types: single | double

Lowpass Filter

LowpassCutoff — Lowpass filter cutoff frequency (Hz)
18000 (default) | nonnegative real scalar

Lowpass filter cutoff frequency in Hz, specified as a real scalar greater than or equal to 0.

Tunable: Yes

Dependencies

To enable this property, set HasLowpassFilter to true during creation.
Data Types: single | double

LowpassSlope — Lowpass filter slope (dB/octave)
12 (default) | real scalar in the range [0:6:48]

Lowpass filter slope in dB/octave, specified as a real scalar in the range [0:6:48]. Values that are
not multiples of 6 are rounded to the nearest multiple of 6.

Tunable: Yes

Dependencies

To enable this property, set HasLowpassFilter to true during creation.
Data Types: single | double

Highpass Filter

HighpassCutoff — Highpass filter cutoff frequency (Hz)
20 (default) | nonnegative real scalar

Highpass filter cutoff in Hz, specified as a real scalar greater than or equal to 0.

Tunable: Yes

 multibandParametricEQ

3-229

Dependencies

To enable this property, set HasHighpassFilter to true during creation.
Data Types: single | double

HighpassSlope — Highpass filter slope (dB/octave)
30 (default) | real scalar in the range [0:6:48]

Highpass filter slope in dB/octave, specified as a real scalar in the range [0:6:48]. Values that are
not multiples of 6 are rounded to the nearest multiple of 6.

Tunable: Yes
Dependencies

To enable this property, set HasHighpassFilter to true during creation.
Data Types: single | double

Sampling

SampleRate — Input sample rate (Hz)
44100 (default) | positive scalar

Input sample rate in Hz, specified as a positive scalar.

Tunable: Yes
Data Types: single | double

Usage

Syntax
audioOut = mPEQ(audioIn)

Description

audioOut = mPEQ(audioIn) performs multiband parametric equalization on the input signal,
audioIn, and returns the filtered signal, audioOut. The type of equalization is specified by the
algorithm and properties of the multibandParametricEQ System object, mPEQ.

Input Arguments

audioIn — Audio input to equalizer
matrix

Audio input to the equalizer, specified as a matrix. The columns of the matrix are treated as
independent audio channels.
Data Types: single | double

Output Arguments

audioOut — Audio output from equalizer
matrix

3 System Objects

3-230

Audio output from the equalizer, returned as a matrix the same size as audioIn.
Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to multibandParametricEQ
createAudioPluginClass Create audio plugin class that implements functionality of System object
visualize Visualize magnitude response of multiband parametric equalizer
parameterTuner Tune object parameters while streaming

MIDI
configureMIDI Configure MIDI connections between audio object and MIDI controller
disconnectMIDI Disconnect MIDI controls from audio object
getMIDIConnections Get MIDI connections of audio object

Common to All System Objects
clone Create duplicate System object
isLocked Determine if System object is in use
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object
step Run System object algorithm

The createAudioPluginClass and configureMIDI functions map tunable properties of the
multibandParametricEQ System object to user-facing parameters:

Property Range Mapping Unit
Frequencies [20, 20000] log Hz
QualityFactors [0.2, 700] linear none
PeakGains [–50, 20] linear dB
LowShelfCutoff [20, 20000] log Hz
LowShelfSlope [0.1, 5] linear none
LowShelfGain [–12, 12] linear dB
HighShelfCutoff [20, 20000] log Hz
HighShelfSlope [0.1, 5] linear none
HighShelfGain [–12, 12] linear dB
LowpassCutoff [20, 20000] log Hz
LowpassSlope [0, 48] linear dB/octave
HighpassCutoff [20, 20000] log Hz
HighpassSlope [0, 48] linear dB/octave

 multibandParametricEQ

3-231

Examples

Multiband Parametric Equalization

Create dsp.AudioFileReader and audioDeviceWriter objects. Use the sample rate of the
reader as the sample rate of the writer. Call setup to reduce the computational load of initialization
in an audio stream loop.

frameLength = 512;

fileReader = dsp.AudioFileReader(...
 'Filename','RockDrums-48-stereo-11secs.mp3', ...
 'SamplesPerFrame',frameLength);
deviceWriter = audioDeviceWriter(...
 'SampleRate',fileReader.SampleRate);

setup(deviceWriter,ones(frameLength,2))

Construct a three-band parametric equalizer with a high-shelf filter.

mPEQ = multibandParametricEQ(...
 'NumEQBands',3, ...
 'Frequencies',[300,1200,5000], ...
 'QualityFactors',[1,1,1], ...
 'PeakGains',[8,-10,7], ...
 'HasHighShelfFilter',true, ...
 'HighShelfCutoff',14000, ...
 'HighShelfSlope',0.3, ...
 'HighShelfGain',-5, ...
 'SampleRate',fileReader.SampleRate);

Visualize the magnitude frequency response of your multiband parametric equalizer.

visualize(mPEQ)

3 System Objects

3-232

 multibandParametricEQ

3-233

Play the equalized audio signal. Update the peak gains of your equalizer band to hear the effect of the
equalizer and visualize the changing magnitude response.

count = 0;
while ~isDone(fileReader)
 originalSignal = fileReader();
 equalizedSignal = mPEQ(originalSignal);
 deviceWriter(equalizedSignal);
 if mod(count,100) == 0
 mPEQ.PeakGains(1) = mPEQ.PeakGains(1) - 1.5;
 mPEQ.PeakGains(2) = mPEQ.PeakGains(2) + 1.5;
 mPEQ.PeakGains(3) = mPEQ.PeakGains(3) - 1.5;
 end
 count = count + 1;
end

3 System Objects

3-234

 multibandParametricEQ

3-235

release(fileReader)
release(mPEQ)
release(deviceWriter)

Oversample Audio Signal

Reduce warping by specifying your multibandParametricEQ object to perform oversampling
before equalization.

Create a one-band equalizer. Visualize the equalizer band as its center frequency approaches the
Nyquist rate.

mPEQ = multibandParametricEQ(...
 'NumEQBands',1, ...
 'Frequencies',9.5e3, ...
 'PeakGains',10);
visualize(mPEQ)

3 System Objects

3-236

 multibandParametricEQ

3-237

for i = 1:1000
 mPEQ.Frequencies = mPEQ.Frequencies + 8;
end

3 System Objects

3-238

 multibandParametricEQ

3-239

The equalizer band is warped.

Create a one-band equalizer with Oversample set to true. Visualize the equalizer band as its center
frequency approaches the Nyquist rate.

mPEQOversampled = multibandParametricEQ(...
 'NumEQBands',1, ...
 'Frequencies',9.5e3, ...
 'PeakGains',10, ...
 'Oversample',true);
visualize(mPEQOversampled)

3 System Objects

3-240

 multibandParametricEQ

3-241

for i = 1:1000
 mPEQOversampled.Frequencies = mPEQOversampled.Frequencies + 8;
end

3 System Objects

3-242

 multibandParametricEQ

3-243

Warping is reduced.

Tune Multiband Parametric EQ Parameters

Create a dsp.AudioFileReader to read in audio frame-by-frame. Create a audioDeviceWriter to
write audio to your sound card. Create a multibandParametricEQ to process the audio data. Call
visualize to plot the frequency response of the equalizer.

frameLength = 1024;
fileReader = dsp.AudioFileReader('RockDrums-44p1-stereo-11secs.mp3','SamplesPerFrame',frameLength);
deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);

equalizer = multibandParametricEQ('SampleRate',fileReader.SampleRate, 'PeakGains',[-2,2,4]);
visualize(equalizer)

3 System Objects

3-244

Call parameterTuner to open a UI to tune parameters of the equalizer while streaming.

parameterTuner(equalizer)

 multibandParametricEQ

3-245

In an audio stream loop:

1 Read in a frame of audio from the file.
2 Apply equalization.
3 Write the frame of audio to your audio device for listening.

While streaming, tune parameters of the equalizer and listen to the effect.

while ~isDone(fileReader)
 audioIn = fileReader();
 audioOut = equalizer(audioIn);
 deviceWriter(audioOut);
 drawnow limitrate % required to update parameter
end

As a best practice, release your objects once done.

release(deviceWriter)
release(fileReader)
release(equalizer)

Version History
Introduced in R2016a

3 System Objects

3-246

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

“System Objects in MATLAB Code Generation” (MATLAB Coder)

See Also
designShelvingEQ | Single-Band Parametric EQ | Multiband Parametric EQ |
designVarSlopeFilter | designParamEQ

Topics
“Parametric Equalizer Design”
“Equalization”

 multibandParametricEQ

3-247

visualize
Visualize magnitude response of multiband parametric equalizer

Syntax
visualize(mPEQ)
visualize(mPEQ,NFFT)
hvsz = visualize(___)

Description
visualize(mPEQ) plots the magnitude response of the multibandParametricEQ object mPEQ. The
plot is updated automatically when properties of the object change.

visualize(mPEQ,NFFT) specifies an N-point FFT used to calculate the magnitude response.

hvsz = visualize(___) returns a handle to the visualizer as a
dsp.DynamicFilterVisualizer object when called with any of the previous syntaxes.

Examples

Specify a Nondefault Number of FFT Points

Create a multibandParametricEQ System object™, and then call visualize to plot the magnitude
response using a 5096-point FFT.

mPEQ = multibandParametricEQ('PeakGains',[-inf,5,5]);
visualize(mPEQ,5096)

3 System Objects

3-248

Input Arguments
mPEQ — Multiband parametric equalizer to visualize
object of multibandParametricEQ System object

Multiband parametric equalizer whose magnitude response you want to plot.

NFFT — N-point FFT
2048 (default) | positive scalar

Number of bins used to calculate the DFT, specified as a positive scalar.
Data Types: single | double

Version History
Introduced in R2016a

See Also
multibandParametricEQ

 visualize

3-249

compressor
Dynamic range compressor

Description
The compressor System object performs dynamic range compression independently across each
input channel. Dynamic range compression attenuates the volume of loud sounds that cross a given
threshold. It uses specified attack and release times to achieve a smooth applied gain curve.
Properties of the compressor System object specify the type of dynamic range compression.

To perform dynamic range compression:

1 Create the compressor object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
dRC = compressor
dRC = compressor(thresholdValue)
dRC = compressor(thresholdValue,ratioValue)
dRC = compressor(___ ,Name,Value)

Description

dRC = compressor creates a System object, dRC, that performs dynamic range compression
independently across each input channel over time.

3 System Objects

3-250

dRC = compressor(thresholdValue) sets the Threshold property to thresholdValue.

dRC = compressor(thresholdValue,ratioValue) sets the Ratio property to ratioValue.

dRC = compressor(___ ,Name,Value) sets each property Name to the specified Value.
Unspecified properties have default values.
Example: dRC = compressor('AttackTime',0.01,'SampleRate',16000) creates a System
object, dRC, with a 10 ms attack time operating at a 16 kHz sample rate.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Threshold — Operation threshold (dB)
–10 (default) | real scalar

Operation threshold in dB, specified as a real scalar.

Operation threshold is the level above which gain is applied to the input signal.

Tunable: Yes
Data Types: single | double

Ratio — Compression ratio
5 (default) | real scalar

Compression ratio, specified as a real scalar greater than or equal to 1.

Compression ratio is the input/output ratio for signals that overshoot the operation threshold.

Assuming a hard knee characteristic and a steady-state input such that x[n] dB > Threshold, the
compression ratio is defined as R = (x[n]− T)

(y[n]− T) .

• R is the compression ratio.
• x[n] is the input signal in dB.
• y[n] is the output signal in dB.
• T is the threshold in dB.

Tunable: Yes
Data Types: single | double

KneeWidth — Knee width (dB)
0 (default) | real scalar

Knee width in dB, specified as a real scalar greater than or equal to 0.

 compressor

3-251

Knee width is the transition area in the compression characteristic.

For soft knee characteristics, the transition area is defined by the relation

y = x +
1
R − 1 × x− T + W

2
2

2 × W

for the range 2 × x− T ≤ W.

• y is the output level in dB.
• x is the input level in dB.
• R is the compression ratio.
• T is the threshold in dB.
• W is the knee width in dB.

Tunable: Yes
Data Types: single | double

AttackTime — Attack time (s)
0.05 (default) | real scalar

Attack time in seconds, specified as a real scalar greater than or equal to 0.

Attack time is the time it takes the compressor gain to rise from 10% to 90% of its final value when
the input goes above the threshold.

Tunable: Yes
Data Types: single | double

ReleaseTime — Release time (s)
0.2 (default) | real scalar

Release time in seconds, specified as a real scalar greater than or equal to 0.

Release time is the time it takes the compressor gain to drop from 90% to 10% of its final value when
the input goes below the threshold.

Tunable: Yes
Data Types: single | double

MakeUpGainMode — Make-up gain mode
'Property' (default) | 'Auto'

Make-up gain mode, specified as 'Auto' or 'Property'.

• 'Auto' –– Make-up gain is applied at the output of the dynamic range compressor such that a
steady-state 0 dB input has a 0 dB output.

• 'Property' –– Make-up gain is set to the value specified in the MakeUpGain property.

Tunable: No
Data Types: char | string

3 System Objects

3-252

MakeUpGain — Make-up gain (dB)
0 (default) | real scalar

Make-up gain in dB, specified as a real scalar.

Make-up gain compensates for gain lost during compression. It is applied at the output of the
dynamic range compressor.

Tunable: Yes

Dependencies

To enable this property, set MakeUpGainMode to 'Property'.
Data Types: single | double

SampleRate — Input sample rate (Hz)
44100 (default) | positive scalar

Input sample rate in Hz, specified as a positive scalar.

Tunable: Yes
Data Types: single | double

EnableSidechain — Enable sidechain input
false (default) | true

Enable sidechain input, specified as true or false. This property determines the number of
available inputs on the compressor object.

• false –– Sidechain input is disabled and the compressor object accepts one input: the audioIn
data to be compressed.

• true –– Sidechain input is enabled and the compressor object accepts two inputs: the audioIn
data to be compressed and the sidechain input used to compute the compression gain.

The sidechain datatype and (frame) length must be the same as audioIn.

The number of channels of the sidechain input must be equal to the number of channels of audioIn
or be equal to one. When the number of sidechain channels is one, the gain computed based on this
channel is applied to all channels of audioIn. When the number of sidechain channels is equal to the
number of channels in audioIn, the gain computed for each sidechain channel is applied to the
corresponding channel of audioIn.

Tunable: No

Usage

Syntax
audioOut = dRC(audioIn)
[audioOut,gain] = dRC(audioIn)

 compressor

3-253

Description

audioOut = dRC(audioIn) performs dynamic range compression on the input signal, audioIn,
and returns the compressed signal, audioOut. The type of dynamic range compression is specified
by the algorithm and properties of the compressor System object, dRC.

[audioOut,gain] = dRC(audioIn) also returns the applied gain, in dB, at each input sample.

Input Arguments

audioIn — Audio input to compressor
matrix

Audio input to the compressor, specified as a matrix. The columns of the matrix are treated as
independent audio channels.
Data Types: single | double

Output Arguments

audioOut — Audio output from compressor
matrix

Audio output from the compressor, returned as a matrix the same size as audioIn.
Data Types: single | double

gain — Gain applied by compressor (dB)
matrix

Gain applied by compressor, returned as a matrix the same size as audioIn.
Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to compressor
visualize Visualize static characteristic of dynamic range controller
staticCharacteristic Return static characteristic of dynamic range controller
createAudioPluginClass Create audio plugin class that implements functionality of System object
parameterTuner Tune object parameters while streaming

MIDI
configureMIDI Configure MIDI connections between audio object and MIDI controller
disconnectMIDI Disconnect MIDI controls from audio object
getMIDIConnections Get MIDI connections of audio object

3 System Objects

3-254

Common to All System Objects
clone Create duplicate System object
isLocked Determine if System object is in use
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object
step Run System object algorithm

The createAudioPluginClass and configureMIDI functions map tunable properties of the
compressor System object to user-facing parameters:

Property Range Mapping Unit
Threshold [–50, 0] linear dB
Ratio [1, 50] linear none
KneeWidth [0, 20] linear dB
AttackTime [0, 4] linear seconds
ReleaseTime [0, 4] linear seconds
MakeUpGain (available
when you set
MakeUpGainMode to
'Property')

[–10, 24] linear dB

Examples

Compress Audio Signal

Use dynamic range compression to attenuate the volume of loud sounds.

Set up the dsp.AudioFileReader and audioDeviceWriter System objects™.

frameLength = 1024;
fileReader = dsp.AudioFileReader(...
 'Filename','RockDrums-44p1-stereo-11secs.mp3', ...
 'SamplesPerFrame',frameLength);
deviceWriter = audioDeviceWriter(...
 'SampleRate',fileReader.SampleRate);

Set up the compressor to have a threshold of -15 dB, a ratio of 7, and a knee width of 5 dB. Use the
sample rate of your audio file reader.

dRC = compressor(-15,7, ...
 'KneeWidth',5, ...
 'SampleRate',fileReader.SampleRate);

Set up the scope to visualize the original audio signal, the compressed audio signal, and the applied
compressor gain.

scope = timescope(...
 'SampleRate',fileReader.SampleRate, ...
 'TimeSpanSource','Property','TimeSpan',1, ...
 'BufferLength',44100*4, ...

 compressor

3-255

 'YLimits',[-1,1], ...
 'TimeSpanOverrunAction','Scroll', ...
 'ShowGrid',true, ...
 'LayoutDimensions',[2,1], ...
 'NumInputPorts',2, ...
 'Title', ...
 ['Original vs. Compressed Audio (top)' ...
 ' and Compressor Gain in dB (bottom)']);
scope.ActiveDisplay = 2;
scope.YLimits = [-4,0];
scope.YLabel = 'Gain (dB)';

Play the processed audio and visualize it on the scope.

while ~isDone(fileReader)
 x = fileReader();
 [y,g] = dRC(x);
 deviceWriter(y);
 scope([x(:,1),y(:,1)],g(:,1))
end

release(dRC)
release(deviceWriter)
release(scope)

3 System Objects

3-256

Compare Dynamic Range Limiter and Compressor

A dynamic range limiter is a special type of dynamic range compressor. In limiters, the level above an
operational threshold is hard limited. In the simplest implementation of a limiter, the effect is
equivalent to audio clipping. In compressors, the level above an operational threshold is lowered
using a specified compression ratio. Using a compression ratio results in a smoother processed
signal.

Compare Limiter and Compressor Applied to Sinusoid

Create a limiter System object™ and a compressor System object. Set the AttackTime and
ReleaseTime properties of both objects to zero. Create an audioOscillator System object to
generate a sinusoid with Frequency set to 5 and Amplitude set to 0.1.

dRL = limiter('AttackTime',0,'ReleaseTime',0);
dRC = compressor('AttackTime',0,'ReleaseTime',0);

osc = audioOscillator('Frequency',5,'Amplitude',0.1);

Create a time scope to visualize the generated sinusoid and the processed sinusoid.

scope = timescope(...
 'SampleRate',osc.SampleRate, ...
 'TimeSpanSource','Property','TimeSpan',2, ...
 'BufferLength',osc.SampleRate*4, ...
 'TimeSpanOverrunAction','Scroll', ...
 'ShowGrid',true, ...
 'LayoutDimensions',[2 1], ...
 'NumInputPorts',2);
scope.ActiveDisplay = 1;
scope.Title = 'Original Signal vs. Limited Signal';
scope.YLimits = [-1,1];
scope.ActiveDisplay = 2;
scope.Title = 'Original Signal vs. Compressed Signal';
scope.YLimits = [-1,1];

In an audio stream loop, visualize the original sinusoid and the sinusoid processed by a limiter and a
compressor. Increment the amplitude of the original sinusoid to illustrate the effect.

while osc.Amplitude < 0.75
 x = osc();

 xLimited = dRL(x);
 xCompressed = dRC(x);

 scope([x xLimited],[x xCompressed]);

 osc.Amplitude = osc.Amplitude + 0.0002;
end
release(scope)

 compressor

3-257

release(dRL)
release(dRC)
release(osc)

Compare Limiter and Compressor Applied to Audio Signal

Compare the effect of dynamic range limiters and compressors on a drum track. Create a
dsp.AudioFileReader System object and a audioDeviceWriter System object to read audio
from a file and write to your audio output device. To emphasize the effect of dynamic range control,
set the operational threshold of the limiter and compressor to -20 dB.

dRL.Threshold = -20;
dRC.Threshold = -20;

fileReader = dsp.AudioFileReader('FunkyDrums-44p1-stereo-25secs.mp3');
deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);

Read successive frames from an audio file in a loop. Listen to and compare the effect of dynamic
range limiting and dynamic range compression on an audio signal.

numFrames = 300;

fprintf('Now playing original signal...\n')

Now playing original signal...

for i = 1:numFrames
 x = fileReader();

3 System Objects

3-258

 deviceWriter(x);
end
reset(fileReader);

fprintf('Now playing limited signal...\n')

Now playing limited signal...

for i = 1:numFrames
 x = fileReader();
 xLimited = dRL(x);
 deviceWriter(xLimited);
end
reset(fileReader);

fprintf('Now playing compressed signal...\n')

Now playing compressed signal...

for i = 1:numFrames
 x = fileReader();
 xCompressed = dRC(x);
 deviceWriter(xCompressed);
end

release(fileReader)
release(deviceWriter)
release(dRC)
release(dRL)

Diminish Plosives from Speech Signal

Plosives are consonant sounds resulting from a sudden release of airflow. They are most pronounced
in words beginning with p, d, and g sounds. Plosives can be emphasized by the recording process and
are often displeasurable to hear. In this example, you minimize the plosives of a speech signal by
applying highpass filtering and low-band compression.

Create a dsp.AudioFileReader object and a audioDeviceWriter object to read an audio signal
from a file and write an audio signal to a device. Play the unprocessed signal. Then release the file
reader and device writer.

fileReader = dsp.AudioFileReader('audioPlosives.wav');
deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);

while ~isDone(fileReader)
 audioIn = fileReader();
 deviceWriter(audioIn);
end
release(deviceWriter)
release(fileReader)

Design a highpass filter with a steep rolloff of all frequencies below 120 Hz. Use a
dsp.BiquadFilter object to implement the highpass filter design. Create a crossover filter with
one crossover at 250 Hz. The crossover filter enables you to separate the band of interest for
processing. Create a dynamic range compressor to compress the dynamic range of plosive sounds. To
apply no make-up gain, set the MakeUpGainMode to "Property" and use the default 0 dB

 compressor

3-259

MakeUpGain property value. Create a time scope to visualize the processed and unprocessed audio
signal.

[B,A] = designVarSlopeFilter(48,120/(fileReader.SampleRate/2),"hi");
biquadFilter = dsp.BiquadFilter(...
 "SOSMatrixSource","Input port", ...
 "ScaleValuesInputPort",false);

crossFilt = crossoverFilter(...
 "SampleRate",fileReader.SampleRate, ...
 "NumCrossovers",1, ...
 "CrossoverFrequencies",250, ...
 "CrossoverSlopes",48);

dRCompressor = compressor(...
 "Threshold",-35, ...
 "Ratio",10, ...
 "KneeWidth",20, ...
 "AttackTime",1e-4, ...
 "ReleaseTime",3e-1, ...
 "MakeUpGainMode","Property", ...
 "SampleRate",fileReader.SampleRate);

scope = timescope(...
 "SampleRate",fileReader.SampleRate, ...
 "TimeSpanSource","property","TimeSpan",3, ...
 "BufferLength",fileReader.SampleRate*3*2, ...
 "YLimits",[-1 1], ...
 "ShowGrid",true, ...
 "ShowLegend",true, ...
 "ChannelNames",{'Original','Processed'});

In an audio stream loop:

1 Read in a frame of the audio file.
2 Apply highpass filtering using your biquad filter.
3 Split the audio signal into two bands.
4 Apply dynamic range compression to the lower band.
5 Remix the channels.
6 Write the processed audio signal to your audio device for listening.
7 Visualize the processed and unprocessed signals on a time scope.

As a best practice, release your objects once done.

while ~isDone(fileReader)
 audioIn = fileReader();
 audioIn = biquadFilter(audioIn,B,A);
 [band1,band2] = crossFilt(audioIn);
 band1compressed = dRCompressor(band1);
 audioOut = band1compressed + band2;
 deviceWriter(audioOut);
 scope([audioIn audioOut])
end

As a best practice, release your objects once done.

3 System Objects

3-260

release(deviceWriter)
release(fileReader)
release(crossFilt)
release(dRCompressor)
release(scope)

Tune Compressor Parameters

Create a dsp.AudioFileReader to read in audio frame-by-frame. Create an audioDeviceWriter
to write audio to your sound card. Create a compressor to process the audio data. Call visualize
to plot the static characteristic of the compressor.

frameLength = 1024;
fileReader = dsp.AudioFileReader('RockDrums-44p1-stereo-11secs.mp3', ...
 'SamplesPerFrame',frameLength);
deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);

dRC = compressor('SampleRate',fileReader.SampleRate);
visualize(dRC)

 compressor

3-261

Create a timescope to visualize the original and processed audio.

scope = timescope(...
 'SampleRate',fileReader.SampleRate, ...
 'TimeSpanSource','property',...
 'TimeSpan',1, ...
 'BufferLength',fileReader.SampleRate*4, ...
 'YLimits',[-1,1], ...
 'TimeSpanOverrunAction','Scroll', ...
 'ShowGrid',true, ...
 'LayoutDimensions',[2,1], ...
 'NumInputPorts',2, ...
 'Title','Original vs. Compressed Audio (top) and Compressor Gain in dB (bottom)');
scope.ActiveDisplay = 2;
scope.YLimits = [-4,0];
scope.YLabel = 'Gain (dB)';

Call parameterTuner to open a UI to tune parameters of the compressor while streaming.

parameterTuner(dRC)

3 System Objects

3-262

In an audio stream loop:

1 Read in a frame of audio from the file.
2 Apply dynamic range compression.
3 Write the frame of audio to your audio device for listening.
4 Visualize the original audio, the processed audio, and the gain applied.

While streaming, tune parameters of the dynamic range compressor and listen to the effect.

while ~isDone(fileReader)
 audioIn = fileReader();
 [audioOut,g] = dRC(audioIn);
 deviceWriter(audioOut);
 scope([audioIn(:,1),audioOut(:,1)],g(:,1));
 drawnow limitrate % required to update parameter
end

As a best practice, release your objects once done.

release(deviceWriter)
release(fileReader)
release(dRC)
release(scope)

 compressor

3-263

Sidechain Ducking with Compressor

Use the “EnableSidechain” on page 3-0 input of a compressor object to reduce the amplitude
level of a separate audio signal. The sidechain signal controls the compression on the input audio
signal. When the sidechain signal exceeds the compressor “Threshold” on page 3-0 , the
compressor activates and decreases the amplitude of the input signal. When the sidechain signal level
falls below the threshold, the audio input returns to its uncompressed amplitude.

Prepare Audio Files

In this section, you resample and zero-pad a speech file to use as input to the EnableSidechain
property of your compressor object.

Read in an audio signal. Resample it to match the sample rate of the input audio signal (44.1 kHz).

targetFs = 44100;
[originalSpeech,originalFs] = audioread('Rainbow-16-8-mono-114secs.wav');
resampledSpeech = resample(originalSpeech,targetFs,originalFs);

Pad the beginning of the resampled signal with 10 seconds worth of zeros. This allows the input audio
signal to be clearly heard before any compression is applied.

resampledSpeech = [zeros(10*targetFs,1);resampledSpeech];

3 System Objects

3-264

Normalize the amplitude to avoid potential clipping.

resampledSpeech = resampledSpeech ./ max(resampledSpeech);

Write the resampled, zero-padded, and normalized sidechain signal to a file.

audiowrite('resampledSpeech.wav',resampledSpeech,targetFs);

Construct Audio Objects

Construct a dsp.AudioFileReader object for the input and sidechain signals. Using the
“ReadRange” property of the AudioFileReader, select the second verse of the input signal and the
first 26.5 seconds of the sidechain signal for playback. To allow the script to run indefinitely, change
the playbackCount variable from 1 to Inf.

inputAudio = 'SoftGuitar-44p1_mono-10mins.ogg';
sidechainAudio = 'resampledSpeech.wav';
playbackCount = 1;
inputAudioAFR = dsp.AudioFileReader(inputAudio,'PlayCount',playbackCount,'ReadRange',...
 [115*targetFs round(145.4*targetFs)]);
sidechainAudioAFR = dsp.AudioFileReader(sidechainAudio,'PlayCount',playbackCount,...
 'ReadRange',[1 round(26.5*targetFs)]);

Construct a compressor object. Use a high “Ratio” on page 3-0 , a fast “AttackTime” on page 3-
0 , and a moderately slow “ReleaseTime” on page 3-0 . These settings are ideal for voice-over
work. The fast attack time ensures that the input audio is compressed almost immediately after the
sidechain signal surpasses the compressor threshold. The slow release time ensures the compression
on the input audio lasts through any potential short silent regions in the sidechain signal.

iAmYourCompressor = compressor('EnableSidechain',true,...
 'SampleRate',targetFs,...
 'Threshold',-40,...
 'Ratio',8,...
 'AttackTime',0.01,...
 'ReleaseTime',1.5);

Construct an audioDeviceWriter object to play the sidechain and input signals.

afw = audioDeviceWriter;

Construct a timescope object to view the uncompressed input signal, the sidechain signal, as well as
the compressed input signal.

scope = timescope('NumInputPorts',3,...
 'SampleRate',targetFs,...
 'TimeSpanSource','property',...
 'TimeSpan',5,...
 'TimeDisplayOffset',0,...
 'LayoutDimensions',[3 1],...
 'BufferLength',targetFs*15,...
 'TimeSpanOverrunAction','Scroll',...
 'YLimits',[-1 1],...
 'ShowGrid',true,...
 'Title','Uncompressed Input Audio - Guitar');
scope.ActiveDisplay = 2;
scope.YLimits = [-1 1];
scope.Title = 'Sidechain Audio - Speech';
scope.ShowGrid = true;

 compressor

3-265

scope.ActiveDisplay = 3;
scope.YLimits = [-1 1];
scope.ShowGrid = true;
scope.Title = 'Compressed Input Audio - Guitar';

Create Audio Streaming Loop

Read in a frame of audio from your input and sidechain signals. Process your input and sidechain
signals with your compressor object. Playback your processed audio signals and display the audio
data using a timescope object.

The top panel of your timescope displays the uncompressed input audio signal and the middle panel
displays the sidechain audio signal. The bottom panel displays the compressed input audio signal.
Notice the amplitudes of the signals in the top and bottom panels are identical until the sidechain
signal begins. Once the sidechain signal activates, the amplitude of the signal in the bottom panel is
compressed. Once the sidechain signal ends, the amplitude of the signal in the bottom panel begins to
return to its uncompressed level.

while ~isDone(inputAudioAFR)
 inputAudioFrame = inputAudioAFR();
 sideChainAudioFrame = sidechainAudioAFR();
 compressorOutput = iAmYourCompressor(inputAudioFrame,sideChainAudioFrame);
 afw(sideChainAudioFrame+compressorOutput);
 scope(inputAudioFrame,sideChainAudioFrame,compressorOutput);
end

Release your objects.

release(inputAudioAFR)
release(sidechainAudioAFR)
release(iAmYourCompressor)
release(afw)
release(scope)

3 System Objects

3-266

Algorithms
The compressor System object processes a signal frame by frame and element by element.

Convert Input Signal to dB

The N-point signal, x[n], is converted to decibels:

xdB[n] = 20 × log10 x[n]

 compressor

3-267

Gain Computer

xdB[n] passes through the gain computer. The gain computer uses the static characteristic properties
of the dynamic range compressor to attenuate gain that is above the threshold.

If you specified a soft knee, the gain computer has the following static characteristic:

xsc(xdB) =

xdB xdB < T − W
2

xdB +
1
R − 1 xdB− T + W

2
2

2W T − W
2 ≤ xdB ≤ T + W

2

T +
xdB− T

R xdB > T + W
2

,

where T is the threshold, R is the ratio, and W is the knee width.

If you specified a hard knee, the gain computer has the following static characteristic:

xsc(xdB) =
xdB xdB < T

T +
xdB− T

R xdB ≥ T

The computed gain, gc[n], is calculated as

gc[n] = xsc[n]− xdB[n] .

Gain Smoothing

gc[n] is smoothed using specified attack and release time properties:

gs[n] =
αAgs[n− 1] + (1− αA)gc[n], gc[n] ≤ gs[n− 1]
αRgs[n− 1] + (1− αR)gc[n], gc[n] > gs[n− 1]

The attack time coefficient, αA , is calculated as

αA = exp −log(9)
Fs × TA

.

The release time coefficient, αR , is calculated as

αR = exp −log(9)
Fs × TR

.

TA is the attack time period, specified by the AttackTime property. TR is the release time period,
specified by the ReleaseTime property. Fs is the input sampling rate, specified by the SampleRate
property.

Calculate and Apply Make-up Gain

If MakeUpGainMode is set to the default 'Auto', the make-up gain is calculated as the negative of
the computed gain for a 0 dB input,

M = −xsc xdB = 0 .

3 System Objects

3-268

Given a steady-state input of 0 dB, this configuration achieves a steady-state output of 0 dB. The
make-up gain is determined by the Threshold, Ratio, and KneeWidth properties. It does not
depend on the input signal.

The make-up gain, M, is added to the smoothed gain, gs[n]:

gm[n] = gs[n] + M

Calculate and Apply Linear Gain

The calculated gain in dB, gm[n], is translated to a linear domain:

glin[n] = 10
gm[n]

20

The output of the dynamic range compressor is given as

y[n] = x[n] × glin[n] .

Version History
Introduced in R2016a

References
[1] Giannoulis, Dimitrios, Michael Massberg, and Joshua D. Reiss. "Digital Dynamic Range

Compressor Design –– A Tutorial and Analysis." Journal of Audio Engineering Society. Vol. 60,
Issue 6, 2012, pp. 399–408.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

“System Objects in MATLAB Code Generation” (MATLAB Coder)

See Also
noiseGate | expander | limiter | Compressor

Topics
“Dynamic Range Control”

 compressor

3-269

expander
Dynamic range expander

Description
The expander System object performs dynamic range expansion independently across each input
channel. Dynamic range expansion attenuates the volume of quiet sounds below a given threshold. It
uses specified attack, release, and hold times to achieve a smooth applied gain curve. Properties of
the expander System object specify the type of dynamic range expansion.

To perform dynamic range expansion:

1 Create the expander object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
dRE = expander
dRE = expander(thresholdValue)
dRE = expander(thresholdValue,ratioValue)
dRE = expander(___ ,Name,Value)

Description

dRE = expander creates a System object, dRE, that performs dynamic range expansion
independently across each input channel.

3 System Objects

3-270

dRE = expander(thresholdValue) sets the Threshold property to thresholdValue.

dRE = expander(thresholdValue,ratioValue) sets the Ratio property to ratioValue.

dRE = expander(___ ,Name,Value) sets each property Name to the specified Value. Unspecified
properties have default values.
Example: dRE = expander('AttackTime',0.01,'SampleRate',16000) creates a System
object, dRE, with a 0.01 second attack time and a 16 kHz sample rate.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Threshold — Operation threshold (dB)
–10 (default) | real scalar

Operation threshold in dB, specified as a real scalar.

Operation threshold is the level below which gain is applied to the input signal.

Tunable: Yes
Data Types: single | double

Ratio — Expansion ratio
5 (default) | real scalar

Expansion ratio, specified as a real scalar greater than or equal to 1.

Expansion ratio is the input/output ratio for signals that undershoot the operation threshold.

Assuming a hard knee characteristic and a steady-state input such that x[n] dB < thresholdValue,
the expansion ratio is defined as R = (y[n]− T)

(x[n]− T) .

• R is the expansion ratio.
• y[n] is the output signal in dB.
• x[n] is the input signal in dB.
• T is the threshold in dB.

Tunable: Yes
Data Types: single | double

KneeWidth — Knee width (dB)
0 (default) | real scalar

Knee width in dB, specified as a real scalar greater than or equal to 0.

 expander

3-271

Knee width is the transition area in the expansion characteristic.

For soft knee characteristics, the transition area is defined by the relation

y = x +
(1− R) × x− T − W

2
2

2 × W

for the range 2 × x− T ≤ W.

• y is the output level in dB.
• x is the input level in dB.
• R is the expansion ratio.
• T is the threshold in dB.
• W is the knee width in dB.

Tunable: Yes
Data Types: single | double

AttackTime — Attack time (s)
0.05 (default) | real scalar

Attack time in seconds, specified as a real scalar greater than or equal to 0.

Attack time is the time it takes the expander gain to rise from 10% to 90% of its final value when the
input goes below the threshold.

Tunable: Yes
Data Types: single | double

ReleaseTime — Release time (s)
0.2 (default) | real scalar

Release time in seconds, specified as a real scalar greater than or equal to 0.

Release time is the time it takes the expander gain to drop from 90% to 10% of its final value when
the input goes above the threshold.

Tunable: Yes
Data Types: single | double

HoldTime — Hold time (s)
0.05 (default) | real scalar

Hold time in seconds, specified as a real scalar greater than or equal to 0.

Hold time is the period for which the (negative) gain is held before starting to decrease towards its
steady state value when the input level drops below the threshold.

Tunable: Yes
Data Types: single | double

3 System Objects

3-272

SampleRate — Input sample rate (Hz)
44100 (default) | positive scalar

Input sample rate in Hz, specified as a positive scalar.

Tunable: Yes
Data Types: single | double

EnableSidechain — Enable sidechain input
false (default) | true

Enable sidechain input, specified as true or false. This property determines the number of
available inputs on the expander object.

• false –– Sidechain input is disabled and the expander object accepts one input: the audioIn
data to be expanded.

• true –– Sidechain input is enabled and the expander object accepts two inputs: the audioIn
data to be expanded and the sidechain input used to compute the expander gain.

The sidechain datatype and (frame) length must be the same as audioIn.

The number of channels of the sidechain must be equal to the number of channels of audioIn or be
equal to one. When the number of sidechain channels is one, the gain computed based on this
channel is applied to all channels of audioIn. When the number of sidechain channels is equal to the
number of channels in audioIn, the gain computed for each sidechain channel is applied to the
corresponding channel of audioIn.

Tunable: No

Usage

Syntax
audioOut = dRE(audioIn)
[audioOut,gain] = dRE(audioIn)

Description

audioOut = dRE(audioIn) performs dynamic range expansion on the input signal, audioIn, and
returns the expanded signal, audioOut. The type of dynamic range expansion is specified by the
algorithm and properties of the expander System object, dRE.

[audioOut,gain] = dRE(audioIn) also returns the applied gain, in dB, at each input sample.

Input Arguments

audioIn — Audio input to expander
matrix

Audio input to the expander, specified as a matrix. The columns of the matrix are treated as
independent audio channels.
Data Types: single | double

 expander

3-273

Output Arguments

audioOut — Audio output from expander
matrix

Audio output from the expander, returned as a matrix the same size as audioIn.
Data Types: single | double

gain — Gain applied by expander (dB)
matrix

Gain applied by expander, returned as a matrix the same size as audioIn.
Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to expander
visualize Visualize static characteristic of dynamic range controller
staticCharacteristic Return static characteristic of dynamic range controller
createAudioPluginClass Create audio plugin class that implements functionality of System object
parameterTuner Tune object parameters while streaming

MIDI
configureMIDI Configure MIDI connections between audio object and MIDI controller
disconnectMIDI Disconnect MIDI controls from audio object
getMIDIConnections Get MIDI connections of audio object

Common to All System Objects
clone Create duplicate System object
isLocked Determine if System object is in use
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object
step Run System object algorithm

The createAudioPluginClass and configureMIDI functions map tunable properties of the
expander System object to user-facing parameters:

Property Range Mapping Unit
Threshold [–140, 0] linear dB
Ratio [1, 50] linear none
KneeWidth [0, 20] linear dB
AttackTime [0, 4] linear seconds

3 System Objects

3-274

Property Range Mapping Unit
ReleaseTime [0, 4] linear seconds
HoldTime [0, 4] linear seconds

Examples

Expand Audio Signal

Use dynamic range expansion to attenuate background noise from an audio signal.

Set up the dsp.AudioFileReader and audioDeviceWriter System objects.

frameLength = 1024;
fileReader = dsp.AudioFileReader(...
 'Filename','Counting-16-44p1-mono-15secs.wav', ...
 'SamplesPerFrame',frameLength);
deviceWriter = audioDeviceWriter(...
 'SampleRate',fileReader.SampleRate);

Corrupt the audio signal with Gaussian noise. Play the audio.

while ~isDone(fileReader)
 x = fileReader();
 xCorrupted = x + (1e-2/4)*randn(frameLength,1);
 deviceWriter(xCorrupted);
end

release(fileReader)

Set up the expander with a threshold of -40 dB, a ratio of 10, an attack time of 0.01 seconds, a release
time of 0.02 seconds, and a hold time of 0 seconds. Use the sample rate of your audio file reader.

dRE = expander(-40,10, ...
 'AttackTime',0.01, ...
 'ReleaseTime',0.02, ...
 'HoldTime',0, ...
 'SampleRate',fileReader.SampleRate);

Set up the scope to visualize the signal before and after dynamic range expansion.

scope = timescope(...
 'SampleRate',fileReader.SampleRate, ...
 'TimeSpanOverrunAction','Scroll', ...
 'TimeSpanSource','property','TimeSpan',16, ...
 'BufferLength',1.5e6, ...
 'YLimits',[-1 1], ...
 'ShowGrid',true, ...
 'ShowLegend',true, ...
 'Title','Corrupted vs. Expanded Audio');

Play the processed audio and visualize it on the scope.

while ~isDone(fileReader)
 x = fileReader();
 xCorrupted = x + (1e-2/4)*randn(frameLength,1);

 expander

3-275

 y = dRE(xCorrupted);
 deviceWriter(y);
 scope([xCorrupted,y])
end

release(fileReader)
release(dRE)
release(deviceWriter)
release(scope)

Apply Split-Band De-Essing

De-essing is the process of diminishing sibilant sounds in an audio signal. Sibilance refers to the s, z,
and sh sounds in speech, which can be disproportionately emphasized during recording. es sounds
fall under the category of unvoiced speech with all consonants and have a higher frequency than
voiced speech. In this example, you apply split-band de-essing to a speech signal by separating the
signal into high and low frequencies, applying an expander to diminish the sibilant frequencies, and
then remixing the channels.

Create a dsp.AudioFileReader object and an audioDeviceWriter object to read from a sound
file and write to an audio device. Listen to the unprocessed signal. Then release the file reader and
device writer.

3 System Objects

3-276

fileReader = dsp.AudioFileReader(...
 'Sibilance.wav');
deviceWriter = audioDeviceWriter;

while ~isDone(fileReader)
 audioIn = fileReader();
 deviceWriter(audioIn);
end

release(deviceWriter)
release(fileReader)

Create an expander System object to de-ess the audio signal. Set the sample rate of the expander to
the sample rate of the audio file. Create a two-band crossover filter with a crossover of 3000 Hz.
Sibilance is usually found in this range. Set the crossover slope to 12. Plot the frequency response of
the crossover filter to confirm your design visually.

dRExpander = expander(...
 'Threshold',-50, ...
 'AttackTime',0.05, ...
 'ReleaseTime',0.05, ...
 'HoldTime',0.005, ...
 'SampleRate',fileReader.SampleRate);

crossFilt = crossoverFilter(...
 'NumCrossovers',1, ...
 'CrossoverFrequencies',3000, ...
 'CrossoverSlopes',12);
visualize(crossFilt)

 expander

3-277

Create a timescope object to visualize the original and processed audio signals.

scope = timescope(...
 'SampleRate',fileReader.SampleRate, ...
 'TimeSpanOverrunAction','Scroll', ...
 'TimeSpanSource','Property','TimeSpan',4, ...
 'BufferLength',fileReader.SampleRate*8, ...
 'YLimits',[-1 1], ...
 'ShowGrid',true, ...
 'ShowLegend',true, ...
 'ChannelNames',{'Original','Processed'});

In an audio stream loop:

1 Read in a frame of the audio file.
2 Split the audio signal into two bands.
3 Apply dynamic range expansion to the upper band.
4 Remix the channels.
5 Write the processed audio signal to your audio device for listening.
6 Visualize the processed and unprocessed signals on a time scope.

As a best practice, release your objects once done.

while ~isDone(fileReader)
 audioIn = fileReader();

3 System Objects

3-278

 [band1,band2] = crossFilt(audioIn);

 band2processed = dRExpander(band2);

 procAudio = band1 + band2processed;

 deviceWriter(procAudio);

 scope([audioIn procAudio]);
end

release(deviceWriter)
release(fileReader)
release(scope)

release(crossFilt)
release(dRExpander)

Tune Expander Parameters

Create a dsp.AudioFileReader to read in audio frame-by-frame. Create a audioDeviceWriter to
write audio to your sound card. Create a expander to process the audio data. Call visualize to
plot the static characteristic of the expander.

 expander

3-279

frameLength = 1024;
fileReader = dsp.AudioFileReader('Counting-16-44p1-mono-15secs.wav', ...
 'SamplesPerFrame',frameLength);
deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);

dRE = expander(-40,10, ...
 'AttackTime',0.01, ...
 'ReleaseTime',0.02, ...
 'HoldTime',0, ...
 'SampleRate',fileReader.SampleRate);
visualize(dRE)

Create a timescope to visualize the original and processed audio.

scope = timescope(...
 'SampleRate',fileReader.SampleRate, ...
 'TimeSpanSource','property','TimeSpan',1, ...
 'BufferLength',fileReader.SampleRate*4, ...
 'YLimits',[-1,1], ...
 'TimeSpanOverrunAction','Scroll', ...
 'ShowGrid',true, ...
 'LayoutDimensions',[2,1], ...
 'NumInputPorts',2, ...
 'Title','Original vs. Processed Audio (top) and Applied Gain in dB (bottom)');
scope.ActiveDisplay = 2;
scope.YLimits = [-300,0];
scope.YLabel = 'Gain (dB)';

3 System Objects

3-280

Call parameterTuner to open a UI to tune parameters of the expander while streaming.

parameterTuner(dRE)

In an audio stream loop:

1 Read in a frame of audio from the file.
2 Apply dynamic range expansion.
3 Write the frame of audio to your audio device for listening.
4 Visualize the original and processed audio, and the gain applied.

While streaming, tune parameters of the dynamic range expander and listen to the effect.

while ~isDone(fileReader)
 audioIn = fileReader();
 [audioOut,g] = dRE(audioIn);
 deviceWriter(audioOut);
 scope([audioIn(:,1),audioOut(:,1)],g(:,1));
 drawnow limitrate % required to update parameter
end

As a best practice, release your objects when done.

release(deviceWriter)
release(fileReader)
release(dRE)
release(scope)

 expander

3-281

Sidechain Dynamic Range Expansion

Use the “EnableSidechain” on page 3-0 input of an expander object to emulate an electronic drum
controller, also known as a multipad. This technique is common in recording studio production and
creates interesting changes to the timbre of an instrument. The sidechain signal controls the
expansion on the input signal. Sidechain expansion decreases the amplitude of the input signal when
the sidechain signal falls below the “Threshold” on page 3-0 of the expander.

Prepare Audio Files

Convert the sidechain signal from stereo to mono.

[expanderSideChainStereo,Fs] = audioread('FunkyDrums-44p1-stereo-25secs.mp3');
expanderSideChainMono = (expanderSideChainStereo(:,1) + expanderSideChainStereo(:,2)) / 2;

Write the converted sidechain signal to a file.

audiowrite('convertedSidechainSig.wav',expanderSideChainMono,Fs);

Construct Audio Objects

Construct a dsp.AudioFileReader object for the input and sidechain signals. To allow the script to
run indefinitely, change the playbackCount variable from 1 to Inf.

3 System Objects

3-282

inputAudio = 'SoftGuitar-44p1_mono-10mins.ogg';
sidechainAudio = 'convertedSidechainSig.wav';
playbackCount = 1;
inputAudioAFR = dsp.AudioFileReader(inputAudio,'PlayCount',playbackCount);
sidechainAudioAFR = dsp.AudioFileReader(sidechainAudio,'PlayCount',playbackCount);

Construct and visualize an expander object. Use a high “Ratio” on page 3-0 , a soft “KneeWidth”
on page 3-0 , a fast “AttackTime” on page 3-0 and “ReleaseTime” on page 3-0 , and a short
“HoldTime” on page 3-0 .

dRE = expander('EnableSidechain',true,'Threshold',-20,'Ratio',6.5,...
 'KneeWidth',20,'AttackTime',0.84,'ReleaseTime',0.001,'HoldTime',0.0001);
visualize(dRE)

Construct an audioDeviceWriter object to play the sidechain and input signals.

afw = audioDeviceWriter;

Construct a timescope object to view the input signal, the sidechain signal, as well as the expanded
input signal.

scope = timescope('NumInputPorts',3,...
 'SampleRate',Fs,...
 'TimeSpanSource','property',...
 'TimeSpan',5,...
 'TimeDisplayOffset',0,...
 'LayoutDimensions',[3 1],...

 expander

3-283

 'BufferLength',Fs*15,...
 'TimeSpanOverrunAction','Scroll',...
 'YLimits',[-1 1],...
 'ShowGrid',true,...
 'Title','Input Audio - Classical Guitar');
scope.ActiveDisplay = 2;
scope.YLimits = [-1 1];
scope.Title = 'Sidechain Audio - Drums';
scope.ShowGrid = true;
scope.ActiveDisplay = 3;
scope.YLimits = [-1 1];
scope.ShowGrid = true;
scope.Title = 'Expanded Input Audio - Classical Guitar';

Call parameterTuner to open a UI to tune parameters of the expander while streaming. Adjust the
property values and listen to the effect in real time.

parameterTuner(dRE)

Create Audio Streaming Loop

Read in a frame of audio from your input and sidechain signals. Process your input and sidechain
signals with your expander object. Playback your processed audio signals and display the audio data
using a timescope object.

The top panel of your timescope displays the input audio signal and the middle panel displays the
sidechain audio signal. The bottom panel displays the expanded input audio signal.

Substitute different audio files for your inputAudio variable to create different textures and timbres
in your drum mix.

while ~isDone(sidechainAudioAFR)
 inputAudioFrame = inputAudioAFR();
 sideChainAudioFrame = sidechainAudioAFR();
 expanderOutput = dRE(inputAudioFrame,sideChainAudioFrame);
 afw(sideChainAudioFrame+expanderOutput);
 scope(inputAudioFrame,sideChainAudioFrame,expanderOutput);
 drawnow limitrate; % required to update parameter settings from UI
end

3 System Objects

3-284

Release your objects.

release(inputAudioAFR)
release(sidechainAudioAFR)
release(dRE)
release(afw)
release(scope)

Algorithms
The expander System object processes a signal frame by frame and element by element.

 expander

3-285

Convert Input Signal to dB

The N-point signal, x[n], is converted to decibels:

xdB[n] = 20 × log10 x[n]

Gain Computer

xdB[n] passes through the gain computer. The gain computer uses the static characteristic properties
of the dynamic range expander to attenuate gain that is below the threshold.

If you specified a soft knee, the gain computer has the following static characteristic:

xsc(xdB) =

T + xdB− T × R xdB < T − W
2

xdB +
1− R xdB− T − W

2
2

2W T − W
2 ≤ xdB ≤ T + W

2

xdB xdB > T + W
2

,

where T is the threshold, R is the ratio, and W is the knee width.

If you specified a hard knee, the gain computer has the following static characteristic:

xsc(xdB) =
T + xdB− T × R xdB < T

xdB xdB ≥ T

The computed gain, gc[n], is calculated as

gc[n] = xsc[n]− xdB[n] .

Gain Smoothing

gc[n] is smoothed using specified attack, release, and hold time properties:

gs[n] =
αAgs[n− 1] + (1− αA)gc[n] CA > TH & gc[n] ≤ gs[n− 1]

gs[n− 1] CA ≤ TH
αRgs[n− 1] + (1− αR)gc[n] gc[n] > gs[n− 1]

The attack time coefficient, αA , is calculated as

αA = exp −log(9)
Fs × TA

.

The release time coefficient, αR , is calculated as

αR = exp −log(9)
Fs × TR

.

TA is the attack time period, specified by the AttackTime property. TR is the release time period,
specified by the ReleaseTime property. Fs is the input sampling rate, specified by the SampleRate
property.

CA is the hold counter for attack. The limit, TH , is determined by the HoldTime property.

3 System Objects

3-286

Calculate and Apply Linear Gain

The smoothed gain in dB, gs[n], is translated to a linear domain:

glin[n] = 10
gs[n]
20

The output of the dynamic range expander is given as

y[n] = x[n] × glin[n] .

Version History
Introduced in R2016a

References
[1] Giannoulis, Dimitrios, Michael Massberg, and Joshua D. Reiss. "Digital Dynamic Range

Compressor Design –– A Tutorial and Analysis." Journal of Audio Engineering Society. Vol. 60,
Issue 6, 2012, pp. 399–408.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

“System Objects in MATLAB Code Generation” (MATLAB Coder)

See Also
noiseGate | compressor | limiter | Expander

Topics
“Dynamic Range Control”

 expander

3-287

limiter
Dynamic range limiter

Description
The limiter System object performs brick-wall dynamic range limiting independently across each
input channel. Dynamic range limiting suppresses the volume of loud sounds that cross a given
threshold. It uses specified attack and release times to achieve a smooth applied gain curve.
Properties of the limiter System object specify the type of dynamic range limiting.

To perform dynamic range limiting:

1 Create the limiter object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation
Syntax
dRL = limiter
dRL = limiter(thresholdValue)
dRL = limiter(___ ,Name,Value)

Description

dRL = limiter creates a System object, dRL, that performs brick-wall dynamic range limiting
independently across each input channel.

dRL = limiter(thresholdValue) sets the Threshold property to thresholdValue.

3 System Objects

3-288

dRL = limiter(___ ,Name,Value) sets each property Name to the specified Value. Unspecified
properties have default values.
Example: dRL = limiter('AttackTime',0.01,'SampleRate',16000) creates a System object,
dRL, with a 10 ms attack time and a sample rate of 16 kHz.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Threshold — Operation threshold (dB)
–10 (default) | real scalar

Operation threshold in dB, specified as a real scalar.

Operation threshold is the level above which gain is applied to the input signal.

Tunable: Yes
Data Types: single | double

KneeWidth — Knee width (dB)
0 (default) | real scalar

Knee width in dB, specified as a real scalar greater than or equal to 0.

Knee width is the transition area in the limiter characteristic.

For soft knee characteristics, the transition area is defined by the relation

y = x−
x− T + W

2
2

2 × W

for the range 2 × x− T ≤ W.

• y is the output level in dB.
• x is the input level in dB.
• T is the threshold in dB.
• W is the knee width in dB.

Tunable: Yes
Data Types: single | double

AttackTime — Attack time (s)
0 (default) | real scalar

Attack time in seconds, specified as a real scalar greater than or equal to 0.

 limiter

3-289

Attack time is the time it takes the limiter gain to rise from 10% to 90% of its final value when the
input goes above the threshold.

Tunable: Yes
Data Types: single | double

ReleaseTime — Release time (s)
0.2 (default) | real scalar

Release time in seconds, specified as a real scalar greater than or equal to 0.

Release time is the time it takes the limiter gain to drop from 90% to 10% of its final value when the
input goes below the threshold.

Tunable: Yes
Data Types: single | double

MakeUpGainMode — Make-up gain mode
'Property' (default) | 'Auto'

Make-up gain mode, specified as 'Auto' or 'Property'.

• 'Auto' –– Make-up gain is applied at the output of the dynamic range limiter such that a steady-
state 0 dB input has a 0 dB output.

• 'Property' –– Make-up gain is set to the value specified in the MakeUpGain property.

Tunable: No
Data Types: char | string

MakeUpGain — Make-up gain (dB)
0 (default) | real scalar

Make-up gain in dB, specified as a real scalar.

Make-up gain compensates for gain lost during limiting. It is applied at the output of the dynamic
range limiter.

Tunable: Yes

Dependencies

To enable this property, set MakeUpGainMode to 'Property'.
Data Types: single | double

SampleRate — Input sample rate (Hz)
44100 (default) | positive scalar

Input sample rate in Hz, specified as a positive scalar.

Tunable: Yes
Data Types: single | double

3 System Objects

3-290

EnableSidechain — Enable sidechain input
false (default) | true

Enable sidechain input, specified as true or false. This property determines the number of
available inputs on the limiter object.

• false –– Sidechain input is disabled and the limiter object accepts one input: the audioIn
data to be limited.

• true –– Sidechain input is enabled and the limiter object accepts two inputs: the audioIn data
to be limited and the sidechain input used to compute the limiter gain.

The sidechain datatype and (frame) length must be the same as audioIn.

The number of channels of the sidechain input must be equal to the number of channels of audioIn
or be equal to one. When the number of sidechain channels is one, the gain computed based on this
channel is applied to all channels of audioIn. When the number of sidechain channels is equal to the
number of channels in audioIn, the gain computed for each sidechain channel is applied to the
corresponding channel of audioIn.

Tunable: No

Usage

Syntax
audioOut = dRL(audioIn)
[audioOut,gain] = dRL(audioIn)

Description

audioOut = dRL(audioIn)performs dynamic range limiting on the input signal, audioIn, and
returns the limited signal, audioOut. The type of dynamic range limiting is specified by the
algorithm and properties of the limiter System object, dRL.

[audioOut,gain] = dRL(audioIn)also returns the applied gain, in dB, at each input sample.

Input Arguments

audioIn — Audio input to limiter
matrix

Audio input to the limiter, specified as a matrix. The columns of the matrix are treated as independent
audio channels.
Data Types: single | double

Output Arguments

audioOut — Audio output from limiter
matrix

Audio output from the limiter, returned as a matrix the same size as audioIn.
Data Types: single | double

 limiter

3-291

gain — Gain applied by limiter (dB)
matrix

Gain applied by the limiter, returned as a matrix the same size as audioIn.
Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to limiter
visualize Visualize static characteristic of dynamic range controller
staticCharacteristic Return static characteristic of dynamic range controller
createAudioPluginClass Create audio plugin class that implements functionality of System object
parameterTuner Tune object parameters while streaming

MIDI
configureMIDI Configure MIDI connections between audio object and MIDI controller
disconnectMIDI Disconnect MIDI controls from audio object
getMIDIConnections Get MIDI connections of audio object

Common to All System Objects
clone Create duplicate System object
isLocked Determine if System object is in use
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object
step Run System object algorithm

The createAudioPluginClass and configureMIDI functions map tunable properties of the
limiter System object to user-facing parameters:

Property Range Mapping Unit
Threshold [–50, 0] linear dB
KneeWidth [0, 20] linear dB
AttackTime [0, 4] linear seconds
ReleaseTime [0, 4] linear seconds
MakeUpGain (available
when you set
MakeUpGainMode to
'Property')

[–10, 24] linear dB

Examples

3 System Objects

3-292

Limit Audio Signal

Use dynamic range limiting to suppress the volume of loud sounds.

Set up the dsp.AudioFileReader and audioDeviceWriter System objects™.

frameLength = 1024;
fileReader = dsp.AudioFileReader(...
 'Filename','RockDrums-44p1-stereo-11secs.mp3', ...
 'SamplesPerFrame',frameLength);
deviceWriter = audioDeviceWriter(...
 'SampleRate',fileReader.SampleRate);

Set up the limiter to have a threshold of -15 dB, an attack time of 0.005 seconds, and a release
time of 0.1 seconds. Set make-up gain to 0 dB (default). To specify this value, set the make-up gain
mode to 'Property' but do not specify the MakeUpGain property. Use the sample rate of your audio
file reader.

dRL = limiter(-15, ...
 'AttackTime',0.005, ...
 'ReleaseTime',0.1, ...
 'MakeUpGainMode','Property', ...
 'SampleRate',fileReader.SampleRate);

Set up a time scope to visualize the original signal and the limited signal.

scope = timescope(...
 'SampleRate',fileReader.SampleRate, ...
 'TimeSpanOverrunAction','Scroll', ...
 'TimeSpanSource','property',...
 'TimeSpan',1, ...
 'BufferLength',44100*4, ...
 'YLimits',[-1 1], ...
 'ShowGrid',true, ...
 'LayoutDimensions',[2,1], ...
 'NumInputPorts',2, ...
 'ShowLegend',true, ...
 'Title',['Original vs. Limited Audio (top)' ...
 ' and Limiter Gain in dB (bottom)']);

Play the processed audio and visualize it on the scope.

while ~isDone(fileReader)
 x = fileReader();
 [y,g] = dRL(x);
 deviceWriter(y);
 x1 = x(:,1);
 y1 = y(:,1);
 g1 = g(:,1);
 scope([x1,y1],g1);
end

release(fileReader)
release(dRL)
release(deviceWriter)
release(scope)

 limiter

3-293

Compare Dynamic Range Limiter and Compressor

A dynamic range limiter is a special type of dynamic range compressor. In limiters, the level above an
operational threshold is hard limited. In the simplest implementation of a limiter, the effect is
equivalent to audio clipping. In compressors, the level above an operational threshold is lowered
using a specified compression ratio. Using a compression ratio results in a smoother processed
signal.

Compare Limiter and Compressor Applied to Sinusoid

Create a limiter System object™ and a compressor System object. Set the AttackTime and
ReleaseTime properties of both objects to zero. Create an audioOscillator System object to
generate a sinusoid with Frequency set to 5 and Amplitude set to 0.1.

dRL = limiter('AttackTime',0,'ReleaseTime',0);
dRC = compressor('AttackTime',0,'ReleaseTime',0);

osc = audioOscillator('Frequency',5,'Amplitude',0.1);

Create a time scope to visualize the generated sinusoid and the processed sinusoid.

scope = timescope(...
 'SampleRate',osc.SampleRate, ...
 'TimeSpanSource','Property','TimeSpan',2, ...

3 System Objects

3-294

 'BufferLength',osc.SampleRate*4, ...
 'TimeSpanOverrunAction','Scroll', ...
 'ShowGrid',true, ...
 'LayoutDimensions',[2 1], ...
 'NumInputPorts',2);
scope.ActiveDisplay = 1;
scope.Title = 'Original Signal vs. Limited Signal';
scope.YLimits = [-1,1];
scope.ActiveDisplay = 2;
scope.Title = 'Original Signal vs. Compressed Signal';
scope.YLimits = [-1,1];

In an audio stream loop, visualize the original sinusoid and the sinusoid processed by a limiter and a
compressor. Increment the amplitude of the original sinusoid to illustrate the effect.

while osc.Amplitude < 0.75
 x = osc();

 xLimited = dRL(x);
 xCompressed = dRC(x);

 scope([x xLimited],[x xCompressed]);

 osc.Amplitude = osc.Amplitude + 0.0002;
end
release(scope)

 limiter

3-295

release(dRL)
release(dRC)
release(osc)

Compare Limiter and Compressor Applied to Audio Signal

Compare the effect of dynamic range limiters and compressors on a drum track. Create a
dsp.AudioFileReader System object and a audioDeviceWriter System object to read audio
from a file and write to your audio output device. To emphasize the effect of dynamic range control,
set the operational threshold of the limiter and compressor to -20 dB.

dRL.Threshold = -20;
dRC.Threshold = -20;

fileReader = dsp.AudioFileReader('FunkyDrums-44p1-stereo-25secs.mp3');
deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);

Read successive frames from an audio file in a loop. Listen to and compare the effect of dynamic
range limiting and dynamic range compression on an audio signal.

numFrames = 300;

fprintf('Now playing original signal...\n')

Now playing original signal...

for i = 1:numFrames
 x = fileReader();
 deviceWriter(x);
end
reset(fileReader);

fprintf('Now playing limited signal...\n')

Now playing limited signal...

for i = 1:numFrames
 x = fileReader();
 xLimited = dRL(x);
 deviceWriter(xLimited);
end
reset(fileReader);

fprintf('Now playing compressed signal...\n')

Now playing compressed signal...

for i = 1:numFrames
 x = fileReader();
 xCompressed = dRC(x);
 deviceWriter(xCompressed);
end

release(fileReader)
release(deviceWriter)
release(dRC)
release(dRL)

3 System Objects

3-296

Tune Limiter Parameters

Create a dsp.AudioFileReader to read in audio frame-by-frame. Create a audioDeviceWriter to
write audio to your sound card. Create a limiter to process the audio data.

frameLength = 1024;
fileReader = dsp.AudioFileReader('RockDrums-44p1-stereo-11secs.mp3', ...
 'SamplesPerFrame',frameLength);
deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);

dRL = limiter('SampleRate',fileReader.SampleRate);

Call parameterTuner to open a UI to tune parameters of the limiter while streaming.

parameterTuner(dRL)

In an audio stream loop:

1 Read in a frame of audio from the file.
2 Apply dynamic range limiting.
3 Write the frame of audio to your audio device for listening.

While streaming, tune parameters of the dynamic range limiter and listen to the effect.

while ~isDone(fileReader)
 audioIn = fileReader();
 audioOut = dRL(audioIn);
 deviceWriter(audioOut);
 drawnow limitrate % required to update parameter
end

As a best practice, release your objects once done.

release(deviceWriter)
release(fileReader)
release(dRL)

 limiter

3-297

Sidechain Ducking with Limiter

Use the “EnableSidechain” on page 3-0 input of a limiter object to limit the amplitude level of a
separate audio signal. The sidechain signal controls the dynamic range limiting of the input audio
signal. When the sidechain signal exceeds the limiter “Threshold” on page 3-0 , the limiter activates
and limits the amplitude of the input signal. When the sidechain signal level falls below the threshold,
the audio input returns to its original amplitude. For a detailed comparison of compression and
dynamic range limiting, see “Compare Dynamic Range Limiter and Compressor” on page 3-256.

Prepare Audio Files

In this section, you resample and zero-pad a speech file to use as input to the EnableSidechain
property of your limiter object.

Read in an audio signal. Resample it to match the sample rate of the input audio signal (44.1 kHz).

targetFs = 44100;
[originalSpeech,originalFs] = audioread('Rainbow-16-8-mono-114secs.wav');
resampledSpeech = resample(originalSpeech,targetFs,originalFs);

Pad the beginning of the resampled signal with 10 seconds worth of zeros. This allows the input audio
signal to be clearly heard before any limiting is applied.

resampledSpeech = [zeros(10*targetFs,1);resampledSpeech];

Normalize the amplitude to avoid potential clipping.

resampledSpeech = resampledSpeech ./ max(resampledSpeech);

Write the resampled, zero-padded, and normalized sidechain signal to a file.

audiowrite('resampledSpeech.wav',resampledSpeech,targetFs);

Construct Audio Objects

Construct a dsp.AudioFileReader object for the input and sidechain signals. Using the
“ReadRange” property of the AudioFileReader, select the second verse of the input signal and the
first 26.5 seconds of the sidechain signal for playback. To allow the script to run indefinitely, change
the playbackCount variable from 1 to Inf.

inputAudio = 'SoftGuitar-44p1_mono-10mins.ogg';
sidechainAudio = 'resampledSpeech.wav';
playbackCount = 1;
inputAudioAFR = dsp.AudioFileReader(inputAudio,'PlayCount',playbackCount,'ReadRange',...
 [115*targetFs round(145.4*targetFs)]);
sidechainAudioAFR = dsp.AudioFileReader(sidechainAudio,'PlayCount',playbackCount,...
 'ReadRange',[1 round(26.5*targetFs)]);

Construct a limiter object. Use a fast “AttackTime” on page 3-0 , and a moderately slow
“ReleaseTime” on page 3-0 . These settings are ideal for voice-over work. The fast attack time
ensures that the input audio is limited almost immediately after the sidechain signal surpasses the
limiter threshold. The slow release time ensures the limiting on the input audio lasts through any
potential short silent regions in the sidechain signal.

iAmYourLimiter = limiter('EnableSidechain',true,...
 'SampleRate',targetFs,...
 'Threshold',-48,...

3 System Objects

3-298

 'AttackTime',0.01,...
 'ReleaseTime',1.75);

Construct an audioDeviceWriter object to play the sidechain and input signals.

afw = audioDeviceWriter;

Construct a timescope object to view the uncompressed input signal, the sidechain signal, as well as
the compressed input signal.

scope = timescope('NumInputPorts',3,...
 'SampleRate',targetFs,...
 'TimeSpanSource','property',...
 'TimeSpan',5,...
 'TimeDisplayOffset',0,...
 'LayoutDimensions',[3 1],...
 'BufferLength',targetFs*15,...
 'TimeSpanOverrunAction','Scroll',...
 'YLimits',[-1 1],...
 'ShowGrid',true,...
 'Title','Original Input Audio - Guitar');
scope.ActiveDisplay = 2;
scope.YLimits = [-1 1];
scope.Title = 'Sidechain Audio - Speech';
scope.ShowGrid = true;
scope.ActiveDisplay = 3;
scope.YLimits = [-1 1];
scope.ShowGrid = true;
scope.Title = 'Dynamic Range Limited Input Audio - Guitar';

Create Audio Streaming Loop

Read in a frame of audio from your input and sidechain signals. Process your input and sidechain
signals with your limiter object. Playback your processed audio signals and display the audio data
using a timescope object.

The top panel of your timescope displays the unprocessed input audio signal and the middle panel
displays the sidechain audio signal. The bottom panel displays the limited input audio signal. Notice
the amplitudes of the signals in the top and bottom panels are identical until the sidechain signal
begins. Once the sidechain signal activates, the amplitude in the bottom panel decreases. Once the
sidechain signal ends, the amplitude of the bottom panel returns to its original level.

while ~isDone(inputAudioAFR)
 inputAudioFrame = inputAudioAFR();
 sideChainAudioFrame = sidechainAudioAFR();
 limiterOutput = iAmYourLimiter(inputAudioFrame,sideChainAudioFrame);
 afw(sideChainAudioFrame+limiterOutput);
 scope(inputAudioFrame,sideChainAudioFrame,limiterOutput);
end

Release your objects.

release(inputAudioAFR)
release(sidechainAudioAFR)
release(iAmYourLimiter)
release(afw)
release(scope)

 limiter

3-299

Algorithms
The limiter System object processes a signal frame by frame and element by element.

Convert Input Signal to dB

The N-point signal, x[n], is converted to decibels:

xdB[n] = 20 × log10 x[n]

3 System Objects

3-300

Gain Computer

xdB[n] passes through the gain computer. The gain computer uses the static characteristic properties
of the dynamic range limiter to brick-wall gain that is above the threshold.

If you specified a soft knee, the gain computer has the following static characteristic:

xsc(xdB) =

xdB xdB < T − W
2

xdB−
xdB− T + W

2
2

2W T − W
2 ≤ xdB ≤ T + W

2

T xdB > T + W
2

,

where T is the threshold and W is the knee width.

If you specified a hard knee, the gain computer has the following static characteristic:

xsc(xdB) =
xdB xdB < T
T xdB ≥ T

The computed gain, gc[n], is calculated as

gc[n] = xsc[n]− xdB[n] .

Gain Smoothing

gc[n] is smoothed using specified attack and release time:

gs[n] =
αAgs[n− 1] + (1− αA)gc[n], gc[n] ≤ gs[n− 1]
αRgs[n− 1] + (1− αR)gc[n], gc[n] > gs[n− 1]

The attack time coefficient, αA , is calculated as

αA = exp −log(9)
Fs × TA

.

The release time coefficient, αR , is calculated as

αR = exp −log(9)
Fs × TR

.

TA is the attack time period, specified by the AttackTime property. TR is the release time period,
specified by the ReleaseTime property. Fs is the input sampling rate, specified by the SampleRate
property.

Calculate and Apply Make-up Gain

If MakeUpGainMode is set to the default 'Auto', the make-up gain is calculated as the negative of
the computed gain for a 0 dB input:

M = −xsc xdB = 0

 limiter

3-301

Given a steady-state input of 0 dB, this configuration achieves a steady-state output of 0 dB. The
make-up gain is determined by the Threshold and KneeWidth properties. It does not depend on the
input signal.

The make-up gain, M, is added to the smoothed gain, gs[n]:

gm[n] = gs[n] + M

Calculate and Apply Linear Gain

The calculated gain in dB, gm[n], is translated to a linear domain:

glin[n] = 10
gm[n]

20 .

The output of the dynamic range limiter is given as

y[n] = x[n] × glin[n] .

Version History
Introduced in R2016a

References
[1] Giannoulis, Dimitrios, Michael Massberg, and Joshua D. Reiss. "Digital Dynamic Range

Compressor Design –– A Tutorial and Analysis." Journal of Audio Engineering Society. Vol. 60,
Issue 6, 2012, pp. 399–408.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

“System Objects in MATLAB Code Generation” (MATLAB Coder)

See Also
Limiter | noiseGate | compressor | expander

Topics
“Dynamic Range Control”

3 System Objects

3-302

noiseGate
Dynamic range gate

Description
The noiseGate System object performs dynamic range gating independently across each input
channel. Dynamic range gating suppresses signals below a given threshold. It uses specified attack,
release, and hold times to achieve a smooth applied gain curve. Properties of the noiseGate System
object specify the type of dynamic range gating.

To perform dynamic range gating:

1 Create the noiseGate object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation
Syntax
dRG = noiseGate
dRG = noiseGate(thresholdValue)
dRG = noiseGate(___ ,Name,Value)

Description

dRG = noiseGate creates a System object, dRG, that performs dynamic range gating independently
across each input channel.

dRG = noiseGate(thresholdValue) sets the Threshold property to thresholdValue.

 noiseGate

3-303

dRG = noiseGate(___ ,Name,Value) sets each property Name to the specified Value.
Unspecified properties have default values.
Example: dRG = noiseGate('AttackTime',0.01,'SampleRate',16000) creates a System
object, dRG, with a 10 ms attack time and a 16 kHz sample rate.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Threshold — Operation threshold (dB)
–10 (default) | real scalar

Operation threshold in dB, specified as a real scalar.

Operation threshold is the level below which gain is applied to the input signal.

Tunable: Yes
Data Types: single | double

AttackTime — Attack time (s)
0.05 (default) | real scalar

Attack time in seconds, specified as a real scalar greater than or equal to 0.

Attack time is the time it takes the applied gain to rise from 10% to 90% of its final value when the
input goes below the threshold.

Tunable: Yes
Data Types: single | double

ReleaseTime — Release time (s)
0.02 (default) | real scalar

Release time in seconds, specified as a real scalar greater than or equal to 0.

Release time is the time it takes the applied gain to drop from 90% to 10% of its final value when the
input goes above the threshold.

Tunable: Yes
Data Types: single | double

HoldTime — Hold time (s)
0.05 (default) | real finite scalar

Hold time in seconds, specified as a real scalar greater than or equal to 0.

3 System Objects

3-304

Hold time is the period for which the (negative) gain is held before starting to decrease towards its
steady state value when the input level drops below the threshold.

Tunable: Yes
Data Types: single | double

SampleRate — Input sample rate (Hz)
44100 (default) | positive scalar

Input sample rate in Hz, specified as a positive scalar.

Tunable: Yes
Data Types: single | double

EnableSidechain — Enable sidechain input
false (default) | true

Enable sidechain input, specified as true or false. This property determines the number of
available inputs on the noiseGate object.

• false –– Sidechain input is disabled and the noiseGate object accepts one input: the audioIn
data to be gated.

• true –– Sidechain input is enabled and the noiseGate object accepts two inputs: the audioIn
data to be gated and the sidechain input used to compute the gain applied by noiseGate.

The sidechain datatype and (frame) length must be the same as audioIn.

The number of channels of the sidechain must be equal to the number of channels of audioIn or be
equal to one. When the number of sidechain channels is one, the gain computed based on this
channel is applied to all channels of audioIn. When the number of sidechain channels is equal to the
number of channels in audioIn, the gain computed for each sidechain channel is applied to the
corresponding channel of audioIn.

Tunable: No

Usage

Syntax
audioOut = dRG(audioIn)
[audioOut,gain] = dRG(audioIn)

Description

audioOut = dRG(audioIn) performs dynamic range gating on the input signal, audioIn, and
returns the gated signal, audioOut. The type of dynamic range gating is specified by the algorithm
and properties of the noiseGate System object, dRG.

[audioOut,gain] = dRG(audioIn) also returns the applied gain, in dB, at each input sample.

 noiseGate

3-305

Input Arguments

audioIn — Audio input to noise gate
matrix

Audio input to the noise gate, specified as a matrix. The columns of the matrix are treated as
independent audio channels.
Data Types: single | double

Output Arguments

audioOut — Audio output from noise gate
matrix

Audio output from the noise gate, returned as a matrix the same size as audioIn.
Data Types: single | double

gain — Gain applied by noise gate (dB)
matrix

Gain applied by noise gate, returned as a matrix the same size as audioIn.
Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to noiseGate
visualize Visualize static characteristic of dynamic range controller
createAudioPluginClass Create audio plugin class that implements functionality of System object
parameterTuner Tune object parameters while streaming

MIDI
configureMIDI Configure MIDI connections between audio object and MIDI controller
disconnectMIDI Disconnect MIDI controls from audio object
getMIDIConnections Get MIDI connections of audio object

Common to All System Objects
clone Create duplicate System object
isLocked Determine if System object is in use
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object
step Run System object algorithm

The createAudioPluginClass and configureMIDI functions map tunable properties of the
noiseGate System object to user-facing parameters:

3 System Objects

3-306

Property Range Mapping Unit
Threshold [–140, 0] linear dB
AttackTime [0, 4] linear seconds
ReleaseTime [0, 4] linear seconds
HoldTime [0, 4] linear seconds

Examples

Gate Audio Signal

Use dynamic range gating to attenuate background noise from an audio signal.

Set up the dsp.AudioFileReader and audioDeviceWriter System objects™.

frameLength = 1024;
fileReader = dsp.AudioFileReader(...
 'Filename','Counting-16-44p1-mono-15secs.wav', ...
 'SamplesPerFrame',frameLength);
deviceWriter = audioDeviceWriter(...
 'SampleRate',fileReader.SampleRate);

Corrupt the audio signal with Gaussian noise. Play the audio.

while ~isDone(fileReader)
 x = fileReader();
 xCorrupted = x + (1e-2/4)*randn(frameLength,1);
 deviceWriter(xCorrupted);
end

release(fileReader)

Set up a dynamic range gate with a threshold of -25 dB, an attack time of 0.01 seconds, a release
time of 0.02 seconds, and a hold time of 0 seconds. Use the sample rate of your audio file reader.

gate = noiseGate(-25, ...
 'AttackTime',0.01, ...
 'ReleaseTime',0.02, ...
 'HoldTime',0, ...
 'SampleRate',fileReader.SampleRate);

Set up a time scope to visualize the signal before and after dynamic range gating.

scope = timescope(...
 'SampleRate',fileReader.SampleRate, ...
 'TimeSpanOverrunAction','Scroll', ...
 'TimeSpanSource','property',...
 'TimeSpan',16, ...
 'BufferLength',1.5e6, ...
 'YLimits',[-1 1], ...
 'ShowGrid',true, ...
 'ShowLegend',true, ...
 'Title','Corrupted vs. Gated Audio');

Play the processed audio and visualize it on scope.

 noiseGate

3-307

while ~isDone(fileReader)
 x = fileReader();
 xCorrupted = x + (1e-2/4)*randn(frameLength,1);
 y = gate(xCorrupted);
 deviceWriter(y);
 scope([xCorrupted,y]);
end

release(fileReader)
release(gate)
release(deviceWriter)
release(scope)

Tune Noise Gate Parameters

Create a dsp.AudioFileReader to read in audio frame-by-frame. Create an audioDeviceWriter
to write audio to your sound card. Create a noiseGate to process the audio data.

frameLength = 1024;
fileReader = dsp.AudioFileReader('RockDrums-44p1-stereo-11secs.mp3', ...
 'SamplesPerFrame',frameLength);
deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);

dRG = noiseGate('SampleRate',fileReader.SampleRate);

3 System Objects

3-308

Call parameterTuner to open a UI to tune parameters of the noiseGate while streaming.

parameterTuner(dRG)

In an audio stream loop:

1 Read in a frame of audio from the file.
2 Apply dynamic range gating.
3 Write the frame of audio to your audio device for listening.

While streaming, tune parameters of the dynamic range gate and listen to the effect.

while ~isDone(fileReader)
 audioIn = fileReader();
 audioOut = dRG(audioIn);
 deviceWriter(audioOut);
 drawnow limitrate % required to update parameter
end

As a best practice, release your objects once done.

release(deviceWriter)
release(fileReader)
release(dRG)

Sidechain Dynamic Range Gating

Use the “EnableSidechain” on page 3-0 input of a noiseGate object to emulate an electronic drum
controller, also known as a multipad. This technique is common in recording studio production and
creates interesting changes to the timbre of an instrument. The sidechain signal controls the gating
on the input signal. Sidechain gating decreases the amplitude of the input signal when the sidechain
signal falls below the “Threshold” on page 3-0 of the noiseGate. A noise gate is essentially an
expander with an infinite “Ratio” on page 3-0 .

Prepare Audio Files

Convert the sidechain signal from stereo to mono.

 noiseGate

3-309

[expanderSideChainStereo,Fs] = audioread('FunkyDrums-44p1-stereo-25secs.mp3');
expanderSideChainMono = (expanderSideChainStereo(:,1) + expanderSideChainStereo(:,2)) / 2;

Write the converted sidechain signal to a file.

audiowrite('convertedSidechainSig.wav',expanderSideChainMono,Fs);

Construct Audio Objects

Construct a dsp.AudioFileReader object for the input and sidechain signals. To allow the script to
run indefinitely, change the playbackCount variable from 1 to Inf.

inputAudio = 'SoftGuitar-44p1_mono-10mins.ogg';
sidechainAudio = 'convertedSidechainSig.wav';
playbackCount = 1;
inputAudioAFR = dsp.AudioFileReader(inputAudio,'PlayCount',playbackCount);
sidechainAudioAFR = dsp.AudioFileReader(sidechainAudio,'PlayCount',playbackCount);

Construct and visualize a noiseGate object. Use fast “AttackTime” on page 3-0 and “ReleaseTime”
on page 3-0 , and a short “HoldTime” on page 3-0 .

dRG = noiseGate('EnableSidechain',true,'Threshold',-15,'AttackTime',...
 0.08,'ReleaseTime',0.0001,'HoldTime',0.00001);
visualize(dRG)

Construct an audioDeviceWriter object to play the sidechain and input signals.

afw = audioDeviceWriter;

3 System Objects

3-310

Construct a timescope object to view the input signal, the sidechain signal, as well as the gated
input signal.

scope = timescope('NumInputPorts',3,...
 'SampleRate',Fs,...
 'TimeSpanSource','property',...
 'TimeSpan',5,...
 'TimeDisplayOffset',0,...
 'LayoutDimensions',[3 1],...
 'BufferLength',Fs*15,...
 'TimeSpanOverrunAction','Scroll',...
 'YLimits',[-1 1],...
 'ShowGrid',true,...
 'Title','Input Audio - Classical Guitar');
scope.ActiveDisplay = 2;
scope.YLimits = [-1 1];
scope.Title = 'Sidechain Audio - Drums';
scope.ShowGrid = true;
scope.ActiveDisplay = 3;
scope.YLimits = [-1 1];
scope.ShowGrid = true;
scope.Title = 'Gated Input Audio - Classical Guitar';

Call parameterTuner to open a UI to tune parameters of the gate while streaming. Adjust the
property values and listen to the effect in real time.

parameterTuner(dRG)

Create Audio Streaming Loop

Read in a frame of audio from your input and sidechain signals. Process your input and sidechain
signals with your noiseGate object. Playback your processed audio signals and display the audio
data using a timescope object.

The top panel of your timescope displays the input audio signal and the middle panel displays the
sidechain audio signal. The bottom panel displays the gated input audio signal.

Substitute different audio files for your inputAudio variable to create different textures and timbres
in your drum mix.

while ~isDone(sidechainAudioAFR)
 inputAudioFrame = inputAudioAFR();
 sideChainAudioFrame = sidechainAudioAFR();
 noiseGateOutput = dRG(inputAudioFrame,sideChainAudioFrame);

 noiseGate

3-311

 afw(sideChainAudioFrame+noiseGateOutput);
 scope(inputAudioFrame,sideChainAudioFrame,noiseGateOutput);
 drawnow limitrate; % required to update parameter settings from UI
end

Release your objects.

release(inputAudioAFR)
release(sidechainAudioAFR)
release(dRG)
release(afw)
release(scope)

Algorithms
The noiseGate System object processes a signal frame by frame and element by element.

3 System Objects

3-312

Convert Input Signal to Magnitude

The N-point signal, x[n], is converted to magnitude:

xa[n] = x[n] .

Gain Computer

xa[n] passes through the gain computer. The gain computer uses the static characteristic properties
of the dynamic range gate to determine a brick-wall gain for signal below the threshold:

gc(xa) =
0 xa < Tlin
1 xa ≥ Tlin

.

Tlin is the threshold property converted to a linear domain:

Tlin = 10
TdB 20 .

Gain Smoothing

The computed gain, gc[n], is smoothed using specified attack, release, and hold time properties:

gs[n] =
αAgs[n− 1] + (1− αA)gc[n] CA > TH & gc[n] ≤ gs[n− 1]

gs[n− 1] CA ≤ TH
αRgs[n− 1] + (1− αR)gc[n] gc[n] > gs[n− 1]

The attack time coefficient, αA , is calculated as

αA = exp −log(9)
Fs × TA

.

The release time coefficient, αR , is calculated as

αR = exp −log(9)
Fs × TR

.

 noiseGate

3-313

TA is the attack time period, specified by the AttackTime property. TR is the release time period,
specified by the ReleaseTime property. Fs is the input sampling rate, specified by the SampleRate
property.

CA is the hold counter for attack. The limit, TH , is determined by the HoldTime property.

Apply Gain

The output of the dynamic range gate is given as

y[n] = x[n] × gs[n] .

Version History
Introduced in R2016a

References
[1] Giannoulis, Dimitrios, Michael Massberg, and Joshua D. Reiss. "Digital Dynamic Range

Compressor Design –– A Tutorial and Analysis." Journal of Audio Engineering Society. Vol. 60,
Issue 6, 2012, pp. 399–408.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

“System Objects in MATLAB Code Generation” (MATLAB Coder)

See Also
Noise Gate | expander | compressor | limiter

Topics
“Dynamic Range Control”

3 System Objects

3-314

octaveFilter
Octave-band and fractional octave-band filter

Description
The octaveFilter System object performs octave-band or fractional octave-band filtering
independently across each input channel. An octave-band is a frequency band where the highest
frequency is twice the lowest frequency. Octave-band and fractional octave-band filters are commonly
used to mimic how humans perceive loudness. Octave filters are best understood when viewed on a
logarithmic scale, which models how the human ear weights the spectrum.

To perform octave-band or fractional octave-band filtering on your input:

1 Create the octaveFilter object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation
Syntax
octFilt = octaveFilter
octFilt = octaveFilter(centerFreq)
octFilt = octaveFilter(centerFreq,bw)
octFilt = octaveFilter(___ ,Name,Value)

Description

octFilt = octaveFilter creates a System object, octFilt, that performs octave-band filtering
independently across each input channel.

 octaveFilter

3-315

octFilt = octaveFilter(centerFreq) sets the CenterFrequency property to centerFreq.

octFilt = octaveFilter(centerFreq,bw) sets the Bandwidth property to bw.

octFilt = octaveFilter(___ ,Name,Value) sets each property Name to the specified Value.
Unspecified properties have default values.
Example: octFilt = octaveFilter(1000,'1/3 octave','SampleRate',96000) creates a
System object, octFilt, with a center frequency of 1000 Hz, a 1/3 octave filter bandwidth, and a
sample rate of 96,000 Hz.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

FilterOrder — Order of octave filter
6 (default) | even integer

Order of the octave filter, specified as an even integer.

Tunable: No
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

CenterFrequency — Center frequency of octave filter (Hz)
1000 (default) | positive scalar

Center frequency of the octave filter in Hz, specified as a positive scalar.

When using the parameterTuner, the center frequency must be in the range [0.2, SampleRate/2]
Hz.

Tunable: Yes
Data Types: single | double

Bandwidth — Filter bandwidth (octaves)
'1 octave' (default) | '2/3 octave' | '1/2 octave' | '1/3 octave' | '1/6 octave' | '1/12
octave' | '1/24 octave' | '1/48 octave'

Filter bandwidth in octaves, specified as '1 octave', '2/3 octave', '1/2 octave', '1/3
octave', '1/6 octave', '1/12 octave', '1/24 octave', or '1/48 octave'.

Tunable: Yes
Data Types: char | string

Oversample — Oversample toggle
false (default) | true

Oversample toggle, specified as false or true.

3 System Objects

3-316

• false –– The octave filter runs at the input sample rate.
• true –– The octave filter runs at two times the input sample rate. Oversampling minimizes the

frequency warping effects introduced by the bilinear transformation. An FIR halfband interpolator
implements oversampling before octave filtering. A halfband decimator reduces the sample rate
back to the input sampling rate after octave filtering.

Tunable: No
Data Types: logical

SampleRate — Input sample rate (Hz)
44100 (default) | positive scalar

Input sample rate in Hz, specified as a positive scalar.

Tunable: Yes
Data Types: single | double

Usage

Syntax
audioOut = octFilt(audioIn)

Description

audioOut = octFilt(audioIn) applies octave-band filtering to the input signal, audioIn, and
returns the filtered signal, audioOut. The type of filtering is specified by the algorithm and
properties of the octaveFilter System object, octFilt.

Input Arguments

audioIn — Audio input to octave filter
matrix

Audio input to the octave filter, specified as a matrix. The columns of the matrix are treated as
independent audio channels.
Data Types: single | double

Output Arguments

audioOut — Audio output from octave filter
matrix

Audio output from the octave filter, returned as a matrix the same size as audioIn.
Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

 octaveFilter

3-317

release(obj)

Specific to octaveFilter
createAudioPluginClass Create audio plugin class that implements functionality of System

object
visualize Visualize and validate filter response
isStandardCompliant Verify octave filter design is ANSI S1.11-2004 compliant
getFilter Return biquad filter object with design parameters set
getANSICenterFrequencies Get the list of valid ANSI S1.11-2004 center frequencies
parameterTuner Tune object parameters while streaming

MIDI
configureMIDI Configure MIDI connections between audio object and MIDI controller
disconnectMIDI Disconnect MIDI controls from audio object
getMIDIConnections Get MIDI connections of audio object

Common to All System Objects
clone Create duplicate System object
isLocked Determine if System object is in use
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object
step Run System object algorithm

Note octaveFilter supports additional filter analysis functions. See Analyze Octave Filter Design
on page 3-320 for details.

Examples

Perform Fractional Octave-Band Filtering

Use octaveFilter to design a 1/3 octave-band filter centered at 1000 Hz. Process an audio signal
using your octave filter design.

Create a dsp.AudioFileReader object.

samplesPerFrame = 1024;
reader = dsp.AudioFileReader("RockGuitar-16-44p1-stereo-72secs.wav",SamplesPerFrame=samplesPerFrame);

Create an octaveFilter object. Use the sample rate of the reader as the sample rate of the octave
filter.

centerFreq = 1000;
bw = "1/3 octave";
Fs = reader.SampleRate;

octFilt = octaveFilter(centerFreq,bw,SampleRate=Fs);

Visualize the filter response and verify that it fits within the class 0 mask of the ANSI S1.11-2004
standard.

3 System Objects

3-318

visualize(octFilt,"class 0")

Create a spectrum analyzer to visualize the original audio signal and the audio signal after octave-
band filtering.

scope = spectrumAnalyzer(...
 SampleRate=Fs, ...
 PlotAsTwoSidedSpectrum=false, ...
 FrequencyScale="log", ...
 Title="Octave-Band Filtering", ...
 ShowLegend=true, ...
 ChannelNames=["Original signal","Filtered signal"]);

Process the audio signal in an audio stream loop. Visualize the filtered audio and the original audio.
As a best practice, release the System objects when complete.

while ~isDone(reader)
 x = reader();
 y = octFilt(x);
 scope([x(:,1),y(:,1)])
end

release(octFilt)
release(reader)
release(scope)

 octaveFilter

3-319

Analyze Octave Filter Design

Create an octave filter. Visualize the filter response and validate that it is class 2 compliant.

octFilt = octaveFilter('CenterFrequency',1000);
visualize(octFilt,'class 2')

3 System Objects

3-320

 octaveFilter

3-321

Analyze the filter using fvtool.

fvtool(octFilt,'Fs',octFilt.SampleRate)

3 System Objects

3-322

The octaveFilter object supports several filter analysis methods. For more information, use help
at the command line:

help octaveFilter.helpFilterAnalysis

 The following analysis methods are available for discrete-time filter System objects:

 fvtool - Filter visualization tool
 info - Filter information
 freqz - Frequency response
 phasez - Phase response
 zerophase - Zero-phase response
 grpdelay - Group delay response
 phasedelay - Phase delay response
 impz - Impulse response
 impzlength - Length of impulse response
 stepz - Step response
 zplane - Pole/zero plot
 cost - Cost estimate for implementation of the filter System object
 measure - Measure characteristics of the frequency response

 outputDelay - Output delay value
 order - Filter order
 coeffs - Filter coefficients in a structure
 firtype - Determine the type (1-4) of a linear phase FIR filter System object
 tf - Convert to transfer function
 zpk - Convert to zero-pole-gain
 ss - Convert to state space representation

 octaveFilter

3-323

 isallpass - Verify if filter System object is allpass
 isfir - Verify if filter System object is FIR
 islinphase - Verify if filter System object is linear phase
 ismaxphase - Verify if filter System object is maximum phase
 isminphase - Verify if filter System object is minimum phase
 isreal - Verify if filter System object is minimum real
 issos - Verify if filter System object is in second-order sections form
 isstable - Verify if filter System object is stable

 realizemdl - Filter realization (Simulink diagram)

 specifyall - Fully specify fixed-point filter System object settings

 cascade - Create a FilterCascade System object

 Second-order sections:

 scale - Scale second-order sections of BiquadFilter System object
 scalecheck - Check scaling of BiquadFilter System object
 reorder - Reorder second-order sections of BiquadFilter System object
 cumsec - Cumulative second-order section of BiquadFilter System object
 scaleopts - Create an options object for second-order section scaling
 sos - Convert to second-order-sections (for IIRFilter System objects only)

 Fixed-Point (Fixed-Point Designer Required):

 freqrespest - Frequency response estimate via filtering
 freqrespopts - Create an options object for frequency response estimate
 noisepsd - Power spectral density of filter output due to roundoff noise
 noisepsdopts - Create an options object for output noise PSD computation

 Multirate Analysis:

 polyphase - Polyphase decomposition of multirate filter System object
 gain (CIC decimator) - Gain of CIC decimator filter System object
 gain (CIC interpolator) - Gain of CIC interpolator filter System object

 For decimator, interpolator, or rate change filter System objects
 the analysis tools perform computations relative to the rate at
 which the filter is running. If a sampling frequency is specified,
 it is assumed that the filter is running at that rate.

Help for octaveFilter.helpFilterAnalysis is inherited from superclass dsp.internal.FilterAnalysis

Effect of Center Frequency on Octave-Band Filtering

Process a speech signal using different octave bands from an octave-band filter bank.

Design a 1/2 octave filter with an estimated center frequency of 800 Hz. Use isStandardCompliant
to find the nearest compliant center frequency.

octFilt = octaveFilter(800,"1/2 octave");
[complianceStatus,suggestedCenterFrequency] = isStandardCompliant(octFilt,"class 0")

3 System Objects

3-324

complianceStatus =

 logical

 0

suggestedCenterFrequency =

 841.3951

Change the center frequency of the octFilt object to the suggested center frequency returned by
isStandardCompliant. Get a list of valid ANSI S1.11-2004 center frequencies, given your specified
octFilt center frequency.

octFilt.CenterFrequency = suggestedCenterFrequency;
Fo = getANSICenterFrequencies(octFilt);

Create an audio file reader and audio device writer.

fileReader = dsp.AudioFileReader("Counting-16-44p1-mono-15secs.wav");
deviceWriter = audioDeviceWriter(SampleRate=fileReader.SampleRate);

Create a scope to visualize the filtered and unfiltered signals.

scope = spectrumAnalyzer(...
 PlotAsTwoSidedSpectrum=false,...
 FrequencyScale="log",...
 Title="Octave-Band Filtering",...
 ShowLegend=true,...
 ChannelNames=["Original signal","Filtered signal"]);

In an audio stream loop, process the audio signal using your octave-band filter. Vary the center
frequency to hear the effect. As a best practice, release your objects after processing.

index = 12;
octFilt.CenterFrequency = Fo(index);
count = 1;
while ~isDone(fileReader)
 x = fileReader();
 y = octFilt(x);
 scope([x,y])
 deviceWriter(y);

 if mod(count,100)==0
 octFilt.CenterFrequency = Fo(index);
 index = index+1;
 end
 count = count+1;
end

release(scope)
release(deviceWriter)
release(fileReader)

 octaveFilter

3-325

Remove Noise from Tone Scale

Remove additive noise from an audio tone scale using an octaveFilter.

Create audioOscillator and audioDeviceWriter objects with default properties. Create an
octaveFilter object with the center frequency set to 100 Hz.

osc = audioOscillator;
deviceWriter = audioDeviceWriter;
octFilt = octaveFilter(100);

In an audio stream loop, listen to a tone created by your audio oscillator. The tone contains additive
Gaussian noise.

for i = 1:400
 x = osc();
 x1 = x + 0.1*randn(512,1);
 deviceWriter(x1);
 if rem(i,100)==0
 osc.Frequency = osc.Frequency*2;
 end
end

Create a spectrum analyzer to view your filtered and unfiltered signals.

3 System Objects

3-326

scope = spectrumAnalyzer(...
 PlotAsTwoSidedSpectrum=false, ...
 FrequencyScale="log", ...
 Title="Octave-Band Filtering", ...
 ShowLegend=true, ...
 ChannelNames=["Original signal","Filtered signal"]);

Reset the frequency of your audio oscillator to its default, 100 Hz.

osc.Frequency = 100;

In an audio stream loop, filter the corrupted tone using your octave-band filter. When the tone
changes frequency in the loop, change the center frequency of your octave filter to match. As a best
practice, release your audio device once done.

for i = 1:400
 x = osc();
 x1 = x + 0.1*randn(512,1);
 x2 = octFilt(x1);
 deviceWriter(x2);
 if rem(i,100)==0
 osc.Frequency = osc.Frequency*2;
 octFilt.CenterFrequency = octFilt.CenterFrequency*2;
 end
 scope([x1,x2])
end

release(deviceWriter)
release(scope)

 octaveFilter

3-327

Design Compliant High-Frequency Filters

Design a sixth-order 1/3 octave filter with a sample rate of 96 kHz.

octFilt = octaveFilter('FilterOrder',6, ...
 'Bandwidth','1/3 octave', ...
 'SampleRate',96e3);

Get the center frequencies defined by the ANSI S1.11-2004 standard. The center frequencies defined
by the standard depend on the Bandwidth and SampleRate properties.

centerFrequencies = getANSICenterFrequencies(octFilt)

centerFrequencies = 1×53
104 ×

 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002 0.0002 0.0003 0.0003 0.0004 0.0005 0.0006 0.0008 0.0010 0.0013 0.0016 0.0020 0.0025 0.0032 0.0040 0.0050 0.0063 0.0079 0.0100 0.0126 0.0158 0.0200 0.0251 0.0316 0.0398 0.0501 0.0631 0.0794 0.1000 0.1259 0.1585 0.1995 0.2512 0.3162 0.3981 0.5012 0.6310 0.7943 1.0000 1.2589 1.5849 1.9953

Set the center frequency of the octave filter to 19.953 kHz and visualize the response with a 'class 0'
compliance mask.

octFilt.CenterFrequency = centerFrequencies(38);
visualize(octFilt,'class 0')

3 System Objects

3-328

 octaveFilter

3-329

The red mask on the plot defines the bounds for the magnitude response of the filter. The magnitude
response of this filter goes above the upper bound of the compliance mask around 6.6 kHz. One way
to counter this is to increase the filter order so that the filter's rolloff is steeper.

To bring the octave filter design into compliance, set the octave filter order to 8.

octFilt.FilterOrder = 8;

3 System Objects

3-330

 octaveFilter

3-331

Another option to bring the octave filter design into compliance is to set the Oversample property to
true. This designs and runs the filter at twice the specified SampleRate to reduce the effects of the
bilinear transformation during the design stage.

octFilt.FilterOrder = 6;
octFilt.Oversample = true;

3 System Objects

3-332

 octaveFilter

3-333

Design Compliant Low-Frequency Filters

Design a sixth-order 2/3 octave filter with a 96 kHz sample rate.

octFilt = octaveFilter('FilterOrder',6, ...
 'Bandwidth','2/3 octave', ...
 'SampleRate',96e3);

Get the center frequencies defined by the ANSI S1.11-2004 standard. The center frequencies defined
by the standard depend on the Bandwidth and SampleRate properties.

centerFrequencies = getANSICenterFrequencies(octFilt)

centerFrequencies = 1×25
104 ×

 0.0000 0.0001 0.0001 0.0002 0.0003 0.0004 0.0006 0.0010 0.0016 0.0025 0.0040 0.0063 0.0100 0.0158 0.0251 0.0398 0.0631 0.1000 0.1585 0.2512 0.3981 0.6310 1.0000 1.5849 2.5119

Set the center frequency of the octave filter to ~6 Hz and visualize the response with a 'class 0'
compliance mask.

3 System Objects

3-334

octFilt.CenterFrequency = centerFrequencies(2);
visualize(octFilt,'class 0')

 octaveFilter

3-335

The red mask on the plot defines the bounds for the magnitude response of the filter. The magnitude
response of this filter goes below the lower bound of the compliance mask between 5.5 and 7.5 Hz.

Low-frequency filters in an octave filter bank have very low normalized center frequencies, and the
filters designed for them have poles that are almost on the unit circle. To make this filter ANSI
compliant, it has to be designed and operated at a lower sample rate.

To bring the octave filter design into compliance, set the sample rate to 48 kHz.

octFilt.SampleRate = 48e3;

3 System Objects

3-336

 octaveFilter

3-337

Tune Octave Filter Parameters

Create a dsp.AudioFileReader to read in audio frame-by-frame. Create a audioDeviceWriter to
write audio to your sound card. Create an octaveFilter to process the audio data. Call visualize
to plot the frequency response of the octave filter.

frameLength = 1024;
fileReader = dsp.AudioFileReader('RockDrums-44p1-stereo-11secs.mp3', ...
 'SamplesPerFrame',frameLength);
deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);

octFilt = octaveFilter('SampleRate',fileReader.SampleRate);
visualize(octFilt)

3 System Objects

3-338

Call parameterTuner to open a UI to tune parameters of the octaveFilter while streaming.

parameterTuner(octFilt)

In an audio stream loop:

1 Read in a frame of audio from the file.
2 Apply octave filtering.
3 Write the frame of audio to your audio device for listening.

While streaming, tune parameters of the octave filter and listen to the effect.

while ~isDone(fileReader)
 audioIn = fileReader();

 octaveFilter

3-339

 audioOut = octFilt(audioIn);
 deviceWriter(audioOut);
 drawnow limitrate % required to update parameter
end

As a best practice, release your objects once done.

release(deviceWriter)
release(fileReader)
release(octFilt)

More About
Band Edge

A band edge frequency refers to the lower or upper edge of the passband of a bandpass filter.

Center Frequency of Octave Filter

The center frequency of an octave filter is the geometric mean of the lower and upper band edge
frequencies.

Tips
The createAudioPluginClass and configureMIDI functions map tunable properties of the
octaveFilter to user-facing parameters:

Property Range Mapping Units
CenterFrequency [3, 22000] log Hz
Bandwidth '1 octave', '2/3

octave', '1/2
octave', '1/3
octave', '1/6
octave', '1/12
octave', '1/24
octave', or '1/48
octave'

Your MIDI controller
range is discretized into
seven levels,
corresponding to the
seven Bandwidth
choices.

––

Algorithms
Octave Bandwidth to Band Edge Conversion

The octaveFilter System object uses the specified center frequency and filter bandwidth in
octaves to determine the normalized band edges [2].

The object computes the upper and lower band edge frequencies:

fpa = fc × G−1 2b

fpb = fc × G1 2b

3 System Objects

3-340

• fc is the normalized center frequency specified by the CenterFrequency property.
• b is the octave bandwidth specified by the Bandwidth property. For example, if Bandwidth is
specified as '1/3 octave', the value of b is 3.

• G is a conversion constant:

G = 103 10 .

Digital Filter Design

The octaveFilter System object implements a higher-order digital bandpass filter design method
specified in [1].

In this design method, a desired digital bandpass filter maps to a Butterworth lowpass analog
prototype, which is then mapped back to a digital bandpass filter:

1 The analog Butterworth filter is expressed as a cascade of second-order sections:

H(s) = H1(s)H2(s)⋯H2N(s) ,

where:

Hi(s) = 1

1− 2 s
Ω0

cosθi + s2

Ω0
2

, i = 1, 2, ..., 2N

θi = π
2N N − 1 + 2i , i = 1, 2, .., 2N

N is the filter order specified by the FilterOrder property.
2 The analog Butterworth filter is mapped to a digital filter using a bandpass version of the bilinear

transformation:

s = 1− cz−1 + z−2

1− z−2 ,

where

c =
sin ωpa + ωpb

sinωpa + sinωpb
.

This mapping results in the following substitution:

 octaveFilter

3-341

Ω0 =
c− cosωpb

sinωpb
.

3 The analog prototype is evaluated:

Hi(z) = 1

1− 2 s
Ω0

cosθi + s2

Ω0
2 s = 1− 2cz−1 + z−2

1− z−2

Because s is second-order in z, the bandpass version of the bilinear transformation is fourth-
order in z.

Version History
Introduced in R2016b

References
[1] Orfanidis, Sophocles J. Introduction to Signal Processing. Englewood Cliffs, NJ: Prentice Hall,

2010.

[2] Acoustical Society of America. American National Standard Specification for Octave-Band and
Fractional-Octave-Band Analog and Digital Filters. ANSI S1.11-2004. Melville, NY: Acoustical
Society of America, 2009.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

“System Objects in MATLAB Code Generation” (MATLAB Coder)

See Also
Octave Filter | multibandParametricEQ | weightingFilter | dsp.BiquadFilter |
octaveFilterBank

Topics
“Octave-Band and Fractional Octave-Band Filters”

3 System Objects

3-342

getANSICenterFrequencies
Get the list of valid ANSI S1.11-2004 center frequencies

Syntax
centerFrequencies = getANSICenterFrequencies(octFilt)

Description
centerFrequencies = getANSICenterFrequencies(octFilt) returns a vector of valid center
frequencies as specified by the ANSI S1.11-2004 standard.

Examples

Get ANSI Center Frequencies

Create an object of the octaveFilter System object™. Call getANSICenterFrequencies to get a
list of valid center frequencies.

octFilt = octaveFilter;
centerFrequencies = getANSICenterFrequencies(octFilt)

centerFrequencies = 1×15
103 ×

 0.0005 0.0010 0.0020 0.0040 0.0079 0.0158 0.0316 0.0631 0.1259 0.2512 0.5012 1.0000 1.9953 3.9811 7.9433

Input Arguments
octFilt — Object of octaveFilter
object

Object of the octaveFilter System object.

Output Arguments
centerFrequencies — Center frequencies
vector

Center frequencies specified by the ANSI S1.11-2004 standard, returned as a vector.

The range for computing valid center frequencies is 3 Hz to (Fs/2) Hz, where the SampleRate
property of your octave filter defines Fs.
Data Types: single | double

 getANSICenterFrequencies

3-343

Version History
Introduced in R2016b

See Also
Blocks
Octave Filter

Topics
“Octave-Band and Fractional Octave-Band Filters”

3 System Objects

3-344

isStandardCompliant
Verify octave filter design is ANSI S1.11-2004 compliant

Syntax
complianceStatus = isStandardCompliant(octFilt,classType)
[complianceStatus,centerFreq] = isStandardCompliant(octFilt,classType)

Description
complianceStatus = isStandardCompliant(octFilt,classType) returns a logical scalar,
complianceStatus, indicating whether the complianceStatus filter design is compliant with the
ANSI S1.11-2004 standard for classType.

The mask used to determine compliance is centered on the nearest ANSI-compliant center frequency
that ensures the center frequency of the object falls between the upper and lower band edges of the
mask.

[complianceStatus,centerFreq] = isStandardCompliant(octFilt,classType) also
returns the ANSI-compliant center frequency used to create the mask.

Examples

Verify Standard Compliance

Create an object of the octaveFilter System object™. Call isStandardCompliant, specifying the
compliance class type to check as the second argument.

octFilt = octaveFilter;
complianceStatus = isStandardCompliant(octFilt,'class 2')

complianceStatus = logical
 1

Get ANSI-Compliant Center Frequency

Create an object of the octaveFilter System object. Check the compliance to class 0 status of your
object, and get the center frequency used to create the compliance mask.

octFilt = octaveFilter('CenterFrequency',1266);
[compliant, centerFreq] = isStandardCompliant(octFilt,'class 0')

compliant = logical
 0

centerFreq = 1000

 isStandardCompliant

3-345

Input Arguments
octFilt — Object of octaveFilter
object

Object of the octaveFilter System object.

classType — Compliance class type
'class 0' | 'class 1' | 'class 2'

Compliance class type to verify, specified as 'class 0', 'class 1', or 'class 2'.
Data Types: char

Output Arguments
complianceStatus — Compliance status of filter design
scalar

Compliance status of filter design, returned as a logical scalar. The compliance status indicates
whether the octFilt filter design is compliant with the ANSI S1.11-2004 standard for classType.

If your octave filter is noncompliant, try any of the following:

• Set the center frequency to one of the values returned by getANSICenterFrequencies
• Increase filter order
• Increase sample rate

Data Types: logical

centerFreq — Center frequency of mask
scalar

Center frequency used to create the compliance mask, returned as a scalar.
Data Types: single | double

Version History
Introduced in R2016b

See Also
Octave Filter | multibandParametricEQ | weightingFilter | dsp.BiquadFilter

Topics
“Octave-Band and Fractional Octave-Band Filters”

3 System Objects

3-346

visualize
Visualize and validate filter response

Syntax
visualize(octFilt)
visualize(octFilt,N)
visualize(___ ,mType)
hvsz = visualize(___)

Description
visualize(octFilt) plots the magnitude response of the octave-band filter octFilt. The plot is
updated automatically when properties of the object change.

visualize(octFilt,N) uses an N-point FFT to calculate the magnitude response.

visualize(___ ,mType) creates a mask based on the class of filter specified by mType, using
either of the previous syntaxes. Specify mType as 'class 0', 'class 1', or 'class 2'. The mask
attenuation limits are defined in the ANSI S1.11-2004 standard. The mask center frequency is the
ANSI standard center frequency, with band edge frequencies on either side of the CenterFrequency
set in octFilt.

• If the mask is green, the design is compliant with the ANSI S1.11-2004 standard.
• If the mask is red, the design breaks compliance.

hvsz = visualize(___) returns a handle to the visualizer as a
dsp.DynamicFilterVisualizer object when called with any of the previous syntaxes.

Examples

Plot Octave Filter Magnitude Response

Create an octaveFilter System object™ and then plot the magnitude response of the filter.

octFilt = octaveFilter;
visualize(octFilt)

 visualize

3-347

Specify Number of Frequency Bins

Create an octaveFilter System object™. Plot a 5096-point frequency representation.

octFilt = octaveFilter;
visualize(octFilt,5096)

3 System Objects

3-348

Visualize Standard-Compliance Mask

Create an octaveFilter System object™. Visualize the class 1 compliance of the filter design.

octFilt = octaveFilter;
visualize(octFilt,'class 1')

 visualize

3-349

Input Arguments
octFilt — Object of octaveFilter
object

Object of the octaveFilter System object.

N — Number of DFT bins
2048 | positive scalar

Number of DFT bins in frequency-domain representation, specified as a positive scalar. The default is
2048.
Data Types: single | double

mType — Type of mask
'class 0' | 'class 1' | 'class 2'

Type of mask, specified as 'class 0', 'class 1, or 'class 2'.

The mask attenuation limits are defined in the ANSI S1.11-2004 standard. The mask center frequency
is the ANSI standard center frequency, with band edge frequencies on either side of the
CenterFrequency set in octFilt.

3 System Objects

3-350

• If the mask is green, the design is compliant with the ANSI S1.11-2004 standard.
• If the mask is red, the design breaks compliance.

Data Types: char

Version History
Introduced in R2016b

See Also
Topics
“Octave-Band and Fractional Octave-Band Filters”

 visualize

3-351

reverberator

Add reverberation to audio signal

Description
The reverberator System object adds reverberation to mono or stereo audio signals.

To add reverberation to your input:

1 Create the reverberator object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
reverb = reverberator
reverb = reverberator(Name,Value)

Description

reverb = reverberator creates a System object, reverb, that adds artificial reverberation to an
audio signal.

reverb = reverberator(Name,Value) sets each property Name to the specified Value.
Unspecified properties have default values.
Example: reverb = reverberator('PreDelay',0.5,'WetDryMix',1) creates a System object,
reverb, with a 0.5 second pre-delay and a wet-to-dry mix ratio of one.

3 System Objects

3-352

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

PreDelay — Pre-delay for reverberation (s)
0 (default) | real positive scalar

Pre-delay for reverberation in seconds, specified as a real scalar in the range [0, 1].

Pre-delay for reverberation is the time between hearing direct sound and the first early reflection.
The value of PreDelay is proportional to the size of the room being modeled.

Tunable: Yes
Data Types: single | double

HighCutFrequency — Lowpass filter cutoff (Hz)
20000 (default) | real positive scalar

Lowpass filter cutoff in Hz, specified as a real positive scalar in the range 0 to SampleRate
2 .

Lowpass filter cutoff is the –3 dB cutoff frequency for the single-pole lowpass filter at the front of the
reverberator structure. It prevents the application of reverberation to high-frequency components of
the input.

Tunable: Yes
Data Types: single | double

Diffusion — Density of reverb tail
0.5 (default) | real scalar

Density of reverb tail, specified as a real positive scalar in the range [0, 1].

Diffusion is proportional to the rate at which the reverb tail builds in density. Increasing
Diffusion pushes the reflections closer together, thickening the sound. Reducing Diffusion
creates more discrete echoes.

Tunable: Yes
Data Types: single | double

DecayFactor — Decay factor of reverb tail
0.5 (default) | real scalar

Decay factor of reverb tail, specified as a real positive scalar in the range [0, 1].

DecayFactor is inversely proportional to the time it takes for reflections to run out of energy. To
model a large room, use a long reverb tail (low decay factor). To model a small room, use a short
reverb tail (high decay factor).

 reverberator

3-353

Tunable: Yes
Data Types: single | double

HighFrequencyDamping — High-frequency damping
0.0005 (default) | real scalar

High-frequency damping, specified as a real positive scalar in the range [0, 1].

HighFrequencyDamping is proportional to the attenuation of high frequencies in the reverberation
output. Setting HighFrequencyDamping to a large value makes high-frequency reflections decay
faster than low-frequency reflections.

Tunable: Yes
Data Types: single | double

WetDryMix — Wet-dry mix
0.3 (default) | real scalar

Wet-dry mix, specified as a real positive scalar in the range [0, 1].

Wet-dry mix is the ratio of wet (reverberated) to dry (original) signal that your reverberator
System object outputs.

Tunable: Yes
Data Types: single | double

SampleRate — Input sample rate (Hz)
44100 (default) | positive scalar

Input sample rate in Hz, specified as a positive scalar.

Tunable: Yes
Data Types: single | double

Usage

Syntax
audioOut = reverb(audioIn)

Description

audioOut = reverb(audioIn) adds reverberation to the input signal, audioIn, and returns the
mixed signal, audioOut. The type of reverberation is specified by the algorithm and properties of the
reverberator System object, reverb.

Input Arguments

audioIn — Audio input to reverberator
column vector | N-by-2 matrix

3 System Objects

3-354

Audio input to the reverberator, specified as a column vector or two-column matrix. The columns of
the matrix are treated as independent audio channels.
Data Types: single | double

Output Arguments

audioOut — Audio output from reverberator
N-by-2 matrix

Audio output from the reverberator, returned as a two-column matrix.
Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to reverberator
createAudioPluginClass Create audio plugin class that implements functionality of System object
parameterTuner Tune object parameters while streaming

MIDI
configureMIDI Configure MIDI connections between audio object and MIDI controller
disconnectMIDI Disconnect MIDI controls from audio object
getMIDIConnections Get MIDI connections of audio object

Common to All System Objects
clone Create duplicate System object
isLocked Determine if System object is in use
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object
step Run System object algorithm

Examples

Add Reverberation to Audio Signal

Use the reverberator System object™ to add artificial reverberation to an audio signal read from a
file.

Create the dsp.AudioFileReader and audioDeviceWriter System objects. Use the sample rate
of the reader as the sample rate of the writer.

fileReader = dsp.AudioFileReader('FunkyDrums-44p1-stereo-25secs.mp3','SamplesPerFrame',1024);
deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);

Play 10 seconds of the audio signal through your device.

 reverberator

3-355

tic
while toc < 10
 audio = fileReader();
 deviceWriter(audio);
end
release(fileReader)

Construct a reverberator System object with default settings.

reverb = reverberator

reverb =
 reverberator with properties:

 PreDelay: 0
 HighCutFrequency: 20000
 Diffusion: 0.5000
 DecayFactor: 0.5000
 HighFrequencyDamping: 5.0000e-04
 WetDryMix: 0.3000
 SampleRate: 44100

Construct a time scope to visualize the original audio signal and the audio signal with added artificial
reverberation.

scope = timescope(...
 'SampleRate',fileReader.SampleRate,...
 'TimeSpanOverrunAction','Scroll',...
 'TimeSpanSource','property',...
 'TimeSpan',3,...
 'BufferLength',3*fileReader.SampleRate*2, ...
 'YLimits',[-1,1],...
 'ShowGrid',true, ...
 'ShowLegend',true, ...
 'Title','Audio with Reverberation vs. Original');

Play the audio signal with artificial reverberation. Visualize the audio with reverberation and the
original audio.

while ~isDone(fileReader)
 audio = fileReader();
 audioWithReverb = reverb(audio);
 deviceWriter(audioWithReverb);
 scope([audioWithReverb(:,1),audio(:,1)])
end
release(fileReader)
release(deviceWriter)
release(scope)

3 System Objects

3-356

Tune Reverberator Parameters

Create a dsp.AudioFileReader to read in audio frame-by-frame. Create an audioDeviceWriter
to write audio to your sound card. Create a reverberator to process the audio data.

frameLength = 1024;
fileReader = dsp.AudioFileReader('RockDrums-44p1-stereo-11secs.mp3', ...
 'SamplesPerFrame',frameLength,'PlayCount',2);
deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);
reverb = reverberator('SampleRate',fileReader.SampleRate);

Call parameterTuner to open a UI to tune parameters of the octaveFilter while streaming.

parameterTuner(reverb)

 reverberator

3-357

In an audio stream loop:

1 Read in a frame of audio from the file.
2 Apply reverberation.
3 Write the frame of audio to your audio device for listening.

While streaming, tune parameters of the reverberator and listen to the effect.

while ~isDone(fileReader)
 audioIn = fileReader();
 audioOut = reverb(audioIn);
 deviceWriter(audioOut);
 drawnow limitrate % required to update parameter
end

As a best practice, release your objects once done.

release(deviceWriter)
release(fileReader)
release(reverb)

Tips
The createAudioPluginClass and configureMIDI functions map tunable properties of the
compressor to user-facing parameters:

Property Range Mapping Unit
PreDelay [0, 1] linear s
HighCutFrequency [20, 20000] log Hz
Diffusion [0, 1] linear none
DecayFactor [0, 1] linear none

3 System Objects

3-358

Property Range Mapping Unit
HighFrequencyDampi
ng

[0, 1] linear none

WetDryMix [0, 1] linear none

Algorithms
The algorithm to add reverberation follows the plate-class reverberation topology described in [1]
and is based on a 29,761 Hz sample rate.

The algorithm has five stages.

The description for the algorithm that follows is for a stereo input. A mono input is a simplified case.

Stereo-to-Mono

A stereo signal is converted to a mono signal: x[n] = 0.5 × xR[n] + xL[n] .

Preconditioning

A delay followed by a lowpass filter preconditions the mono signal.

• The pre-delay output is determined as xp[n] = x[n− k], where the PreDelay property determines
the value of k.

• The signal is fed through a single-pole lowpass filter with transfer function

LP(z) = 1− α
1− αz−1 ,

where

α = exp −2π ×
fc
fs

.

• fc is the cutoff frequency specified by the HighCutFrequency property.
• fs is the sampling frequency specified by the SampleRate property.

 reverberator

3-359

Decorrelation

The signal is decorrelated by passing through a series of four allpass filters.

The allpass filters are of the form

AP(z) = β + z−k

1 + βz−k ,

where β is the coefficient specified by the Diffusion property and k is the delay as follows:

• For AP1, k = 142.
• For AP2, k = 107.
• For AP3, k = 379.
• For AP4, k = 277.

Tank

The signal is fed into the tank, where it circulates to simulate the decay of a reverberation tail.

3 System Objects

3-360

The following description tracks the signal as it progresses through the top of the tank. The signal
progression through the bottom of the tank follows the same pattern, with different delay
specifications.

1 The new signal enters the top of the tank and is added to the circulated signal from the bottom of
the tank.

2 The signal passes through a modulated allpass filter:

Modulated AP1(z) = −β + z−k

1− βz−k

• β is the coefficient specified by the Diffusion property.
• k is the variable delay specified by a 1 Hz sinusoid with amplitude = (8/29761) *

SampleRate. To account for fractional delay resulting from the modulating k, allpass
interpolation is used [2].

3 The signal is delayed again, and then passes through a lowpass filter:

LP2(z) = 1− φ
1− φz−1

• φ is the coefficient specified by the HighFrequencyDamping property.
4 The signal is multiplied by a gain specified by the DecayFactor property. The signal then passes

through an allpass filter:

AP5(z) = β + z−k

1 + βz−k .

• β is the coefficient specified by the Diffusion property.
• k is set to 1800 for the top of the tank and 2656 for the bottom of the tank.

5 The signal is delayed again and then circulated to the bottom half of the tank for the next
iteration.

A similar pattern is executed in parallel for the bottom half of the tank. The output of the tank is
calculated as the signed sum of delay lines picked off at various points from the tank. The summed
output is multiplied by 0.6.

Wet/Dry Mix

The wet (processed) signal is then added to the dry (original) signal:

yR[n] = 1− κ xR[n] + κx3R[n] ,

yL[n] = 1− κ xL[n] + κx3L[n] ,

where the WetDryMix property determines κ.

Version History
Introduced in R2016a

 reverberator

3-361

References
[1] Dattorro, Jon. "Effect Design, Part 1: Reverberator and Other Filters." Journal of the Audio

Engineering Society. Vol. 45, Issue 9, 1997, pp. 660–684.

[2] Dattorro, Jon. "Effect Design, Part 2: Delay-Line Modulation and Chorus." Journal of the Audio
Engineering Society. Vol. 45, Issue 10, 1997, pp. 764–788.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

“System Objects in MATLAB Code Generation” (MATLAB Coder)

See Also
Reverberator

3 System Objects

3-362

shelvingFilter

Second-order IIR shelving filter

Description
The shelvingFilter System object implements a shelving filter, which boosts or cuts the frequency
spectrum of the input signal above or below a given cutoff frequency.

To use a shelving filter:

1 Create the shelvingFilter object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
shelvFilt = shelvingFilter
shelvFilt = shelvingFilter(gain)
shelvFilt = shelvingFilter(gain,slope)
shelvFilt = shelvingFilter(gain,slope,cutoffFreq)
shelvFilt = shelvingFilter(gain,slope,cutoffFreq,type)
shelvFilt = shelvingFilter(___ ,Name=Value)

Description

shelvFilt = shelvingFilter creates a shelving filter with default values.

shelvFilt = shelvingFilter(gain) sets the Gain property to gain.

shelvFilt = shelvingFilter(gain,slope) sets the Slope property to slope.

shelvFilt = shelvingFilter(gain,slope,cutoffFreq) sets the CutoffFrequency
property to cutoffFreq.

shelvFilt = shelvingFilter(gain,slope,cutoffFreq,type) sets the FilterType
property to type.

shelvFilt = shelvingFilter(___ ,Name=Value) sets “Properties” on page 3-364 using one or
more name-value arguments in addition to the input arguments in previous syntaxes. For example,
shelvFilt = shelvingFilter(SampleRate=96000) creates a shelving filter with a sample rate
of 96,000 Hz.

 shelvingFilter

3-363

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Gain — Peak gain (dB)
0 (default) | real scalar

Peak gain of the filter in dB, specified as a real scalar. The gain specifies how much the filter will
boost (if the gain is positive) or cut (if the gain is negative) the frequency spectrum of the input
signal.

Tunable: Yes
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Slope — Filter slope
1.5 (default) | positive scalar

Slope of the filter, specified as a positive scalar. The slope controls the width of the transition band in
the filter response.

Tunable: Yes
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

CutoffFrequency — Cutoff frequency of filter
200 (default) | nonnegative scalar

Cutoff frequency of the filter in Hz, specified as a nonnegative scalar in the range [0,SampleRate/2].
The cutoff frequency specifies the frequency at half of the peak gain of the filter, Gain/2 dB.

Tunable: Yes
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

FilterType — Type of filter
"lowpass" (default) | "highpass"

Type of shelving filter, specified as "lowpass" or "highpass".

• "lowpass" –– Boost or cut the frequency spectrum below the cutoff frequency.
• "highpass" –– Boost or cut the frequency spectrum above the cutoff frequency.

Tunable: Yes
Data Types: string | char

SampleRate — Sample rate of the input (Hz)
44100 (default) | positive scalar

Sample rate of the input in Hz, specified as a positive scalar.

3 System Objects

3-364

Tunable: No
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Usage

Syntax
audioOut = shelvFilt(audioIn)

Description

audioOut = shelvFilt(audioIn) applies the shelving filter to the input signal, audioIn and
returns the output signal audioOut. The type of filtering applied by the function depends on the
algorithm and properties of the shelvingFilter System object.

Input Arguments

audioIn — Audio input to shelving filter
column vector | matrix

Audio input to the shelving filter, specified as a column vector or a matrix. If the input is a matrix, the
columns are treated as independent channels.
Data Types: single | double

Output Arguments

audioOut — Audio output of shelving filter
column vector | matrix

Audio output of the shelving filter, returned as a column vector or matrix with the same size and data
type as the audioIn.
Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to shelvingFilter
visualize Visualize magnitude response of shelving filter
createAudioPluginClass Create audio plugin class that implements functionality of System object
coeffs Get filter coefficients
parameterTuner Tune object parameters while streaming

MIDI
configureMIDI Configure MIDI connections between audio object and MIDI controller
disconnectMIDI Disconnect MIDI controls from audio object

 shelvingFilter

3-365

getMIDIConnections Get MIDI connections of audio object

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Filter Audio Using Shelving Filter

Create a lowpass shelvingFilter object with a gain of 10 dB, a slope of 1, and a cutoff frequency
of 400 Hz.

shelvFilt = shelvingFilter(10,1,400,"lowpass");

Visualize the magnitude response of the filter.

visualize(shelvFilt)

Create a dsp.AudioFileReader object to read in the audio signal for filtering.

samplesPerFrame = 1024;
reader = dsp.AudioFileReader(...

3 System Objects

3-366

 Filename="RockGuitar-16-44p1-stereo-72secs.wav", ...
 SamplesPerFrame=samplesPerFrame);

Create a spectrumAnalyzer object to visualize the spectrum of the original audio signal and the
spectrum of the filtered signal.

scope = spectrumAnalyzer(...
 SampleRate=reader.SampleRate, ...
 PlotAsTwoSidedSpectrum=false, ...
 FrequencyScale="log", ...
 Title="Original and Filtered Signal", ...
 ShowLegend=true, ...
 ChannelNames=["Original Signal","Filtered Signal"]);

Filter the audio signal and visualize the results.

while ~isDone(reader)
 audioIn = reader();
 filteredSignal = shelvFilt(audioIn);
 scope([audioIn(:,1),filteredSignal(:,1)]);
end

 shelvingFilter

3-367

Tune Shelving Filter Parameters

Create a highpass shelvingFilter object with a gain of 5 dB, a slope of 1, and a cutoff frequency of
400 Hz.

shelvFilt = shelvingFilter(5,1,400,"highpass");

Visualize the magnitude response of the filter.

visualize(shelvFilt)

Create dsp.AudioFileReader and audioDeviceWriter objects to read in the audio signal and
write the filtered signal to your audio device to listen to it.

samplesPerFrame = 1024;
reader = dsp.AudioFileReader(...
 Filename="RockGuitar-16-44p1-stereo-72secs.wav", ...
 SamplesPerFrame=samplesPerFrame);
deviceWriter = audioDeviceWriter(SampleRate=reader.SampleRate);

Call parameterTuner to open a UI to tune the parameters of the shelving filter while streaming.

parameterTuner(shelvFilt)

3 System Objects

3-368

In an audio stream loop:

1 Read in a frame of audio from the file.
2 Apply shelving filter.
3 Write the filtered frame of audio to your audio device for listening.

While streaming, tune the parameters of the shelving filter and listen to the effect.

while ~isDone(reader)
 audioIn = reader();
 audioOut = shelvFilt(audioIn);
 deviceWriter(audioOut);
 drawnow limitrate % required to update parameter
end

As a best practice, release your objects once done.

release(reader)
release(shelvFilt)
release(deviceWriter)

Version History
Introduced in R2022a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Blocks
Shelving Filter | Graphic EQ | Multiband Parametric EQ

Functions
designParamEQ | designShelvingEQ | designVarSlopeFilter

 shelvingFilter

3-369

Objects
dsp.SOSFilter | graphicEQ | multibandParametricEQ

3 System Objects

3-370

visualize
Visualize magnitude response of shelving filter

Syntax
visualize(shelvFilt)
visualize(shelvFilt,NFFT)
hvsz = visualize(___)

Description
visualize(shelvFilt) plots the magnitude response of the shelving filter. The plot is updated
automatically when you change the object properties.

visualize(shelvFilt,NFFT) specifies an N-point FFT to calculate the magnitude response.

hvsz = visualize(___) returns a handle to the visualizer as a
dsp.DynamicFilterVisualizer object when you call this syntax with any of the previous input
arguments.

Examples

Visualize Magnitude Response of Shelving Filter

Create a shelvingFilter object, and then call visualize to plot the magnitude response of the
filter.

shelvFilt = shelvingFilter(2,1,400,"lowpass");
visualize(shelvFilt)

 visualize

3-371

Modify the gain and observe that the plot is updated automatically.

shelvFilt.Gain = 10;

3 System Objects

3-372

Input Arguments
shelvFilt — Shelving filter
object

Shelving filter whose magnitude response you want to plot, specified as a shelvingFilter System
object.

NFFT — N-point FFT
2048 (default) | positive scalar

Number of bins used to calculate the DFT, specified as a positive scalar.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Version History
Introduced in R2022a

See Also
shelvingFilter

 visualize

3-373

wavetableSynthesizer
Generate periodic signal from single-cycle waveforms

Description
The wavetableSynthesizer System object generates a periodic signal with tunable properties. The
periodic signal is defined by a single-cycle waveform cached as the Wavetable property of your
wavetableSynthesizer object.

To generate a periodic signal:

1 Create the wavetableSynthesizer object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
waveSynth = wavetableSynthesizer
waveSynth = wavetableSynthesizer(wavetableValue)
waveSynth = wavetableSynthesizer(wavetableValue,frequencyValue)
waveSynth = wavetableSynthesizer(___ ,Name,Value)

Description

waveSynth = wavetableSynthesizer creates a wavetable synthesizer System object,
waveSynth, with default property values.

waveSynth = wavetableSynthesizer(wavetableValue) sets the Wavetable property to
wavetableValue.

waveSynth = wavetableSynthesizer(wavetableValue,frequencyValue) sets the
Frequency property to frequencyValue.

3 System Objects

3-374

waveSynth = wavetableSynthesizer(___ ,Name,Value) sets each property Name to the
specified Value. Unspecified properties have default values.
Example: waveSynth = wavetableSynthesizer('Amplitude',2,'DCOffset',2.5) creates a
System object, waveSynth, that generates the default sine waveform with an amplitude of 2 and a
DC offset of 2.5.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Wavetable — Single-cycle waveform
sin(2*pi*(0:511)/512) (default) | vector of real values

Single-cycle waveform, specified as a vector of real values. The algorithm of the
wavetableSynthesizer indexes into the single-cycle waveform to synthesize a periodic wave.

Tunable: Yes
Data Types: single | double

Frequency — Frequency of generated signal (Hz)
100 (default) | real scalar

Frequency of generated signal in Hz, specified as a real scalar greater than or equal to 0.

Tunable: Yes
Data Types: single | double

Amplitude — Amplitude of generated signal
1 (default) | real scalar

Amplitude of generated signal, specified as a real scalar greater than or equal to 0.

The generated signal is multiplied by the value specified by Amplitude at the output, before
DCOffset is applied.

Tunable: Yes
Data Types: single | double

PhaseOffset — Normalized phase offset of generated signal
0 (default) | real scalar

Normalized phase offset of generated signal, specified as a real scalar with values in the range [0, 1].
The range is a normalized 2π radians interval.

Tunable: No
Data Types: single | double

 wavetableSynthesizer

3-375

DCOffset — Value added to each element of generated signal
0 (default) | real scalar

Value added to each element of the generated signal, specified as a real scalar.

Tunable: Yes
Data Types: single | double

SamplesPerFrame — Number of samples per frame
512 (default) | positive integer

Number of samples per frame, specified as a positive integer in the range [1,
MaxSamplesPerFrame].

This property determines the vector length that your wavetableSynthesizer object outputs.

Tunable: Yes
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

MaxSamplesPerFrame — Maximum number of samples per frame
192000 (default) | positive integer

Maximum number of samples per frame, specified as a positive integer. Setting this property to a
lower value can save memory when using code generation.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

SampleRate — Sample rate of generated signal (Hz)
44100 (default) | real positive scalar

Sample rate of generated signal in Hz, specified as a real positive scalar.

Tunable: Yes

OutputDataType — Data type of generated signal
'double' (default) | 'single'

Data type of generated signal, specified as 'double' or 'single'.

Tunable: No
Data Types: char | string

Usage

Syntax
waveform = waveSynth()

Description

waveform = waveSynth() generates a periodic signal, waveform. The type of signal is specified by
the algorithm and properties of the wavetableSynthesizer System object, waveSynth.

3 System Objects

3-376

Output Arguments

waveform — Waveform output from wavetable synthesizer
column vector (default)

Waveform output from the wavetable synthesizer, returned as a column vector with length specified
by the SamplesPerFrame property and data type specified by the OutputDataType property.
Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to wavetableSynthesizer
createAudioPluginClass Create audio plugin class that implements functionality of System object
parameterTuner Tune object parameters while streaming

MIDI
configureMIDI Configure MIDI connections between audio object and MIDI controller
disconnectMIDI Disconnect MIDI controls from audio object
getMIDIConnections Get MIDI connections of audio object

Common to All System Objects
clone Create duplicate System object
isLocked Determine if System object is in use
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object
step Run System object algorithm

The createAudioPluginClass and configureMIDI functions map tunable properties of the
wavetableSynthesizer System object to user-facing parameters:

Property Range Mapping Unit
Frequency [0.1, 20000] log Hz
Amplitude [0, 10] linear none
DCOffset [–10, 10] linear none

Examples

Generate Variable-Frequency Staircase Wave

Define and plot a single-cycle waveform.

values = -1:0.1:1;
singleCycleWave = ones(100,1) * values;

 wavetableSynthesizer

3-377

singleCycleWave = reshape(singleCycleWave,numel(singleCycleWave),1);

plot(singleCycleWave)
xlabel('Index')
ylabel('Amplitude')

Create a wavetable synthesizer, waveSynth, to generate a staircase wave using the single-cycle
waveform. Specify a frequency of 10 Hz.

waveSynth = wavetableSynthesizer(singleCycleWave,10);

Create a time scope to visualize the staircase wave generated by waveSynth.

scope = timescope(...
 'SampleRate',waveSynth.SampleRate, ...
 'TimeSpanSource','Property','TimeSpan',0.1, ...
 'YLimits',[-1.5,1.5], ...
 'TimeSpanOverrunAction','Scroll', ...
 'ShowGrid',true, ...
 'Title','Variable-Frequency Staircase Wave');

Place the wavetable synthesizer in an audio stream loop. Increase the frequency of your staircase
wave in 10 Hz increments.

counter = 0;
while (counter < 1e4)
 counter = counter + 1;
 staircaseWave = waveSynth();

3 System Objects

3-378

 scope(staircaseWave)
 if mod(counter,1000)==0
 waveSynth.Frequency = waveSynth.Frequency + 10;
 end
end

Manipulate Audio Samples Using Wavetable Synthesizer

Sample an audio file and save it to the Wavetable property of a wavetableSynthesizer System
object™. Use the wavetable synthesizer to manipulate your audio sample.

Read in an entire audio file. Clip out an interesting sound from the audio and then play it.

[audio,fs] = audioread('MainStreetOne-16-16-mono-12secs.wav');

aSound = audio(2.5e4:5e4);
sound(aSound,fs)

Create a wavetable synthesizer using your audio clip. The duration of the engine audio clip is
numel(aSound)/fs seconds. In the wavetableSynthesizer, set the Frequency property to 1/
(clip duration). The generated signal now plays back at the same rate it was recorded at.

 wavetableSynthesizer

3-379

duration = numel(aSound)/fs;
waveSynth = wavetableSynthesizer('Wavetable',aSound,'SampleRate',fs, ...
 'Frequency',1/duration);

Create an audioDeviceWriter to write to your audio device.

deviceWriter = audioDeviceWriter('SampleRate',fs);

In a loop, play the wavetable synthesizer to your device. After three seconds, begin increasing the
frequency of the wavetable synthesizer. After six seconds, begin decreasing the frequency of the
wavetable synthesizer.

timeElapsed = 0;
while timeElapsed < 9
 audioWave = waveSynth();
 deviceWriter(audioWave);

 if (timeElapsed > 3) && (timeElapsed < 6)
 waveSynth.Frequency = waveSynth.Frequency + 0.001;
 elseif timeElapsed > 6
 waveSynth.Frequency = waveSynth.Frequency - 0.002;
 end

 timeElapsed = timeElapsed + waveSynth.SamplesPerFrame*(1/fs);
end

Modify Wavetable While Stream Processing

Modify the Wavetable property of a wavetableSynthesizer object while stream processing.
Visualize the wavetable and play the resulting audio.

Create a single-cycle waveform for the wavetableSynthesizer to index into. Create a wavetable
synthesizer object.

t = 0:0.001:1;
exponent = 5;
waveTable = [t.^exponent,fliplr(t.^exponent)] - 0.5;

waveSynth = wavetableSynthesizer('Wavetable',waveTable);

Create a dsp.ArrayPlot object to plot the wavetable as it is modified over time. Create an
audioDeviceWriter object to listen to the signal output by your wavetable synthesizer.

arrayPlotter = dsp.ArrayPlot('YLimits',[-1,1],'PlotType','Line');
deviceWriter = audioDeviceWriter;

In an audio stream loop, incrementally modify the Wavetable property of the wavetable synthesizer
and plot it. Call the synthesizer to output a waveform and play the waveform to your audio device.

tic
while toc < 10
 exponent = exponent - 0.01;
 waveSynth.Wavetable = [t.^abs(exponent),fliplr(t.^abs(exponent))] - 0.5;

 arrayPlotter(waveSynth.Wavetable')

3 System Objects

3-380

 deviceWriter(waveSynth());
end

release(deviceWriter)

Tune Wavetable Synthesizer Parameters

Create a wavetableSynthesizer to generate a waveform. Create a timescope to visualize the
waveform. Create an audioDeviceWriter to write audio to your sound card.

fs = 44.1e3;
wvSynth = wavetableSynthesizer('SampleRate',fs);

scope = timescope(...
 'SampleRate',wvSynth.SampleRate, ...
 'TimeSpanSource','Property','TimeSpan',1, ...
 'YLimits',[-2,2], ...
 'TimeSpanOverrunAction','Scroll', ...
 'ShowGrid',true);

deviceWriter = audioDeviceWriter('SampleRate',wvSynth.SampleRate);

Call parameterTuner to open a UI to tune parameters of the wavetable synthesizer while streaming.

 wavetableSynthesizer

3-381

parameterTuner(wvSynth)

In an audio stream loop:

1 Call the wavetable synthesizer without arguments to output one frame of data.
2 Visualize the data using the time scope.
3 Write the frame of audio to your audio device for listening.

While streaming, tune parameters of the wavetable synthesizer and listen to the effect.

duration = 15;
numIterations = round(wvSynth.SampleRate*duration/wvSynth.SamplesPerFrame);
for i = 1:numIterations
 audioOut = wvSynth();
 scope(audioOut)
 deviceWriter(audioOut);
 drawnow limitrate % required to update parameter
end

As a best practice, release your objects when done.

release(deviceWriter)
release(wvSynth)
release(scope)

3 System Objects

3-382

Algorithms
The wavetableSynthesizer System object synthesizes periodic signals using a cached single-cycle
waveform, specified waveform properties, and phase memory.

 wavetableSynthesizer

3-383

Compute Increment

Compute the increment step size:

Δ = Frequency
SampleRate × N ,

where N is the number of elements in your wavetable.

Compute Wavetable Index

Compute Wavetable index,

i[n] =
i[n− 1] + Δ

i[n− 1] + Δ− N
i[n− 1] < N
i[n− 1] ≥ N

,

for 2 ≤ n ≤ SamplesPerFrame. The PhaseOffset property determines i[n=1].

Linear Interpolation

Index into the Wavetable and perform linear interpolation:

w =
Wavetable[1] −Wavetable[iL] × ε + Wavetable[iL]
Wavetable[iH]−Wavetable[iL] × ε + Wavetable[iL]

iH > N
iH ≤ N

.

• iL = floor(i[n] + 1)
• iH = iL + 1
• ε = i− floor(i)

Apply Amplitude and DC Offset

Multiply by Amplitude and add DCOffset.

waveform = w × Amplitude + DCOffset

Version History
Introduced in R2016a

New MaxSamplesPerFrame property

Use the MaxSamplesPerFrame property to specify the maximum number of samples per frame.
Setting the property to a lower value can save memory when using code generation.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

“System Objects in MATLAB Code Generation” (MATLAB Coder)

3 System Objects

3-384

See Also
audioOscillator | Wavetable Synthesizer

 wavetableSynthesizer

3-385

weightingFilter
Frequency-weighted filter

Description
The weightingFilter System object performs frequency-weighted filtering independently across
each input channel.

To perform frequency-weighted filtering:

1 Create the weightingFilter object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation
Syntax
weightFilt = weightingFilter
weightFilt = weightingFilter(weightType)
weightFilt = weightingFilter(weightType,Fs)
weightFilt = weightingFilter(___ ,Name,Value)

Description

weightFilt = weightingFilter creates a System object, weightFilt, that performs frequency-
weighted filtering independently across each input channel.

weightFilt = weightingFilter(weightType) sets the Method property to weightType.

3 System Objects

3-386

weightFilt = weightingFilter(weightType,Fs) sets the SampleRate property to Fs.

weightFilt = weightingFilter(___ ,Name,Value) sets each property Name to the specified
Value. Unspecified properties have default values.
Example: weightFilt = weightingFilter('C-weighting','SampleRate',96000) creates a
C-weighting filter with a sample rate of 96,000 Hz.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Method — Type of weighting
'A-weighting' (default) | 'C-weighting' | 'K-weighting'

Type of weighting, specified as 'A-weighting', 'C-weighting', or 'K-weighting'. See
“Algorithms” on page 3-398 for more information.

Tunable: No
Data Types: char | string

SampleRate — Input sample rate (Hz)
44100 (default) | positive scalar

Input sample rate in Hz, specified as a positive scalar.

Tunable: Yes
Data Types: single | double

Usage

Syntax
audioOut = weightFilt(audioIn)

Description

audioOut = weightFilt(audioIn) applies frequency-weighted filtering to the input signal,
audioIn, and returns the filtered signal, audioOut. The type of filtering is specified by the
algorithm and properties of the weightingFilter System object, weightFilt.

Input Arguments

audioIn — Audio input to weighting filter
matrix

 weightingFilter

3-387

Audio input to the weighting filter, specified as a matrix. The columns of the matrix are treated as
independent audio channels.
Data Types: single | double

Output Arguments

audioOut — Audio output from weighting filter
matrix

Audio output from the weighting filter, returned as a matrix the same size as audioIn.
Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to weightingFilter
visualize Visualize and validate filter response
getFilter Return biquad filter object with design parameters set
createAudioPluginClass Create audio plugin class that implements functionality of System object
isStandardCompliant Verify filter design is IEC 61672-1:2002 compliant

Common to All System Objects
clone Create duplicate System object
isLocked Determine if System object is in use
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object
step Run System object algorithm

Note weightingFilter supports additional filter analysis functions. See “Compare and Analyze
Weighting Types” on page 3-393 for details.

Examples

Validate Filter Compliance

Check the compliance status of filter designs and visualize them.

Create an A-weighting filter with a 22.5 kHz sample rate. Verify that the filter is standard compliant
and visualize the filter design.

aWeight = weightingFilter('A-weighting','SampleRate',22500);
complianceStatus = isStandardCompliant(aWeight,'class 1')

3 System Objects

3-388

complianceStatus = logical
 0

visualize(aWeight,'class 1')

 weightingFilter

3-389

Change your A-weighting filter sample rate to 44.1 kHz. Verify that the filter is standard compliant
and visualize the filter design.

aWeight.SampleRate = 44100;

3 System Objects

3-390

complianceStatus = isStandardCompliant(aWeight,'class 1')

complianceStatus = logical
 1

 weightingFilter

3-391

Perform A-Weighted Filtering

Use the weightingFilter System object™ to design an A-weighted filter, and then process an audio
signal using your frequency-weighted filter design.

Create a dsp.AudioFileReader System object.

samplesPerFrame = 1024;
reader = dsp.AudioFileReader(Filename="RockGuitar-16-44p1-stereo-72secs.wav", ...
 SamplesPerFrame=samplesPerFrame, ...
 PlayCount=Inf);

Create a weightingFilter System object. Use the sample rate of the reader as the sample rate of
the weighting filter.

Fs = reader.SampleRate;
weightFilt = weightingFilter("A-weighting",Fs);

Create a spectrum analyzer to visualize the original audio signal and the audio signal after frequency-
weighted filtering.

scope = spectrumAnalyzer(...
 SampleRate=Fs, ...

3 System Objects

3-392

 PlotAsTwoSidedSpectrum=false, ...
 FrequencyScale="log", ...
 Title="A-Weighted Filtering", ...
 ShowLegend=true, ...
 ChannelNames=["Original signal","Filtered signal"]);

Process the audio signal in an audio stream loop. Visualize the filtered audio and the original audio.
As a best practice, release the System objects when complete.

tic
while toc < 20
 x = reader();
 y = weightFilt(x);
 scope([x(:,1),y(:,1)])
end

release(weightFilt)
release(reader)
release(scope)

Compare and Analyze Weighting Types

Compare the A-weighted, C-weighted, and K-weighted filtering of an engine sound.

 weightingFilter

3-393

Create an A-weighting filter, a C-weighting filter, and a K-weighting filter. Compare and analyze the
filters using FVTool.

wF{1} = weightingFilter;
wF{2} = weightingFilter('C-weighting');
wF{3} = weightingFilter('K-weighting');

fvt = fvtool(wF{1},wF{2},wF{3},'FrequencyScale','Log', ...
 'Fs',wF{1}.SampleRate);
legend(fvt,'A-weighting','C-weighting','K-weighting', ...
 Location="best")

The weightingFilter object supports several filter analysis methods. For more information, use
help at the command line:

help weightingFilter.helpFilterAnalysis

 The following analysis methods are available for discrete-time filter System objects:

 fvtool - Filter visualization tool
 info - Filter information
 freqz - Frequency response
 phasez - Phase response
 zerophase - Zero-phase response
 grpdelay - Group delay response
 phasedelay - Phase delay response
 impz - Impulse response
 impzlength - Length of impulse response

3 System Objects

3-394

 stepz - Step response
 zplane - Pole/zero plot
 cost - Cost estimate for implementation of the filter System object
 measure - Measure characteristics of the frequency response

 outputDelay - Output delay value
 order - Filter order
 coeffs - Filter coefficients in a structure
 firtype - Determine the type (1-4) of a linear phase FIR filter System object
 tf - Convert to transfer function
 zpk - Convert to zero-pole-gain
 ss - Convert to state space representation

 isallpass - Verify if filter System object is allpass
 isfir - Verify if filter System object is FIR
 islinphase - Verify if filter System object is linear phase
 ismaxphase - Verify if filter System object is maximum phase
 isminphase - Verify if filter System object is minimum phase
 isreal - Verify if filter System object is minimum real
 issos - Verify if filter System object is in second-order sections form
 isstable - Verify if filter System object is stable

 realizemdl - Filter realization (Simulink diagram)

 specifyall - Fully specify fixed-point filter System object settings

 cascade - Create a FilterCascade System object

 Second-order sections:

 scale - Scale second-order sections of BiquadFilter System object
 scalecheck - Check scaling of BiquadFilter System object
 reorder - Reorder second-order sections of BiquadFilter System object
 cumsec - Cumulative second-order section of BiquadFilter System object
 scaleopts - Create an options object for second-order section scaling
 sos - Convert to second-order-sections (for IIRFilter System objects only)

 Fixed-Point (Fixed-Point Designer Required):

 freqrespest - Frequency response estimate via filtering
 freqrespopts - Create an options object for frequency response estimate
 noisepsd - Power spectral density of filter output due to roundoff noise
 noisepsdopts - Create an options object for output noise PSD computation

 Multirate Analysis:

 polyphase - Polyphase decomposition of multirate filter System object
 gain (CIC decimator) - Gain of CIC decimator filter System object
 gain (CIC interpolator) - Gain of CIC interpolator filter System object

 For decimator, interpolator, or rate change filter System objects
 the analysis tools perform computations relative to the rate at
 which the filter is running. If a sampling frequency is specified,
 it is assumed that the filter is running at that rate.

Help for weightingFilter.helpFilterAnalysis is inherited from superclass dsp.internal.FilterAnalysis

 weightingFilter

3-395

Create a dsp.AudioFileReader and specify a sound file. Create an audioDeviceWriter with
default properties. In an audio stream loop, play the white noise, and then listen to it filtered through
the A-weighted, C-weighted, and K-weighted filters, successively.

fileReader = dsp.AudioFileReader('Engine-16-44p1-stereo-20sec.wav');
deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);

fprintf('No filtering...')

No filtering...

for i = 1:400
 x = fileReader();
 if i==100
 index = 1;
 fprintf('A-weighted filtering...')
 elseif i==200
 index = 2;
 fprintf('C-weighted filtering...')
 elseif i==300
 index = 3;
 fprintf('K-weighted filtering...\n')
 end
 if i>99
 y = wF{index}(x);
 else
 y = x;
 end
 deviceWriter(y);
end

A-weighted filtering...

C-weighted filtering...

K-weighted filtering...

As a best practice, release your objects once done.

release(deviceWriter)
release(fileReader)

Use Weighting Filter Design with Biquad Filter

The weightingFilter object uses second-order sections (SOS) for filtering. To extract the
weighting filter design, use getFilter to return a dsp.BiquadFilter object with the SOSMatrix
and ScaleValues properties set.

Use weightingFilter to create C-weighted and A-weighted filter objects. Use getFilter to
return corresponding dsp.BiquadFilter objects.

cFilt = weightingFilter('C-weighting');
aFilt = weightingFilter('A-weighting');
cSOSFilter = getFilter(cFilt);
aSOSFilter = getFilter(aFilt);

3 System Objects

3-396

Create an audio file reader and audio device writer for audio input/output. Use the sample rate of
your reader as the sample rate of your writer.

fileReader = dsp.AudioFileReader('JetAirplane-16-11p025-mono-16secs.wav');
deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);

In an audio stream loop, play the unfiltered signal. Release your file reader so that the next time you
call it, it reads from the beginning of the file.

tic
while toc<8
 x = fileReader();
 deviceWriter(x);
end
release(fileReader)

Play the signal processed by the A-weighted filter. Then play the signal processed by the C-weighted
filter. Cache the power in each frame of the original and filtered signals for analysis. As a best
practice, release your file reader and device writer once complete.

y = [];
count = 1;
tic
while ~isDone(fileReader)
 x = fileReader();
 aFiltered = aSOSFilter(x);
 cFiltered = cSOSFilter(x);
 if toc>8
 deviceWriter(cFiltered);
 else
 deviceWriter(aFiltered);
 end
 xPower(count) = var(x);
 aPower(count) = var(aFiltered);
 cPower(count) = var(cFiltered);
 y = [y;x];
 count = count+1;
end

release(fileReader)
release(deviceWriter)

Plot the power of the original signal, the A-weighted signal, and the C-weighted signal over time.

subplot(2,1,1)
spectrogram(y,512,256,4096,fileReader.SampleRate,'yaxis')
title('Original Signal')

subplot(2,1,2)
t = linspace(0,16.3468,count-1);
plot(t,xPower,'r',t,aPower,'b',t,cPower,'g')
legend('Original Signal','A-Weighted','C-Weighted')
xlabel('Time (s)')
ylabel('Power')

 weightingFilter

3-397

Algorithms
A-Weighting

The A-curve is a wide bandpass filter centered at 2.5 kHz, with approximately 20 dB attenuation at
100 Hz. A-weighted SPL measurements of noise level are increasingly found in sales literature for
domestic appliances. In most countries, the use of A-weighting is mandated for the protection of
workers against noise-induced deafness. The ISO and ICOA standards mandate A-weighting for all
civil aircraft noise measurements.

The ANSI S1.42.2001 [1] defines this weighting curve. The IEC 61672-1:2002 [2] standard defines the
minimum and maximum attenuation limits for an A-weighting filter.

ANSI S1.42.2001 defines the weighting curve by specifying analog poles and zeros. Audio Toolbox
converts the specified poles and zeros to the digital domain using a bilinear transform:

3 System Objects

3-398

C-Weighting

The C-curve is "flat," but with limited bandwidth: It has –3 dB corners at 31.5 Hz and 8 kHz. C-curves
are used in sound level meters for sounds that are louder than those intended for A-weighting filters.

The ANSI S1.42-2001 [1] defines the C-weighting curve. The IEC 61672-1:2002 [2] standard defines
the minimum and maximum attenuation limits for C-weighting filters.

ANSI S1.42.2001 defines the weighting curve by specifying analog poles and zeros. Audio Toolbox
converts the specified poles and zeros to the digital domain using a bilinear transform:

K-Weighting

The K-weighting filter is used for loudness normalization in broadcast. It is composed of two stages of
filtering: a first stage shelving filter and a second stage highpass filter.

The ITU-R BS.1770-4 [3] standard defines this curve.

Assume a second-order filter.

 weightingFilter

3-399

The table shows the coefficients for the filters.

First Stage Shelving Coefficients Second Stage Highpass Coefficients
a1 = − 1.69065929318241 a1 = − 1.99004745483398
a2 = 0.73248077421585 a2 = 0.99007225036621
b0 = 1.53512485958697 b0 = 1.0
b1 = − 2.6916918940638 b1 = − 2.0
b2 = 1.19839281085285 b2 = 1.0

The coefficients presented by ITU-R BS.1770-4 are defined for 48 kHz. These coefficients are
recomputed for nonstandard sample rates using the algorithm described in [4].

Version History
Introduced in R2016b

References
[1] Acoustical Society of America. Design Response of Weighting Networks for Acoustical

Measurements. ANSI S1.42-2001. New York, NY: American National Standards Institute,
2001.

[2] International Electrotechnical Commission. Electroacoustics Sound Level Meters Part 1:
Specifications. First Edition. IEC 61672-1. 2002–2005.

[3] International Telecommunication Union. Algorithms to measure audio programme loudness and
true-peak audio level. ITU-R BS.1770-4. 2015.

[4] Mansbridge, Stuart, Saoirse Finn, and Joshua D. Reiss. "Implementation and Evaluation of
Autonomous Multi-track Fader Control." Paper presented at the 132nd Audio Engineering
Society Convention, Budapest, Hungary, 2012.

3 System Objects

3-400

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

“System Objects in MATLAB Code Generation” (MATLAB Coder)

See Also
Weighting Filter | multibandParametricEQ | octaveFilter | dsp.BiquadFilter

Topics
“Audio Weighting Filters”
“Sound Pressure Measurement of Octave Frequency Bands”

 weightingFilter

3-401

isStandardCompliant
Verify filter design is IEC 61672-1:2002 compliant

Syntax
complianceStatus = isStandardCompliant(weightFilt,classType)
complianceStatus = isStandardCompliant(___ ,freqRange)

Description
complianceStatus = isStandardCompliant(weightFilt,classType) returns a logical
scalar, complianceStatus, indicating whether the weightFilt filter design is compliant with the
minimum and maximum attenuation specifications for the classType design specified in IEC
61672-1:2002. You can check compliance for A-weighting and C-weighting filters only.

complianceStatus = isStandardCompliant(___ ,freqRange) specifies the range of
frequencies checked for compliance.

Examples

Verify Class 1 Standard Compliance

Create an object of the weightingFilter System object™. Call isStandardCompliant, specifying
the compliance class type to check as the second argument.

weightFilt = weightingFilter;
complianceStatus = isStandardCompliant(weightFilt,'class 1')

complianceStatus = logical
 1

Specify Frequency Range Checked for Compliance

Create an object of the weightingFilter System object™. Check the 'class 2' compliance status of
the filter design over a specified frequency range.

weightFilt = weightingFilter;
isStandardCompliant(weightFilt,'class 2',[120,2000])

ans = logical
 1

3 System Objects

3-402

Input Arguments
weightFilt — Object of weightingFilter
object

Object of the weightingFilter System object.

classType — Compliance class type
'class 1' | 'class 2'

Compliance class type to verify, specified as 'class 1 or 'class 2'.
Data Types: char

freqRange — Frequency range checked for compliance (Hz)
[minFreq,maxFreq] | two-element vector of increasing values

Specify the frequency range, in Hz, checked for compliance as a two-element vector of increasing
values: [minFreq,maxFreq].
Data Types: single | double

Output Arguments
complianceStatus — Compliance status of filter design
scalar

Compliance status of filter design, returned as a logical scalar. The compliance status indicates
whether the weightFilt filter design is compliant with the minimum and maximum attenuation
specifications for the class type design specified by IEC 61672-1:2002 standard. Compliance can only
be checked for A-weighting and C-weighting filters.
Data Types: logical

Note The pole-zero values defined in the ANSI S1.42-2001 standard are used for designing the A-
weighted and C-weighted filters. The pole-zero values are based on analog filters, so the design can
break compliance for lower sample rates.

Version History
Introduced in R2016b

See Also
Topics
“Audio Weighting Filters”
“Sound Pressure Measurement of Octave Frequency Bands”

 isStandardCompliant

3-403

visualize
Visualize and validate filter response

Syntax
visualize(weightFilt)
visualize(weightFilt,N)
visualize(___ ,mType)
hvsz = visualize(___)

Description
visualize(weightFilt) plots the magnitude response of the frequency-weighted filter
weightFilt. The plot is updated automatically when properties of the object change.

visualize(weightFilt,N) uses an N-point FFT to calculate the magnitude response.

visualize(___ ,mType) creates a mask based on the class of filter specified by mType, using
either of the previous syntaxes.

hvsz = visualize(___) returns a handle to the visualizer as a
dsp.DynamicFilterVisualizer object when called with any of the previous syntaxes.

Examples

Plot Weighting Filter Magnitude Response

Create a weightingFilter System object™ and then plot the magnitude response of the filter.

weightFilt = weightingFilter;
visualize(weightFilt)

3 System Objects

3-404

Specify Number of Frequency Bins in FFT Calculation

Create a weightingFilter System object™. Plot a 1024-point frequency representation.

weightFilt = weightingFilter;
visualize(weightFilt,1024)

 visualize

3-405

Visualize Class 2 Standard-Compliance Mask

Create a weightingFilter System object™. Visualize the class 2 compliance of the filter design.

weightFilt = weightingFilter;
visualize(weightFilt,'class 2')

3 System Objects

3-406

Input Arguments
weightFilt — Object of weightingFilter
object

Object of the weightingFilter System object.

N — Number of DFT bins
2048 | positive scalar

Number of DFT bins in frequency-domain representation, specified as a positive scalar. The default is
2048.
Data Types: single | double

mType — Type of mask
'class 1' (default) | 'class 2'

Type of mask, specified as 'class 1' or 'class 2'.

The mask attenuation limits are defined in the IEC 61672-1:2002 standard. The mask is defined for A-
weighting and C-weighting filters only.

• If the mask is green, the design is compliant with the IEC 61672-1:2002 standard.

 visualize

3-407

• If the mask is red, the design breaks compliance.

Note The pole-zero values defined in the ANSI S1.42-2001 standard are used for designing the A-
weighted and C-weighted filters. The pole-zero values are based on analog filters, so the design can
break compliance for lower sample rates.

Data Types: char

Version History
Introduced in R2016b

See Also
Topics
“Audio Weighting Filters”
“Sound Pressure Measurement of Octave Frequency Bands”

3 System Objects

3-408

Classes

4

plotFeatures
Plot extracted audio features

Syntax
plotFeatures(afe,audioIn)
plotFeatures(___ ,Name=Value)
figureHandle = plotFeatures(___)

Description
plotFeatures(afe,audioIn) extracts the enabled features of the audioFeatureExtractor
object afe from the audio input and plots them.

plotFeatures(___ ,Name=Value) specifies properties of the plot using one or more name-value
arguments. For example, to plot the audio signal along with the features, set PlotInput to true.

figureHandle = plotFeatures(___) returns a handle to the figure containing the plot.

Examples

Visualize Extracted Audio Features

Use plotFeatures to visualize audio features extracted with an audioFeatureExtractor object.

Read in an audio signal from a file.

[audioIn,fs] = audioread("Counting-16-44p1-mono-15secs.wav");

Create an audioFeatureExtractor object that extracts the gammatone cepstral coefficients
(GTCCs) and the delta of the GTCCs. Set the SampleRate property to the sample rate of the audio
signal, and use the default values for the other properties.

afe = audioFeatureExtractor(SampleRate=fs,gtcc=true,gtccDelta=true);

Plot the features extracted from the audio signal.

plotFeatures(afe,audioIn)

4 Classes

4-2

Plot Audio Signal with Extracted Features

Read in an audio signal from a file.

[audioIn,fs] = audioread("SingingAMajor-16-mono-18secs.ogg");

Create an audioFeatureExtractor object that extracts the pitch and harmonic ratio. Set the
SampleRate property to the sample rate of the audio signal, and use the default values for the other
properties.

afe = audioFeatureExtractor(SampleRate=fs,pitch=true,harmonicRatio=true);

Plot the features with PlotInput set to true to include the audio signal in the plot.

plotFeatures(afe,audioIn,PlotInput=true)

 plotFeatures

4-3

Input Arguments
afe — Input object
audioFeatureExtractor object

Input object, specified as an audioFeatureExtractor object. The audioFeatureExtractor
object must have at least one feature enabled.

audioIn — Input audio
column vector | matrix

Input audio, specified as a column vector or matrix of independent channels (columns). If the input
has multiple channels, then the function plots only the features of the first channel. The length of the
audio signal must be greater than or equal to the length of the Window property of the
audioFeatureExtractor object.
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

4 Classes

4-4

Example: plotFeatures(afe,audioIn,PlotInput=true)

PlotInput — Plot input audio signal
false (default) | true

Plot the input audio signal in addition to the extracted features, specified as true or false. If
audioIn has multiple channels (columns), then the function plots only the first channel.
Data Types: logical

Parent — Parent container
container object

Parent container for the plot, specified as an object that is a valid Parent of a TiledChartLayout
object.

Output Arguments
figureHandle — Figure handle
Figure object

Handle to the figure containing the plot, returned as a Figure object.

If the Parent argument is specified, plotFeatures returns the specified parent.

Version History
Introduced in R2022b

See Also
audioFeatureExtractor | extract

 plotFeatures

4-5

generateMATLABFunction
Create MATLAB function compatible with C/C++ code generation

Syntax
generateMATLABFunction(afe)
generateMATLABFunction(afe,fileName)

generateMATLABFunction(___ ,'IsStreaming',TF)

Description
Generate Equivalent MATLAB Function

generateMATLABFunction(afe) generates code and opens an untitled file containing a function
named extractAudioFeatures. The generated MATLAB function has the signature:

featureVector = extractAudioFeatures(audioIn)

The signature is equivalent to:

featureVector = extract(afe,audioIn)

generateMATLABFunction(afe,fileName) generates code and saves the resulting function to
the file specified by fileName. The generated MATLAB function has the signature:

featureVector = functionName(audioIn)

The signature is equivalent to:

featureVector = extract(afe,audioIn)

Generate MATLAB Function for Stream Processing

generateMATLABFunction(___ ,'IsStreaming',TF) specifies whether the function is intended
for stream (single-frame) processing. If TF is specified as true, the resulting function requires single-
frame input of length numel(afe.Window). If individual feature extractors have state, the resulting
function maintains the state between calls. If unspecified, TF defaults to false. The streaming
function has the signature:

featureVector = functionName(audioIn,varargin)

The size of featureVector depends on the value of IsStreaming.

• If IsStreaming was set to true, then featureVector is returned as an M-by-N matrix, where
M is the number of features extracted and N is the number of channels.

• If IsStreaming was set to false, then featureVector is returned as an L-by-M-by-N array,
where L is the number of hops, M is the number of feature vectors, and N is the number of
channels.

The possible values of varargin depends on the configuration of your audioFeatureExtractor
object, afe.

4 Classes

4-6

• If the features your audioFeatureExtractor object extracts do not require state, then
varargin must be empty.

• If the features your audioFeatureExtractor object extracts require state, then varargin can
be the optional name-value pair 'Reset' and either true or false. If you call the function with
'Reset' set to true, then the function clears any state before calculating and returning the
feature vector.

Examples

Generate Equivalent MATLAB® Function

You can use the audioFeatureExtractor object while developing a feature extraction pipeline in
MATLAB. Once you are ready to deploy your system to a device or integrate it into a larger system,
use generateMATLABFunction to create a MATLAB function suitable for C/C++ code generation.
Then use MATLAB Coder™ to generate equivalent C/C++ code.

Read in an audio file. You will use this audio file to verify the equivalency of the
audioFeatureExtractor object and the generated MATLAB function.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');

Create an audioFeatureExtractor object to extract the Bark spectrum, the delta gammatone
cepstral coefficients (GTCC), and the harmonic ratio.

afe = audioFeatureExtractor("Window",hann(512,"periodic"), ...
 "OverlapLength",256, ...
 "SampleRate",fs, ...
 "FFTLength",1024, ...
 'barkSpectrum',true, ...
 "gtccDelta",true, ...
 "harmonicRatio",true)

afe =
 audioFeatureExtractor with properties:

 Properties
 Window: [512x1 double]
 OverlapLength: 256
 SampleRate: 44100
 FFTLength: 1024
 SpectralDescriptorInput: 'linearSpectrum'
 FeatureVectorLength: 46

 Enabled Features
 barkSpectrum, gtccDelta, harmonicRatio

 Disabled Features
 linearSpectrum, melSpectrum, erbSpectrum, mfcc, mfccDelta, mfccDeltaDelta
 gtcc, gtccDeltaDelta, spectralCentroid, spectralCrest, spectralDecrease, spectralEntropy
 spectralFlatness, spectralFlux, spectralKurtosis, spectralRolloffPoint, spectralSkewness, spectralSlope
 spectralSpread, pitch, zerocrossrate, shortTimeEnergy

 To extract a feature, set the corresponding property to true.

 generateMATLABFunction

4-7

 For example, obj.mfcc = true, adds mfcc to the list of enabled features.

Call generateMATLABFunction on the object and specify a name for the generated MATLAB
function.

functionName = 'extractAudioFeatures';
generateMATLABFunction(afe,functionName)

The generated function is saved to your current folder.

type extractAudioFeatures

function featureVector = extractAudioFeatures(x)
%extractAudioFeatures Extract multiple features from batch audio
% featureVector = extractAudioFeatures(audioIn) returns audio features
% extracted from audioIn.
%
% Parameters of the audioFeatureExtractor used to generate this
% function must be honored when calling this function.
% - Sample rate of the input should be 44100 Hz.
% - Input frame length should be greater than or equal to 512 samples.
%
%
% % EXAMPLE 1: Extract features
% source = dsp.ColoredNoise("SamplesPerFrame",44100);
% for ii = 1:10
% audioIn = source();
% featureArray = extractAudioFeatures(audioIn);
% % ... do something with featureArray ...
% end
%
%
% % EXAMPLE 2: Generate code
% targetDataType = "single";
% codegen extractAudioFeatures -args {ones(44100,1,targetDataType)}
% source = dsp.ColoredNoise("SamplesPerFrame",44100, ...
% "OutputDataType",targetDataType);
% for ii = 1:10
% audioIn = source();
% featureArray = extractAudioFeatures_mex(audioIn);
% % ... do something with featureArray ...
% end
%
% See also audioFeatureExtractor, dsp.AsyncBuffer, codegen.

% Generated by audioFeatureExtractor on 31-Aug-2022 04:55:07 UTC-04:00
%#codegen

dataType = underlyingType(x);
[numSamples,numChannels] = size(x);

props = coder.const(getProps(dataType));

persistent config outputIndex
if isempty(outputIndex)
 [config, outputIndex] = coder.const(@getConfig,dataType,props);
end

4 Classes

4-8

% Preallocate feature vector
numHops = floor((numSamples-numel(props.Window))/(numel(props.Window) - props.OverlapLength)) + 1;
featureVector = coder.nullcopy(zeros(numHops,props.NumFeatures,numChannels,dataType));

% Short-time Fourier transform
Y = stft(x,"Window",props.Window,"OverlapLength",props.OverlapLength,"FFTLength",props.FFTLength,"FrequencyRange","onesided");
Z = reshape(Y,[],numHops*numChannels);
Zpower = real(Z.*conj(Z));

% Bark spectrum
barkSpectrum = reshape(config.barkSpectrum.FilterBank*Zpower,[],numHops,numChannels);
featureVector(:,outputIndex.barkSpectrum,:) = permute(barkSpectrum,[2,1,3]);

% ERB spectrum
erbSpectrum = reshape(config.erbSpectrum.FilterBank*Zpower,[],numHops,numChannels);

% Gammatone-frequency cepstral coefficients (GTCC)
gammacc = cepstralCoefficients(erbSpectrum,"NumCoeffs",13,"Rectification","log");
featureVector(:,outputIndex.gtccDelta,:) = audioDelta(gammacc,9);

% Periodicity features
featureVector(:,outputIndex.harmonicRatio,:) = harmonicRatio(x,props.SampleRate,"Window",props.Window,"OverlapLength",props.OverlapLength);
end

function props = getProps(dataType)
props.Window = cast([0;3.764908042774850471801073581446e-05;0.00015059065189787501637397326703649;0.00033880770582522812262027400720399;0.00060227189741379749676752908271737;0.00094094354992541040516584871511441;0.0013547716606548965145861984638032;0.0018436939086109993546358509775018;0.0024076366639015356341246842930559;0.0030465149988219697441138578142272;0.0037602327006450164681439218838932;0.0045486822861099951431640420196345;0.0054117450176094927805081624683226;0.0063492909210707826339614712196635;0.0073611788055293891908092973608291;0.0084472562843918574948531841073418;0.0096073597983847847103788808453828;0.010841314640186172635338834879803;0.012148934980735714983524076160393;0.0135300238972199116105343819072;0.014984373402728012880658070571371;0.016511764477573964704504305700539;0.018111967102280079888743102856097;0.019784740292217106727434838830959;0.021529832133895587809035987447714;0.023346979822903068946260418670136;0.025235909703481662624824366503162;0.027196337309739360144078545999946;0.029227967408489596845555524851079;0.031330494043712520113587061132421;0.0335036005826305216537264186627;0.035746959763392205378096377899055;0.038060233744356630758431947469944;0.040443074154971114797518794148345;0.042895122148234654524401321395999;0.045416008454738809874129401578102;0.048005353438278330902022617010516;0.050662767153023091637464858649764;0.053387849402242337770729818657856;0.056180189798573032522455150683527;0.059039367825822475221997365224524;0.061964952902296699388529077623389;0.064956504445644269729598363483092;0.068013571939206651784104451508028;0.071135694999863940957141039689304;0.07432240344736740222941762112896;0.077573217375146441554534249007702;0.080887647222580960626459045670344;0.084265193848727382164298660427448;0.087705348607487354506417887023417;0.091207593424208144305964651721297;0.094771400873702615896831957797986;0.098396234259677528566356841110974;0.1020815476955582168372416163038;0.10582678618669683068276299309218;0.10963138571395275588926665477629;0.11349477331863150331159317829588;0.11741636718877052070197919420025;0.12139557674675771625771858452936;0.12543180273827031490085914811061;0.12952443732252039154673184384592;0.13367286416379359215156341633701;0.1378764585242664986175498142984;0.14213458735809070265787568132509;0.14644660940672621363134453531529;0.1508118752955135422055832350452;0.15522972763146652974697303761786;0.159699501102273433428280213775;0.16422052257649077944279270013794;0.16879211120491410813571064863936;0.17341357852311156673152936491533;0.17808422855510425142355757088808;0.18280335791817725610286515802727;0.1875702559288067727827353792236;0.19238420470968659037325210192648;0.19724447929783722743835028268222;0.20215034775378326603600953603745;0.2071010712717805679616844827251;0.21209590429107733067226604362077;0.21713409460819338425707769602013;0.22221488349019885566448806457629;0.22733750578897676808409755722096;0.23250119005645136782689519350242;0.23770515866076558086916747924988;0.24294862790338916935795054996561;0.248230808137141212288412361886;0.25355090388510792553944384053466;0.25890811396043855729942606558325;0.26430163158700109571341840819514;0.2697306445208800251833736183471;0.27519433517269670241844892188965;0.28069188073073614297925360006047;0.28622245328485890203396024844551;0.29178521995118134046975910678157;0.29737934299750506950132944439247;0.3030039799694759228287921359879;0.30865828381745508135480804412509;0.31434140302408120071220309910132;0.32005248173250588905602853628807;0.32579065987528277315021796312067;0.33155507330389000220094430915196;0.33734485391886848137943388792337;0.34315912980055418568525738010067;0.34899702534038590240328403524472;0.354857661372768862229065689462;0.36074015530747349789209010850755;0.36664362126255078955239241622621;0.37256717019774265864384688029531;0.37850991004836798126120811502915;0.38447094585966434809876091094338;0.39044937992156514283692558819894;0.39644431190389073371704853343545;0.40245483899193584820253022371617;0.40848005602242948297586622175004;0.41451905561984930814745098359708;0.42057092833306930490522290710942;0.42663476277231915378962412432884;0.43270964574643688838051502898452;0.43879466240039188829058502960834;0.44488889635305839398426996922353;0.45099142983521961491888419004681;0.4571013438277800600140210462996;0.46321771820016627296823230608425;0.46933963184889565534163580196036;0.47546616283629095089935390205937;0.481596388529320518223642011435;0.48772938573854385246875153825385;0.49386423085714004077573235917953;0.49999999999999994448884876874217;0.50613576914285995922426764082047;0.51227061426145603650894599923049;0.518403611470679481776357988565;0.52453383716370904910064609794063;0.53066036815110428914721296678181;0.53678228179983367152061646265793;0.54289865617221988447482772244257;0.54900857016478032956996457869536;0.55511110364694149499342756826081;0.56120533759960811170941497039166;0.56729035425356300059718250849983;0.57336523722768084621037587567116;0.57942907166693058407247463037493;0.58548094438015063634139778514509;0.59151994397757046151298254699213;0.59754516100806409628631854502601;0.60355568809610926628295146656455;0.60955062007843485716307441180106;0.61552905414033554087893662654096;0.6214900899516319077164894224552;0.62743282980225723033385065718903;0.63335637873744921044760758377379;0.63925984469252650210790989149245;0.64514233862723102674863184802234;0.65100297465961398657441350223962;0.65684087019944570329244015738368;0.66265514608113140759826364956098;0.66844492669610999779905569084804;0.67420934012471722684978203687933;0.67994751826749411094397146371193;0.68565859697591879928779690089868;0.69134171618254480762288949335925;0.69699602003052396614890540149645;0.70262065700249487498751932434971;0.70821478004881854850793843070278;0.71377754671514093143258605778101;0.71930811926926363497614147490822;0.72480566482730335309270230936818;0.73026935547912008583892884416855;0.73569836841299884877543036054703;0.7410918860395613316782714719011;0.74644909611489196343825369694969;0.75176919186285873220043640685617;0.75705137209661077513089821877657;0.76229484133923430810853005823446;0.7674988099435484656396511127241;0.77266249421102317640475121152122;0.77778511650980097780205824165023;0.78286590539180656023177107272204;0.78790409570892272483888518763706;0.7928989287282194320383155172749;0.79784965224621662294168800144689;0.80275552070216271705049848605995;0.80761579529031335411559666681569;0.81242974407119317170611338951858;0.81719664208182263287483237945708;0.82191577144489569306529119785409;0.82658642147688832224616817256901;0.83120788879508600288659181387629;0.83577947742350922055720729986206;0.84030049889772651106056855496718;0.84477027236853352576417819363996;0.84918812470448634677211430243915;0.85355339059327373085750423342688;0.85786541264190929734212431867491;0.86212354147573333484899649192812;0.86632713583620635233728535240516;0.87047556267747938640866323112277;0.87456819726172962958798962063156;0.8786044232532423947645838779863;0.88258363281122953480917203705758;0.88650522668136844117725559044629;0.89036861428604718859958211396588;0.89417321381330316931723700690782;0.89791845230444167214045592118055;0.9016037657403224159224919276312;0.90522859912629738410316804220201;0.90879240657579174467173288576305;0.91229465139251253447127965046093;0.91573480615127267334685257083038;0.91911235277741898386238972307183;0.9224267826248535584454657509923;0.92567759655263259777058237887104;0.92886430500013594802055649779504;0.93198642806079334821589554849197;0.93504349555435561924809917400125;0.93803504709770324510031969111878;0.94096063217417746926685140351765;0.94381981020142691196639361805865;0.94661215059775760671811895008432;0.94933723284697690836253514135024;0.95199464656172172460912861424731;0.9545839915452611901258705984219;0.957104877851765345475598678604;0.95955692584502894071363243710948;0.96193976625564336924156805253006;0.96425304023660773911075239084312;0.96649639941736942283512235007947;0.96866950595628742437526170760975;0.97077203259151034764329324389109;0.9728036626902605288336189914844;0.97476409029651833737517563349684;0.97665302017709687554258835007204;0.97847016786610441219096401255229;0.98021525970778289327256516116904;0.98188803289771997562240812840173;0.98348823552242603529549569429946;0.98501562659727204263049316068646;0.98646997610277997736716315557715;0.98785106501926422950532469258178;0.98915868535981377185350993386237;0.99039264020161521528962111915462;0.99155274371560819801629804715049;0.99263882119447055529803947138134;0.99365070907892916185488729752251;0.9945882549823905627306430687895;0.99545131771388994934568472672254;0.99623976729935503904300730937393;0.9969534850011780857670373734436;0.99759236333609835334357285319129;0.99815630609138894513421291776467;0.9986452283393451034854138015362;0.99905905645007453408368292002706;0.99939772810258620250323247091728;0.99966119229417471636622849473497;0.99984940934810206947247479547514;0.99996235091957230700643322052201;1;0.99996235091957230700643322052201;0.99984940934810206947247479547514;0.99966119229417471636622849473497;0.99939772810258620250323247091728;0.99905905645007453408368292002706;0.9986452283393451034854138015362;0.99815630609138894513421291776467;0.99759236333609835334357285319129;0.9969534850011780857670373734436;0.99623976729935503904300730937393;0.99545131771388994934568472672254;0.9945882549823905627306430687895;0.99365070907892916185488729752251;0.99263882119447055529803947138134;0.99155274371560819801629804715049;0.99039264020161521528962111915462;0.98915868535981377185350993386237;0.98785106501926422950532469258178;0.98646997610277997736716315557715;0.98501562659727204263049316068646;0.98348823552242603529549569429946;0.98188803289771997562240812840173;0.98021525970778289327256516116904;0.97847016786610441219096401255229;0.97665302017709687554258835007204;0.97476409029651833737517563349684;0.9728036626902605288336189914844;0.97077203259151034764329324389109;0.96866950595628742437526170760975;0.96649639941736942283512235007947;0.96425304023660773911075239084312;0.96193976625564336924156805253006;0.95955692584502894071363243710948;0.957104877851765345475598678604;0.9545839915452611901258705984219;0.95199464656172172460912861424731;0.94933723284697690836253514135024;0.94661215059775760671811895008432;0.94381981020142691196639361805865;0.94096063217417746926685140351765;0.93803504709770324510031969111878;0.93504349555435561924809917400125;0.93198642806079334821589554849197;0.92886430500013594802055649779504;0.92567759655263259777058237887104;0.9224267826248535584454657509923;0.91911235277741898386238972307183;0.91573480615127267334685257083038;0.91229465139251253447127965046093;0.90879240657579174467173288576305;0.90522859912629738410316804220201;0.9016037657403224159224919276312;0.89791845230444167214045592118055;0.89417321381330316931723700690782;0.89036861428604718859958211396588;0.88650522668136844117725559044629;0.88258363281122953480917203705758;0.8786044232532423947645838779863;0.87456819726172962958798962063156;0.87047556267747938640866323112277;0.86632713583620635233728535240516;0.86212354147573333484899649192812;0.85786541264190929734212431867491;0.85355339059327373085750423342688;0.84918812470448634677211430243915;0.84477027236853352576417819363996;0.84030049889772651106056855496718;0.83577947742350922055720729986206;0.83120788879508600288659181387629;0.82658642147688832224616817256901;0.82191577144489569306529119785409;0.81719664208182263287483237945708;0.81242974407119317170611338951858;0.80761579529031335411559666681569;0.80275552070216271705049848605995;0.79784965224621662294168800144689;0.7928989287282194320383155172749;0.78790409570892272483888518763706;0.78286590539180656023177107272204;0.77778511650980097780205824165023;0.77266249421102317640475121152122;0.7674988099435484656396511127241;0.76229484133923430810853005823446;0.75705137209661077513089821877657;0.75176919186285873220043640685617;0.74644909611489196343825369694969;0.7410918860395613316782714719011;0.73569836841299884877543036054703;0.73026935547912008583892884416855;0.72480566482730335309270230936818;0.71930811926926363497614147490822;0.71377754671514093143258605778101;0.70821478004881854850793843070278;0.70262065700249487498751932434971;0.69699602003052396614890540149645;0.69134171618254480762288949335925;0.68565859697591879928779690089868;0.67994751826749411094397146371193;0.67420934012471722684978203687933;0.66844492669610999779905569084804;0.66265514608113140759826364956098;0.65684087019944570329244015738368;0.65100297465961398657441350223962;0.64514233862723102674863184802234;0.63925984469252650210790989149245;0.63335637873744921044760758377379;0.62743282980225723033385065718903;0.6214900899516319077164894224552;0.61552905414033554087893662654096;0.60955062007843485716307441180106;0.60355568809610926628295146656455;0.59754516100806409628631854502601;0.59151994397757046151298254699213;0.58548094438015063634139778514509;0.57942907166693058407247463037493;0.57336523722768084621037587567116;0.56729035425356300059718250849983;0.56120533759960811170941497039166;0.55511110364694149499342756826081;0.54900857016478032956996457869536;0.54289865617221988447482772244257;0.53678228179983367152061646265793;0.53066036815110428914721296678181;0.52453383716370904910064609794063;0.518403611470679481776357988565;0.51227061426145603650894599923049;0.50613576914285995922426764082047;0.49999999999999994448884876874217;0.49386423085714004077573235917953;0.48772938573854385246875153825385;0.481596388529320518223642011435;0.47546616283629095089935390205937;0.46933963184889565534163580196036;0.46321771820016627296823230608425;0.4571013438277800600140210462996;0.45099142983521961491888419004681;0.44488889635305839398426996922353;0.43879466240039188829058502960834;0.43270964574643688838051502898452;0.42663476277231915378962412432884;0.42057092833306930490522290710942;0.41451905561984930814745098359708;0.40848005602242948297586622175004;0.40245483899193584820253022371617;0.39644431190389073371704853343545;0.39044937992156514283692558819894;0.38447094585966434809876091094338;0.37850991004836798126120811502915;0.37256717019774265864384688029531;0.36664362126255078955239241622621;0.36074015530747349789209010850755;0.354857661372768862229065689462;0.34899702534038590240328403524472;0.34315912980055418568525738010067;0.33734485391886848137943388792337;0.33155507330389000220094430915196;0.32579065987528277315021796312067;0.32005248173250588905602853628807;0.31434140302408120071220309910132;0.30865828381745508135480804412509;0.3030039799694759228287921359879;0.29737934299750506950132944439247;0.29178521995118134046975910678157;0.28622245328485890203396024844551;0.28069188073073614297925360006047;0.27519433517269670241844892188965;0.2697306445208800251833736183471;0.26430163158700109571341840819514;0.25890811396043855729942606558325;0.25355090388510792553944384053466;0.248230808137141212288412361886;0.24294862790338916935795054996561;0.23770515866076558086916747924988;0.23250119005645136782689519350242;0.22733750578897676808409755722096;0.22221488349019885566448806457629;0.21713409460819338425707769602013;0.21209590429107733067226604362077;0.2071010712717805679616844827251;0.20215034775378326603600953603745;0.19724447929783722743835028268222;0.19238420470968659037325210192648;0.1875702559288067727827353792236;0.18280335791817725610286515802727;0.17808422855510425142355757088808;0.17341357852311156673152936491533;0.16879211120491410813571064863936;0.16422052257649077944279270013794;0.159699501102273433428280213775;0.15522972763146652974697303761786;0.1508118752955135422055832350452;0.14644660940672621363134453531529;0.14213458735809070265787568132509;0.1378764585242664986175498142984;0.13367286416379359215156341633701;0.12952443732252039154673184384592;0.12543180273827031490085914811061;0.12139557674675771625771858452936;0.11741636718877052070197919420025;0.11349477331863150331159317829588;0.10963138571395275588926665477629;0.10582678618669683068276299309218;0.1020815476955582168372416163038;0.098396234259677528566356841110974;0.094771400873702615896831957797986;0.091207593424208144305964651721297;0.087705348607487354506417887023417;0.084265193848727382164298660427448;0.080887647222580960626459045670344;0.077573217375146441554534249007702;0.07432240344736740222941762112896;0.071135694999863940957141039689304;0.068013571939206651784104451508028;0.064956504445644269729598363483092;0.061964952902296699388529077623389;0.059039367825822475221997365224524;0.056180189798573032522455150683527;0.053387849402242337770729818657856;0.050662767153023091637464858649764;0.048005353438278330902022617010516;0.045416008454738809874129401578102;0.042895122148234654524401321395999;0.040443074154971114797518794148345;0.038060233744356630758431947469944;0.035746959763392205378096377899055;0.0335036005826305216537264186627;0.031330494043712520113587061132421;0.029227967408489596845555524851079;0.027196337309739360144078545999946;0.025235909703481662624824366503162;0.023346979822903068946260418670136;0.021529832133895587809035987447714;0.019784740292217106727434838830959;0.018111967102280079888743102856097;0.016511764477573964704504305700539;0.014984373402728012880658070571371;0.0135300238972199116105343819072;0.012148934980735714983524076160393;0.010841314640186172635338834879803;0.0096073597983847847103788808453828;0.0084472562843918574948531841073418;0.0073611788055293891908092973608291;0.0063492909210707826339614712196635;0.0054117450176094927805081624683226;0.0045486822861099951431640420196345;0.0037602327006450164681439218838932;0.0030465149988219697441138578142272;0.0024076366639015356341246842930559;0.0018436939086109993546358509775018;0.0013547716606548965145861984638032;0.00094094354992541040516584871511441;0.00060227189741379749676752908271737;0.00033880770582522812262027400720399;0.00015059065189787501637397326703649;3.764908042774850471801073581446e-05],dataType);
props.OverlapLength = cast(256,dataType);
props.SampleRate = cast(44100,dataType);
props.FFTLength = uint16(1024);
props.NumFeatures = uint8(46);
end

function [config, outputIndex] = getConfig(dataType, props)
powerNormalizationFactor = 1/(sum(props.Window)^2);

barkFilterbank = designAuditoryFilterBank(props.SampleRate, ...
 "FrequencyScale","bark", ...
 "FFTLength",props.FFTLength, ...
 "OneSided",true, ...
 "FrequencyRange",[0 22050], ...
 "NumBands",32, ...
 "Normalization","bandwidth", ...
 "FilterBankDesignDomain","linear");
barkFilterbank = barkFilterbank*powerNormalizationFactor;
config.barkSpectrum.FilterBank = cast(barkFilterbank,dataType);

erbFilterbank = coder.const(@feval,'designAuditoryFilterBank',props.SampleRate, ...
 "FrequencyScale","erb", ...
 "FFTLength",props.FFTLength, ...
 "OneSided",true, ...
 "FrequencyRange",[0 22050], ...
 "NumBands",43, ...
 "Normalization","bandwidth");
erbFilterbank = erbFilterbank*powerNormalizationFactor;
config.erbSpectrum.FilterBank = cast(erbFilterbank,dataType);

outputIndex.barkSpectrum = uint8(1:32);

 generateMATLABFunction

4-9

outputIndex.gtccDelta = uint8(33:45);
outputIndex.harmonicRatio = uint8(46);
end

Calling the generated function is equivalent to calling extract on the audioFeatureExtrator
object. You can replace calls to extract with calls to the generated function in your code. Verify the
equivalency between the object and the function.

a = extract(afe,audioIn);
b = extractAudioFeatures(audioIn);
isequal(a,b)

ans = logical
 1

The generated function contains help text that indicates any requirements on the input. In this
example, the only requirement is that the input sample rate should be 44.1 kHz. The help text also
contains custom examples. These examples show how to use the function directly in MATLAB and
how to generate C/C++ code.

help extractAudioFeatures

 extractAudioFeatures Extract multiple features from batch audio
 featureVector = extractAudioFeatures(audioIn) returns audio features
 extracted from audioIn.

 Parameters of the audioFeatureExtractor used to generate this
 function must be honored when calling this function.
 - Sample rate of the input should be 44100 Hz.
 - Input frame length should be greater than or equal to 512 samples.

 % EXAMPLE 1: Extract features
 source = dsp.ColoredNoise("SamplesPerFrame",44100);
 for ii = 1:10
 audioIn = source();
 featureArray = extractAudioFeatures(audioIn);
 % ... do something with featureArray ...
 end

 % EXAMPLE 2: Generate code
 targetDataType = "single";
 codegen extractAudioFeatures -args {ones(44100,1,targetDataType)}
 source = dsp.ColoredNoise("SamplesPerFrame",44100, ...
 "OutputDataType",targetDataType);
 for ii = 1:10
 audioIn = source();
 featureArray = extractAudioFeatures_mex(audioIn);
 % ... do something with featureArray ...
 end

 See also audioFeatureExtractor, dsp.AsyncBuffer, codegen.

Run the first example to see how to use the function to extract features in MATLAB.

source = dsp.ColoredNoise("SamplesPerFrame",44100);
for ii = 1:10

4 Classes

4-10

 audioIn = source();
 featureArray = extractAudioFeatures(audioIn);
 % ... do something with featureArray ...
end

Run the second example to see how to generate a MATLAB executable from the function. Then use
the MEX file to extract features while working in MATLAB. MATLAB Coder™ is required to run the
following code.

targetDataType = "single";
codegen extractAudioFeatures -args {ones(44100,1,targetDataType)}

Code generation successful.

source = dsp.ColoredNoise("SamplesPerFrame",44100, ...
 "OutputDataType",targetDataType);
for ii = 1:10
 audioIn = source();
 featureArray = extractAudioFeatures_mex(audioIn);
 % ... do something with featureArray ...
end

Generate MATLAB® Function for Stream Processing

You can use the audioFeatureExtractor object to develop a feature extraction pipeline in
MATLAB. The audioFeatureExtractor is optimized to extract features from audio signals that
contain several windows of data. Typically, audio features are extracted on time scales from 5 ms to
100 ms, depending on the application. When you are ready to deploy your system to a device or to
integrate it into a larger system, you can use generateMATLABFunction to create a MATLAB
function suitable for C/C++ code generation. Deployed systems are often concerned with minimizing
latency. You can set the IsStreaming parameter to true when calling generateMATLABFunction
to generate a MATLAB function that is optimized for stream processing. The generated MATLAB
function assumes that the input has already been buffered and requires a fixed input frame size. The
generated MATLAB function also maintains any required state for you between calls.

Read in an audio file. You will use this audio file to verify the approximate equivalency of the
audioFeatureExtractor object and the generated MATLAB function.

[audioToVerify,fs] = audioread('Counting-16-44p1-mono-15secs.wav');

Create an audioFeatureExtractor object to extract the mel frequency cepstral coefficients
(MFCC), the delta and delta-delta MFCC, the spectral centroid, and the pitch. Extract features from
30 ms windows with 20 ms overlap between windows.

afe = audioFeatureExtractor("Window",hann(round(0.03*fs),'periodic'), ...
 "OverlapLength",round(0.02*fs), ...
 "SampleRate",fs, ...
 "mfcc",true, ...
 "mfccDelta",true, ...
 "mfccDeltaDelta",true, ...
 "spectralCentroid",true, ...
 "pitch",true)

afe =
 audioFeatureExtractor with properties:

 generateMATLABFunction

4-11

 Properties
 Window: [1323x1 double]
 OverlapLength: 882
 SampleRate: 44100
 FFTLength: []
 SpectralDescriptorInput: 'linearSpectrum'
 FeatureVectorLength: 41

 Enabled Features
 mfcc, mfccDelta, mfccDeltaDelta, spectralCentroid, pitch

 Disabled Features
 linearSpectrum, melSpectrum, barkSpectrum, erbSpectrum, gtcc, gtccDelta
 gtccDeltaDelta, spectralCrest, spectralDecrease, spectralEntropy, spectralFlatness, spectralFlux
 spectralKurtosis, spectralRolloffPoint, spectralSkewness, spectralSlope, spectralSpread, harmonicRatio
 zerocrossrate, shortTimeEnergy

 To extract a feature, set the corresponding property to true.
 For example, obj.mfcc = true, adds mfcc to the list of enabled features.

Call generateMATLABFunction on the object and specify a name and the full path for the generated
MATLAB function. Set IsStreaming to true to generate a MATLAB function optimized for stream
processing.

filename = fullfile(tempdir,"extractAudioFeatures");
generateMATLABFunction(afe,filename,'IsStreaming',true);

The generated function is saved to the tempdir folder. Because the mfccDelta and
mfccDeltaDelta features require state, the generated function includes the ability to reset states
using the optional name-value pair "Reset" and either true or false. If you generate a function
that does not require state, the "Reset" parameter is not included in the generated function.

cd(tempdir)
type extractAudioFeatures

function featureVector = extractAudioFeatures(x, varargin)
%extractAudioFeatures Extract multiple features from streaming audio
% featureVector = extractAudioFeatures(audioIn) returns audio features
% extracted from audioIn.
%
% featureVector = extractAudioFeatures(audioIn,"Reset",TF) returns feature extractors
% to their initial conditions before extracting features.
%
% Parameters of the audioFeatureExtractor used to generate this
% function must be honored when calling this function.
% - Sample rate of the input should be 44100 Hz.
% - Frame length of the input should be 1323 samples.
% - Successive frames of the input should be overlapped by
% 882 samples before calling extractAudioFeatures.
%
%
% % EXAMPLE 1: Extract features
% source = dsp.ColoredNoise();
% inputBuffer = dsp.AsyncBuffer;
% for ii = 1:10

4 Classes

4-12

% audioIn = source();
% write(inputBuffer,audioIn);
% while inputBuffer.NumUnreadSamples > 441
% x = read(inputBuffer,1323,882);
% featureVector = extractAudioFeatures(x);
% % ... do something with featureVector ...
% end
% end
%
%
% % EXAMPLE 2: Extract features from speech regions only
% [audioIn,fs] = audioread("Counting-16-44p1-mono-15secs.wav");
% audioIn = resample(audioIn,44100,fs);
% source = dsp.AsyncBuffer(size(audioIn,1));
% write(source,audioIn);
% TF = false;
% while source.NumUnreadSamples > 441
% x = read(source,1323,882);
% isSilence = var(x) < 0.01;
% if ~isSilence
% featureVector = extractAudioFeatures(x,"Reset",TF);
% TF = false;
% else
% TF = true;
% end
% % ... do something with featureVector ...
% end
%
%
% % EXAMPLE 3: Generate code that does not use reset
% targetDataType = "single";
% codegen extractAudioFeatures -args {ones(1323,1,targetDataType)}
% source = dsp.ColoredNoise('OutputDataType',targetDataType);
% inputBuffer = dsp.AsyncBuffer;
% for ii = 1:10
% audioIn = source();
% write(inputBuffer,audioIn);
% while inputBuffer.NumUnreadSamples > 441
% x = read(inputBuffer,1323,882);
% featureVector = extractAudioFeatures_mex(x);
% % ... do something with featureVector ...
% end
% end
%
%
% % EXAMPLE 4: Generate code that uses reset
% targetDataType = "single";
% codegen extractAudioFeatures -args {ones(1323,1,targetDataType),'Reset',true}
% [audioIn,fs] = audioread("Counting-16-44p1-mono-15secs.wav");
% audioIn = resample(audioIn,44100,fs);
% source = dsp.AsyncBuffer(size(audioIn,1));
% write(source,cast(audioIn,targetDataType));
% TF = false;
% while source.NumUnreadSamples > 441
% x = read(source,1323,882);
% isSilence = var(x) < 0.01;
% if ~isSilence
% featureVector = extractAudioFeatures_mex(x,'Reset',TF);

 generateMATLABFunction

4-13

% TF = false;
% else
% TF = true;
% end
% % ... do something with featureVector ...
% end
%
% See also audioFeatureExtractor, dsp.AsyncBuffer, codegen.

% Generated by audioFeatureExtractor on 31-Aug-2022 04:57:43 UTC-04:00
%#codegen

dataType = underlyingType(x);
numChannels = size(x,2);

props = coder.const(getProps(dataType));

persistent config outputIndex state
if isempty(outputIndex)
 [config, outputIndex] = coder.const(@getConfig,dataType,props);
 state = getState(dataType,numChannels);
else
 assert(state.NumChannels == numChannels)
end
if nargin==3
 if strcmpi(varargin{1},"Reset") && varargin{2}
 state = reset(state);
 end
end

% Preallocate feature vector
featureVector = coder.nullcopy(zeros(props.NumFeatures,numChannels,dataType));

% Fourier transform
Y = fft(bsxfun(@times,x,props.Window),props.FFTLength);
Z = Y(config.OneSidedSpectrumBins,:);
Zpower = real(Z.*conj(Z));

% Linear spectrum
linearSpectrum = Zpower(config.linearSpectrum.FrequencyBins,:)*config.linearSpectrum.NormalizationFactor;
linearSpectrum(1,:) = 0.5*linearSpectrum(1,:);
linearSpectrum = reshape(linearSpectrum,[],1,numChannels);

% Mel spectrum
melSpectrum = reshape(config.melSpectrum.FilterBank*Zpower,[],1,numChannels);

% Mel-frequency cepstral coefficients (MFCC)
melcc = cepstralCoefficients(melSpectrum,"NumCoeffs",13,"Rectification","log");
featureVector(outputIndex.mfcc,:) = melcc;
[melccDelta,state.mfccDelta] = audioDelta(melcc,9,state.mfccDelta);
featureVector(outputIndex.mfccDelta,:) = melccDelta;
[featureVector(outputIndex.mfccDeltaDelta,:),state.mfccDeltaDelta] = audioDelta(melccDelta,9,state.mfccDeltaDelta);

% Spectral descriptors
featureVector(outputIndex.spectralCentroid,:) = spectralCentroid(linearSpectrum,config.SpectralDescriptorInput.FrequencyVector);

% Periodicity features
featureVector(outputIndex.pitch,:) = pitch(x,props.SampleRate,"WindowLength",numel(props.Window),"OverlapLength",props.OverlapLength,"Method",'NCF',"Range",coder.const(cast([50 400],"like",x)));

4 Classes

4-14

end

function props = getProps(dataType)
props.Window = cast([0;5.6387032669191761158344888826832e-06;2.2554685887743453065468202112243e-05;5.0747566325726189973011059919372e-05;9.0216708695634029169241330237128e-05;0.00014096122277840184011665769503452;0.00020297996404095020039903829456307;0.00027627153366222012564890064822976;0.00036083427856448135884193106903695;0.00045666629145085790852931495464873;0.00056376541084829367989073034550529;0.00068212922115606922091046726563945;0.00081175505270059122864267919794656;0.00095263998179551112599483531084843;0.0011047808308075057759367609833134;0.001268174168228275444647579206503;0.00144281630875153776827346518985;0.0016287033133565165243794581328984;0.0018258309893965374293145487172296;0.00203419489069373016221220495936;0.0022537903176392259929627925885143;0.0024846123172992951033677400118904;0.0027266556835268129788119040313177;0.0029799149570789440488738364365418;0.0032443844257400433761517888342496;0.0035200581244507755940276183537208;0.0038069298354423408703439690725645;0.0041049930883769181200193543190835;0.0044142411604936038216351334995124;0.0047346670767599019491456147079589;0.0050662636100292091079211331816623;0.0054090232812036287413093305076472;0.0057629383594029470749831034481758;0.0061280008621386050648993659706321;0.0065042025554942206611030997009948;0.0068915349543108850305372925504344;0.0072899893223787315399420094763627;0.0076995566726339448315741265105316;0.008120227767361598569806346858968;0.0085519931184036557247907239798224;0.0089948429873734636608162418269785;0.0094487673858749121613698207511334;0.009913756075728086258891380566638;0.010389798569200026090442179338424;0.010876884129241204401949971725116;0.011375001769727999256787143167458;0.01188414025570999621450596350769;0.012404288103663951847721591548179;0.012935433581752309173396042751847;0.01347756471008809686651375159272;0.014030669261005046521972872142214;0.01459473475933348307620462946943;0.015169748482681433277008409277187;0.015755697461721951402324748414685;0.016352568480485274449165444821119;0.016960348076657194571481568345916;0.017579022541882538543944747289061;0.018208577922074309363154043239774;0.018849000017728712030873339244863;0.019500274384245008807425847408012;0.02016238633225159171402651736571;0.020835320927937328594481414256734;0.021519062993388182736254066185211;0.022213597106929605651259862497682;0.022918907603474591994086040358525;0.02363497857487673048382248452981;0.024361793870289027985620577965165;0.02509933709652845124082887195982;0.025847591618445353578437106989441;0.026606540559298896830853209394263;0.027376166801137580275593563783332;0.028156452985185376203247642479255;0.028947381512233305578263298230013;0.029748934543036231747947795156506;0.030561093998715427311196890514111;0.031383841561166136990834729658673;0.032217158673470969176833023084328;0.033061026540318172450838574150112;0.0339154261284257407815800888784;0.034780338166970736768490723989089;0.035655743148023777422395141911693;0.036541621326989126572470922837965;0.037437952723050116343728177525918;0.038344717119619620149251204566099;0.039261894064796187819865735946223;0.040189462871825232248568227078067;0.041127402619565822661229503864888;0.042075692152962140824001835426316;0.043034310083521154499663907699869;0.044003234789794509751459372637328;0.044982444417866696007024529535556;0.045971916881847485480960813220008;0.046971629864370534335193951847032;0.04798156081709631370912916281668;0.049001686961220980442988093273016;0.050031985287990077271302880035364;0.051072432559217451064625947765308;0.052123005307809389119455545369419;0.053183679838293862474074558122084;0.054254432227355209317209983055363;0.055335238324373370311093367490685;0.056426073751968952585400529642357;0.057526913906552734623289779847255;0.058637733958880777773714498835034;0.059758508854614589278497760460596;0.060889213314885726191505455062725;0.062029821836866561035606082441518;0.063180308694345155284821657915018;0.064340647938305295383543125353754;0.065510813397512468458927514802781;0.066690778679103335235822669346817;0.067880517169181642245234797883313;0.06908000203341801981338221594342;0.070289206217655719743930831100442;0.071508102448520294291967047684011;0.072736663234035159320001184823923;0.073974860864241431812615701346658;0.075222667411823096461631621423294;0.076480054732736613143373460843577;0.077746994466846075511057279072702;0.079023458038562588434672306902939;0.080309416657488919000229543598834;0.081604841319068810445713779699872;0.082909702805241125567192739254097;0.084223971685099041639688266513986;0.085547618315553630718994782000664;0.086880612842002546969411014288198;0.088222925199003432439326388703194;0.089574525110952041284662072939682;0.090935382092764971417864217073657;0.092305465450567336649356775524211;0.0936847442823852127880002171878;0.095073187478842358100195042425185;0.096470763723861929772596113252803;0.097877441495373140867286565480754;0.099293189066021692035235446383012;0.10071797450388575434487847815035;0.1021517656731961709581923969381;0.10359453023506115521001902379794;0.10504623564819570713524399252492;0.10650684916965552639922520938853;0.1079763378555757546983784322947;0.10945466856191377047480273176916;0.11094180794519681310106307137175;0.11243772246327410346822261999478;0.11394237837607329444367110227176;0.1154557417463615842656565746438;0.11697777844051099327415954576281;0.11850845412926847011192421632586;0.12004773428852993921722713821509;0.12159558420011912227565176181088;0.1231519689525706895416590214154;0.12471685344191751898534903375548;0.12629020237248228530901883459592;0.12787198025767421150078462233068;0.12946215142078854043461433320772;0.13106067999581216820814688617247;0.13266752992823177548231683431368;0.13428266497584750993610214209184;0.13590604870959038796840445684211;0.13753764451434363769166679958289;0.13917741558976892690679960651323;0.14082532495113619930293680226896;0.14248133543015784052698791128932;0.14414540967582700758953251352068;0.14581751015526028814051073823066;0.14749759915454385694744132706546;0.14918563877958423979919189150678;0.15088159095696357381299890221271;0.15258541743479731023214185370307;0.15429707978359774589449671111652;0.15601653939714066332555830740603;0.1577437574933358011008976973244;0.15947869511510198714532293706725;0.16122131313124526963420635183866;0.16297157223734226594302754165255;0.16472943295662600959872179373633;0.1664948556408764601677319205919;0.16826780047131500994694874862034;0.17004822745950248785717917598959;0.1718360964482409380948979560344;0.17363136711247945109803936247772;0.17543399896022404682582873647334;0.1772439513334501670627219027665;0.17906118340902044128171155534801;0.18088565419960500602059028096846;0.1827173225546063761726145457942;0.1845561471610870918347302449547;0.18640208654470197258135044648952;0.18825509907063320280684592944453;0.19011514294452969142668052882073;0.19198217621344965122531789347704;0.19385615676680656438435335076065;0.19573704233731942236929057798989;0.19762479050196579688503106808639;0.19951935868293863007849608948163;0.20142070414860685501068360281351;0.20332878401447890270858920302999;0.20524355524417009499771324954054;0.20716497465037320147018817806384;0.2090929988958327712111895380076;0.21102758449432229559405982399767;0.21296868781162520134486726419709;0.21491626506651911876488725283707;0.21687027233176314755525027067051;0.21883066553508856433296614341089;0.22079740046019324939408079444547;0.22277043274773855596748717289302;0.22474971789635006524932236970926;0.22673521126362117250607752794167;0.22872686806712028140253778474289;0.23072464338540032979807392621296;0.23272849215901270092388131160988;0.23473836919152257785015081026359;0.23675422915052951600145547672582;0.23877602656868873731710323227162;0.24080371584473742041510035960528;0.24283725124452310017986178536376;0.24487658690203506495208785054274;0.2469216768204384737650514125562;0.24897247487311280345068098540651;0.25102893480469112841291234872187;0.25309101023210422987119727622485;0.25515865464562614839394427690422;0.25723182140992395527945291178185;0.25931046376510846762641904206248;0.26139453482779029247495827803505;0.26348398759213587094762942797388;0.26557877493092885146097614779137;0.26767884959663235111548829081585;0.26978416422245476979924205807038;0.27189467132341849087140417395858;0.27401032329743024718027299968526;0.27613107242635515081730090969359;0.27825687087709327638407330596237;0.28038767070265774306037087626464;0.28252342384325679347512050298974;0.28466408212737781546763926598942;0.28680959727287308469456661441654;0.28895992088804967057313888290082;0.29111500447276039693633720162325;0.29327479941949807784595805060235;0.29543925701449103016216213291045;0.29760832843880313802742421103176;0.29978196476943363979472678693128;0.30196011698042157789245720778126;0.30414273594395091482311954678153;0.30632977243145909085342282196507;0.30852117711474680294969630267587;0.31071690056709111438237869151635;0.31291689326436000762043931899825;0.31512110558612949073875597605365;0.31732948781680236916002968428074;0.31954199014673079215498319172184;0.32175856267333791116413976851618;0.32397915540224497821242266581976;0.32620371824839777818993979963125;0.32843220103719750202486693524406;0.33066455350563117576712102163583;0.33290072530340619749722463893704;0.33514066599408576241359014602494;0.33738432505622639734355061591486;0.33963165188451716058892770888633;0.34188259579092178386261480227404;0.34413710600582092524746258277446;0.34639513167915836344690205805819;0.34865662188158696999096264335094;0.35092152560561823415596904851554;0.35318979176677173237308693387604;0.3554613692047284834174547540897;0.35773620668448380399695452069864;0.36001425289750355052120767140877;0.36229545646288152660474679578329;0.3645797659284973901705484422564;0.36686712977217839082300088193733;0.36915749640286049659820832857804;0.37145081416175262933876410897938;0.37374703132350128864658245220198;0.37604609609735772934868691663723;0.37834795662834563856335989839863;0.38065256099843108872349262128409;0.38295985722769332326720359560568;0.3852697932754972631741452460119;0.38758231704166701270253270195099;0.38989737636766153006107060718932;0.39221491903775018705857746681431;0.39453489278019154840038140719116;0.39685724526841120729514500453661;0.39918192412218334030882260776707;0.40150887690881059688408072361199;0.40383805114430815219606074606418;0.40616939429458620569590721061104;0.40850285377663608787912608022452;0.41083837695971520131976717493671;0.41317591116653479277331939556461;0.41551540367444778079075717869273;0.41785680171663808213367019561701;0.42020005248331032676745167009358;0.42254510312288173778938471514266;0.42489190074317328971176266350085;0.42724039241260347576911726719118;0.42959052516138163113623704703059;0.43194224598270308801417627364572;0.43429550183394410867165902345732;0.43665023963785909444368371623568;0.43900640628377674001825425875722;0.44136394862879907430297521386819;0.44372281349899916902401741936046;0.44608294769062067919307423835562;0.44844429797127816073043504729867;0.45080681108115749911036118646734;0.45317043373421717067373037934885;0.45553511261938994802989100207924;0.45790079440178577119269220929709;0.46026742572389406360500174741901;0.46263495320678782452006316816551;0.46500332345132727729364319202432;0.46737248303936435034344754058111;0.46974237853494726913083923136583;0.47211295648552631387673272911343;0.47448416342315868909906839689938;0.47685594586571544706288250381476;0.47922825031808663487353783239087;0.48160102327338916161636461765738;0.4839742112141723340279497733718;0.48634776061362594568038275610888;0.4887216179367867008309644916153;0.49109572964174674769566308896174;0.4934700421808601022988227668975;0.49584450200195145930237572429178;0.49821905554952328198936584158218;0.50059364926596450207085808870033;0.50296822959275733211370607023127;0.50534274297168657597012497717515;0.50771713584604671876121528839576;0.5100913546618505156615697160305;0.51246534586903635943855306322803;0.51483905592267631412539685697993;0.51721243128418381562738659340539;0.51958541842252126130574652052019;0.52195796381540726649461703345878;0.52433001395052414306263699472765;0.52670151532672448979610635433346;0.5290724144552378938044512324268;0.53144265786087796499259638949297;0.53381219208324737213189337126096;0.53618096367794532142170282895677;0.53854891921777048313657587641501;0.54091600529392891427704626039485;0.54328216851723665214990433014464;0.54564735551932408430531040721689;0.5480115129538408735854204678617;0.55037458749765777454854287498165;0.55273652585207044829473943536868;0.55509727474400061275616735656513;0.55745678092719819218814336636569;0.55981499118344291154869551974116;0.56217185232374244918673866777681;0.56452731118953514144465088975267;0.56688131465388580387809724925319;0.56923380962268710359097667605965;0.57158474303585404818761617207201;0.57393406186852347072857583043515;0.57628171313224818561593565391377;0.57862764387619258776851438597078;0.58097180118832758566327356675174;0.58331413219662286984146248869365;0.58565458407024062470469516483718;0.58799310402072624270886080921628;0.59032963930319937162494170479476;0.59266413721754362953220152121503;0.59499654510959487652144161984324;0.59732681037232915333134997126763;0.59965488044704895465031313506188;0.60198070282456905832901838948601;0.60430422504640035619161153590539;0.60662539470593357382455224069417;0.60894415944962099196402505185688;0.61126046697815716868262825300917;0.613574265047658884419945479749;0.61588550147084297758937054823036;0.61819412411820451325183967128396;0.62050008091919039987516271139611;0.62280331986337666982933569670422;0.62510378900163954263291543611558;0.62740143644732726535551137203583;0.62969621037743139790876512051909;0.63198805903375487869055859846412;0.63427693072407975716231476326357;0.63656277382333270598024910214008;0.63884553677474997801510880890419;0.6411251680910403649704676354304;0.6434016163555449363542493301793;0.64567483022339944298551017709542;0.64794475842268917098465408344055;0.65021134975560856972265355580021;0.65247455309961355229830815005698;0.65473431740857579441694724664558;0.65699059171393381362236141285393;0.65924332512584216114959190235822;0.66149246683432016968851030469523;0.66373796611039681536681200668681;0.66597977230725580177761457889574;0.66821783486137742436028474912746;0.67045210329367888046903090071282;0.67268252721065380228537833318114;0.67490905630550723781624355979147;0.6771316403592920751819406177674;0.67935022924204013783366917778039;0.68156477291389405692711989104282;0.68377522142623514689319108583732;0.68598152492281050385258822643664;0.6881836336408572174505593466165;0.69038149791222469531248862040229;0.69257506816449543318725545759662;0.69476429492210189931000741125899;0.69694912880744452898795771034202;0.69912952054200272478112765384139;0.70130542094744896530755795538425;0.70347678094675636373267479939386;0.70564355156530567114714358467609;0.70780568393199105869939558033366;0.70996312928032068167993884344469;0.71211583894951879791790361196036;0.71426376438562022563871778402245;0.71640685714256879812467104784446;0.71854506888330815783660909801256;0.72067835138087199542411553920829;0.72280665651947229033424946464947;0.72492993629558444279581408409285;0.72704814281903029637987856403925;0.72916122831405749682431860492215;0.73126914512041751859072746810853;0.7333718456944412489306728275551;0.73546928261010990901525019580731;0.73756140856012630813154373754514;0.73964817635698043574166149483062;0.74172953893401494251946814983967;0.7438054493464856253837069743895;0.74587586077262169048651685443474;0.74794072651468002099761633871822;0.74999999999999988897769753748435;0.75205363478205300431511659553507;0.75410158454149056606041767736315;0.75614380308718853740401755203493;0.75818024435728936794021137757227;0.76021086242024094037361692244303;0.76223561147583263064575476164464;0.76425444585622770432564720977098;0.76626732002699426971048524137586;0.76827418858813145696728952316334;0.77027500627509426500694189599017;0.77226972795981363439921096869512;0.77425830865171474393093831167789;0.77624070349873219853975570003968;0.77821686778832033226649400603492;0.78018675694846351120759209152311;0.78215032654867955308475302445004;0.78410753230102325783690275784465;0.78605833006108472016393307058024;0.78800267582898531060209279530682;0.78994052575036977081879285833566;0.79187183611739486721603498153854;0.79379656336971682328851329657482;0.79571466409547197962126574566355;0.7976260950322571208204180948087;0.79953081306810469541801467130426;0.80142877524245537124159000086365;0.80331993874712770420387641934212;0.80520426092728158984357378358254;0.80708169928238282508914380741771;0.80895221146716012050603694660822;0.81081575529256111334319712113938;0.81267228872670305150904823676683;0.81452176989582125710143145624897;0.81636415708521359313465382001596;0.81819940874018171061976545388461;0.82002748346696752168583088860032;0.82184834003368700816594127900316;0.8236619373712610325810601352714;0.82546823457434048698644346586661;0.82726719090222977648352298274403;0.82905876577980497366127110581147;0.83084291879842964156921425455948;0.83261960971686610477604517654981;0.83438879846218294566995155037148;0.83615044513065850395605593803339;0.83790450998868126752938678691862;0.83965095347364671063417063123779;0.84138973619484835886339624266839;0.84312081893436674473463199319667;0.84484416264795458850755949242739;0.84655972846591620584177917407942;0.84826747769398591625389371984056;0.84996737181419823592420925706392;0.85165937248575984686027595671476;0.85334344154591135200860207987716;0.85501954101079014058939264941728;0.85668763307628614800393052064464;0.85834768011889439609518603901961;0.85999964469656453580626020993805;0.86164348954954395054528504260816;0.86327917760121963830499680625508;0.86490667195895287733264922280796;0.86652593591491300362150695946184;0.86813693294690430501958644526894;0.86973962671918958466932281226036;0.87133398108331061582276788612944;0.87291996007890237940785027603852;0.8744975279345055252377960641752;0.87606664906837194983779681933811;0.87762728808926726564720866008429;0.87917940979727082773109714253224;0.88072297918456721177449253445957;0.88225796143623758105434262688505;0.88378432193104394798410794464871;0.88530202624221099316770278164768;0.88681104013820144515989341016393;0.88831132958348923978064703987911;0.88980286073932601809133302595001;0.89128559996450573699178221431794;0.8927595138161221743899886860163;0.89422456905032388085885486361803;0.89568073262306402426702334196307;0.89712797169084534942840036819689;0.89856625361146114094879067124566;0.89999554594473196722503871569643;0.90141581645323576310602220473811;0.90282703310303724641983080800856;0.90422916406440834169444542567362;0.90562217771254749365539282734971;0.90700604262829243040755500260275;0.90838072759882826368027508578962;0.90974620161839281351490171800833;0.91110243388897460548037088301498;0.91244939382100842539813356779632;0.9137870510340646568181455222657;0.91511537535753506578117821845808;0.91643433683131281242140175891109;0.91774390570646813269917174693546;0.91904405244592024537553243135335;0.92033474772510226458166471275035;0.92161596243262366989767997438321;0.92288766767092600407096369963256;0.9241498347569354621100501390174;0.92540243522270904108495415130164;0.92664544081607780334763901919359;0.92787882350128281228052173901233;0.92910255545960795942050935991574;0.9303166090900081286463318974711;0.93152095700973014391621518370812;0.9327155720549322737156217044685;0.93390042728129496474309689801885;0.93507549596463035435078836599132;0.93624075160148412244609517074423;0.93739616790973290250121863209642;0.93854171882917802882673186104512;0.93967737852213262250700154254446;0.94080312137400445848811614268925;0.94191892199387416972911069024121;0.94302475521506712308195119476295;0.9441205960957219645024451892823;0.94520641991935228087839959698613;0.94628220219540493118870472244453;0.94734791865981149427966556686442;0.9484035452755366080168641929049;0.94944905823311898096505956345936;0.95048443395120951748822335503064;0.95150964907710244844452063261997;0.9525246804872621320114944865054;0.95352950528784496952994231833145;0.95452410081521543716576161386911;0.95550844463645723259048736508703;0.95648251454987942565821867901832;0.95744628858551728001202718587592;0.95839974500562763459754478390096;0.95934286230517917815063810849097;0.96027561921233739461456480057677;0.96119799468894473459812388682622;0.96210996793099468060717072148691;0.96301151836910126036173096508719;0.9639026256689626759310840498074;0.96478326973182060299905060674064;0.96565343069491293981343460472999;0.96651308893192156013185467600124;0.96736222505341551425317447865382;0.96820081990728867893380993336905;0.96902885457919052392128378414782;0.96984631039295421395252105867257;0.9706531689110162730571573774796;0.97144941193483402841479801281821;0.97223502150529461651728979632026;0.9730099799031211027511290012626;0.97377426964927193964172147389036;0.97452787350533431887100732637919;0.97527077447391441467061667935923;0.97600295579901996667615549085895;0.97672440096643753371097318449756;0.97743509370410674996776378975483;0.97813501798248525531676023092587;0.97882415801491229334629906588816;0.9795024982579629835299783735536;0.98017002341179981783625407842919;0.98082671842051816213370329933241;0.98147256847248443012432517207344;0.98210755900067159274158257176168;0.98273167568298702700957392153214;0.98334490444259559094319911309867;0.98394723144823725835550476404023;0.9845386431145388694829989617574;0.98511912610232110765196011925582;0.9856886673188984815396906924434;0.98624725391837553267748717189534;0.9867948733019357154816475485859;0.98733151311812628048159012905671;0.98785716126313638518752213713014;0.98837180588107065304370735248085;0.98887543536421562695437614820548;0.98936803835330255907365426537581;0.98984960373776331721273891162127;0.99032012065598029604274188386626;0.99077957849553266456155142805073;0.99122796689343461995491679772385;0.99166527573636975567694662458962;0.99209149516091865717015707559767;0.99250661555378205669342150940793;0.99291062755199721578946991940029;0.99330352204314864561496278838604;0.99368529016557483046767629275564;0.99405592330856717975251513053081;0.99441541311256420598851946124341;0.99476375146934081783456349512562;0.99510093052219028564309155626688;0.995426942666102321233267957723;0.99574178054793371916986188807641;0.99604543706657511226154610994854;0.99633790537311028856493066996336;0.9966191788709715115857079581474;0.99688925121608740198553277878091;0.99714811631702682248601377068553;0.99739576833513576836764968902571;0.9976322016846692619651548739057;0.99785741103291725195845174312126;0.99807139130032496154854015912861;0.99827413766060768551824367023073;0.99846564554085903697711046334007;0.99864591062165453116961089108372;0.99881492883714906305669956054771;0.99897269637516816764843952114461;0.99911920967729472842222548933933;0.99925446543894858031364947237307;0.99937846060946111670375557878288;0.999491192392144789380381553201;0.99959265824435505898293286008993;0.99968285587754857068887304194504;0.99976178325733466856206632655812;0.99982943860352102571908972095116;0.99988582039015394542502690455876;0.99993092734555277800723160908092;0.99996475845233878665396787255304;0.99998731294745724085260007996112;0.99999859032219606813640666587162;0.99999859032219606813640666587162;0.99998731294745724085260007996112;0.99996475845233878665396787255304;0.99993092734555277800723160908092;0.99988582039015394542502690455876;0.99982943860352102571908972095116;0.99976178325733466856206632655812;0.99968285587754857068887304194504;0.99959265824435505898293286008993;0.999491192392144789380381553201;0.99937846060946111670375557878288;0.99925446543894858031364947237307;0.99911920967729472842222548933933;0.99897269637516816764843952114461;0.99881492883714906305669956054771;0.99864591062165453116961089108372;0.99846564554085903697711046334007;0.99827413766060768551824367023073;0.99807139130032496154854015912861;0.99785741103291725195845174312126;0.9976322016846692619651548739057;0.99739576833513576836764968902571;0.99714811631702682248601377068553;0.99688925121608740198553277878091;0.9966191788709715115857079581474;0.99633790537311028856493066996336;0.99604543706657511226154610994854;0.99574178054793371916986188807641;0.995426942666102321233267957723;0.99510093052219028564309155626688;0.99476375146934081783456349512562;0.99441541311256420598851946124341;0.99405592330856717975251513053081;0.99368529016557483046767629275564;0.99330352204314864561496278838604;0.99291062755199721578946991940029;0.99250661555378205669342150940793;0.99209149516091865717015707559767;0.99166527573636975567694662458962;0.99122796689343461995491679772385;0.99077957849553266456155142805073;0.99032012065598029604274188386626;0.98984960373776331721273891162127;0.98936803835330255907365426537581;0.98887543536421562695437614820548;0.98837180588107065304370735248085;0.98785716126313638518752213713014;0.98733151311812628048159012905671;0.9867948733019357154816475485859;0.98624725391837553267748717189534;0.9856886673188984815396906924434;0.98511912610232110765196011925582;0.9845386431145388694829989617574;0.98394723144823725835550476404023;0.98334490444259559094319911309867;0.98273167568298702700957392153214;0.98210755900067159274158257176168;0.98147256847248443012432517207344;0.98082671842051816213370329933241;0.98017002341179981783625407842919;0.9795024982579629835299783735536;0.97882415801491229334629906588816;0.97813501798248525531676023092587;0.97743509370410674996776378975483;0.97672440096643753371097318449756;0.97600295579901996667615549085895;0.97527077447391441467061667935923;0.97452787350533431887100732637919;0.97377426964927193964172147389036;0.9730099799031211027511290012626;0.97223502150529461651728979632026;0.97144941193483402841479801281821;0.9706531689110162730571573774796;0.96984631039295421395252105867257;0.96902885457919052392128378414782;0.96820081990728867893380993336905;0.96736222505341551425317447865382;0.96651308893192156013185467600124;0.96565343069491293981343460472999;0.96478326973182060299905060674064;0.9639026256689626759310840498074;0.96301151836910126036173096508719;0.96210996793099468060717072148691;0.96119799468894473459812388682622;0.96027561921233739461456480057677;0.95934286230517917815063810849097;0.95839974500562763459754478390096;0.95744628858551728001202718587592;0.95648251454987942565821867901832;0.95550844463645723259048736508703;0.95452410081521543716576161386911;0.95352950528784496952994231833145;0.9525246804872621320114944865054;0.95150964907710244844452063261997;0.95048443395120951748822335503064;0.94944905823311898096505956345936;0.9484035452755366080168641929049;0.94734791865981149427966556686442;0.94628220219540493118870472244453;0.94520641991935228087839959698613;0.9441205960957219645024451892823;0.94302475521506712308195119476295;0.94191892199387416972911069024121;0.94080312137400445848811614268925;0.93967737852213262250700154254446;0.93854171882917802882673186104512;0.93739616790973290250121863209642;0.93624075160148412244609517074423;0.93507549596463035435078836599132;0.93390042728129496474309689801885;0.9327155720549322737156217044685;0.93152095700973014391621518370812;0.9303166090900081286463318974711;0.92910255545960795942050935991574;0.92787882350128281228052173901233;0.92664544081607780334763901919359;0.92540243522270904108495415130164;0.9241498347569354621100501390174;0.92288766767092600407096369963256;0.92161596243262366989767997438321;0.92033474772510226458166471275035;0.91904405244592024537553243135335;0.91774390570646813269917174693546;0.91643433683131281242140175891109;0.91511537535753506578117821845808;0.9137870510340646568181455222657;0.91244939382100842539813356779632;0.91110243388897460548037088301498;0.90974620161839281351490171800833;0.90838072759882826368027508578962;0.90700604262829243040755500260275;0.90562217771254749365539282734971;0.90422916406440834169444542567362;0.90282703310303724641983080800856;0.90141581645323576310602220473811;0.89999554594473196722503871569643;0.89856625361146114094879067124566;0.89712797169084534942840036819689;0.89568073262306402426702334196307;0.89422456905032388085885486361803;0.8927595138161221743899886860163;0.89128559996450573699178221431794;0.88980286073932601809133302595001;0.88831132958348923978064703987911;0.88681104013820144515989341016393;0.88530202624221099316770278164768;0.88378432193104394798410794464871;0.88225796143623758105434262688505;0.88072297918456721177449253445957;0.87917940979727082773109714253224;0.87762728808926726564720866008429;0.87606664906837194983779681933811;0.8744975279345055252377960641752;0.87291996007890237940785027603852;0.87133398108331061582276788612944;0.86973962671918958466932281226036;0.86813693294690430501958644526894;0.86652593591491300362150695946184;0.86490667195895287733264922280796;0.86327917760121963830499680625508;0.86164348954954395054528504260816;0.85999964469656453580626020993805;0.85834768011889439609518603901961;0.85668763307628614800393052064464;0.85501954101079014058939264941728;0.85334344154591135200860207987716;0.85165937248575984686027595671476;0.84996737181419823592420925706392;0.84826747769398591625389371984056;0.84655972846591620584177917407942;0.84484416264795458850755949242739;0.84312081893436674473463199319667;0.84138973619484835886339624266839;0.83965095347364671063417063123779;0.83790450998868126752938678691862;0.83615044513065850395605593803339;0.83438879846218294566995155037148;0.83261960971686610477604517654981;0.83084291879842964156921425455948;0.82905876577980497366127110581147;0.82726719090222977648352298274403;0.82546823457434048698644346586661;0.8236619373712610325810601352714;0.82184834003368700816594127900316;0.82002748346696752168583088860032;0.81819940874018171061976545388461;0.81636415708521359313465382001596;0.81452176989582125710143145624897;0.81267228872670305150904823676683;0.81081575529256111334319712113938;0.80895221146716012050603694660822;0.80708169928238282508914380741771;0.80520426092728158984357378358254;0.80331993874712770420387641934212;0.80142877524245537124159000086365;0.79953081306810469541801467130426;0.7976260950322571208204180948087;0.79571466409547197962126574566355;0.79379656336971682328851329657482;0.79187183611739486721603498153854;0.78994052575036977081879285833566;0.78800267582898531060209279530682;0.78605833006108472016393307058024;0.78410753230102325783690275784465;0.78215032654867955308475302445004;0.78018675694846351120759209152311;0.77821686778832033226649400603492;0.77624070349873219853975570003968;0.77425830865171474393093831167789;0.77226972795981363439921096869512;0.77027500627509426500694189599017;0.76827418858813145696728952316334;0.76626732002699426971048524137586;0.76425444585622770432564720977098;0.76223561147583263064575476164464;0.76021086242024094037361692244303;0.75818024435728936794021137757227;0.75614380308718853740401755203493;0.75410158454149056606041767736315;0.75205363478205300431511659553507;0.74999999999999988897769753748435;0.74794072651468002099761633871822;0.74587586077262169048651685443474;0.7438054493464856253837069743895;0.74172953893401494251946814983967;0.73964817635698043574166149483062;0.73756140856012630813154373754514;0.73546928261010990901525019580731;0.7333718456944412489306728275551;0.73126914512041751859072746810853;0.72916122831405749682431860492215;0.72704814281903029637987856403925;0.72492993629558444279581408409285;0.72280665651947229033424946464947;0.72067835138087199542411553920829;0.71854506888330815783660909801256;0.71640685714256879812467104784446;0.71426376438562022563871778402245;0.71211583894951879791790361196036;0.70996312928032068167993884344469;0.70780568393199105869939558033366;0.70564355156530567114714358467609;0.70347678094675636373267479939386;0.70130542094744896530755795538425;0.69912952054200272478112765384139;0.69694912880744452898795771034202;0.69476429492210189931000741125899;0.69257506816449543318725545759662;0.69038149791222469531248862040229;0.6881836336408572174505593466165;0.68598152492281050385258822643664;0.68377522142623514689319108583732;0.68156477291389405692711989104282;0.67935022924204013783366917778039;0.6771316403592920751819406177674;0.67490905630550723781624355979147;0.67268252721065380228537833318114;0.67045210329367888046903090071282;0.66821783486137742436028474912746;0.66597977230725580177761457889574;0.66373796611039681536681200668681;0.66149246683432016968851030469523;0.65924332512584216114959190235822;0.65699059171393381362236141285393;0.65473431740857579441694724664558;0.65247455309961355229830815005698;0.65021134975560856972265355580021;0.64794475842268917098465408344055;0.64567483022339944298551017709542;0.6434016163555449363542493301793;0.6411251680910403649704676354304;0.63884553677474997801510880890419;0.63656277382333270598024910214008;0.63427693072407975716231476326357;0.63198805903375487869055859846412;0.62969621037743139790876512051909;0.62740143644732726535551137203583;0.62510378900163954263291543611558;0.62280331986337666982933569670422;0.62050008091919039987516271139611;0.61819412411820451325183967128396;0.61588550147084297758937054823036;0.613574265047658884419945479749;0.61126046697815716868262825300917;0.60894415944962099196402505185688;0.60662539470593357382455224069417;0.60430422504640035619161153590539;0.60198070282456905832901838948601;0.59965488044704895465031313506188;0.59732681037232915333134997126763;0.59499654510959487652144161984324;0.59266413721754362953220152121503;0.59032963930319937162494170479476;0.58799310402072624270886080921628;0.58565458407024062470469516483718;0.58331413219662286984146248869365;0.58097180118832758566327356675174;0.57862764387619258776851438597078;0.57628171313224818561593565391377;0.57393406186852347072857583043515;0.57158474303585404818761617207201;0.56923380962268710359097667605965;0.56688131465388580387809724925319;0.56452731118953514144465088975267;0.56217185232374244918673866777681;0.55981499118344291154869551974116;0.55745678092719819218814336636569;0.55509727474400061275616735656513;0.55273652585207044829473943536868;0.55037458749765777454854287498165;0.5480115129538408735854204678617;0.54564735551932408430531040721689;0.54328216851723665214990433014464;0.54091600529392891427704626039485;0.53854891921777048313657587641501;0.53618096367794532142170282895677;0.53381219208324737213189337126096;0.53144265786087796499259638949297;0.5290724144552378938044512324268;0.52670151532672448979610635433346;0.52433001395052414306263699472765;0.52195796381540726649461703345878;0.51958541842252126130574652052019;0.51721243128418381562738659340539;0.51483905592267631412539685697993;0.51246534586903635943855306322803;0.5100913546618505156615697160305;0.50771713584604671876121528839576;0.50534274297168657597012497717515;0.50296822959275733211370607023127;0.50059364926596450207085808870033;0.49821905554952328198936584158218;0.49584450200195145930237572429178;0.4934700421808601022988227668975;0.49109572964174674769566308896174;0.4887216179367867008309644916153;0.48634776061362594568038275610888;0.4839742112141723340279497733718;0.48160102327338916161636461765738;0.47922825031808663487353783239087;0.47685594586571544706288250381476;0.47448416342315868909906839689938;0.47211295648552631387673272911343;0.46974237853494726913083923136583;0.46737248303936435034344754058111;0.46500332345132727729364319202432;0.46263495320678782452006316816551;0.46026742572389406360500174741901;0.45790079440178577119269220929709;0.45553511261938994802989100207924;0.45317043373421717067373037934885;0.45080681108115749911036118646734;0.44844429797127816073043504729867;0.44608294769062067919307423835562;0.44372281349899916902401741936046;0.44136394862879907430297521386819;0.43900640628377674001825425875722;0.43665023963785909444368371623568;0.43429550183394410867165902345732;0.43194224598270308801417627364572;0.42959052516138163113623704703059;0.42724039241260347576911726719118;0.42489190074317328971176266350085;0.42254510312288173778938471514266;0.42020005248331032676745167009358;0.41785680171663808213367019561701;0.41551540367444778079075717869273;0.41317591116653479277331939556461;0.41083837695971520131976717493671;0.40850285377663608787912608022452;0.40616939429458620569590721061104;0.40383805114430815219606074606418;0.40150887690881059688408072361199;0.39918192412218334030882260776707;0.39685724526841120729514500453661;0.39453489278019154840038140719116;0.39221491903775018705857746681431;0.38989737636766153006107060718932;0.38758231704166701270253270195099;0.3852697932754972631741452460119;0.38295985722769332326720359560568;0.38065256099843108872349262128409;0.37834795662834563856335989839863;0.37604609609735772934868691663723;0.37374703132350128864658245220198;0.37145081416175262933876410897938;0.36915749640286049659820832857804;0.36686712977217839082300088193733;0.3645797659284973901705484422564;0.36229545646288152660474679578329;0.36001425289750355052120767140877;0.35773620668448380399695452069864;0.3554613692047284834174547540897;0.35318979176677173237308693387604;0.35092152560561823415596904851554;0.34865662188158696999096264335094;0.34639513167915836344690205805819;0.34413710600582092524746258277446;0.34188259579092178386261480227404;0.33963165188451716058892770888633;0.33738432505622639734355061591486;0.33514066599408576241359014602494;0.33290072530340619749722463893704;0.33066455350563117576712102163583;0.32843220103719750202486693524406;0.32620371824839777818993979963125;0.32397915540224497821242266581976;0.32175856267333791116413976851618;0.31954199014673079215498319172184;0.31732948781680236916002968428074;0.31512110558612949073875597605365;0.31291689326436000762043931899825;0.31071690056709111438237869151635;0.30852117711474680294969630267587;0.30632977243145909085342282196507;0.30414273594395091482311954678153;0.30196011698042157789245720778126;0.29978196476943363979472678693128;0.29760832843880313802742421103176;0.29543925701449103016216213291045;0.29327479941949807784595805060235;0.29111500447276039693633720162325;0.28895992088804967057313888290082;0.28680959727287308469456661441654;0.28466408212737781546763926598942;0.28252342384325679347512050298974;0.28038767070265774306037087626464;0.27825687087709327638407330596237;0.27613107242635515081730090969359;0.27401032329743024718027299968526;0.27189467132341849087140417395858;0.26978416422245476979924205807038;0.26767884959663235111548829081585;0.26557877493092885146097614779137;0.26348398759213587094762942797388;0.26139453482779029247495827803505;0.25931046376510846762641904206248;0.25723182140992395527945291178185;0.25515865464562614839394427690422;0.25309101023210422987119727622485;0.25102893480469112841291234872187;0.24897247487311280345068098540651;0.2469216768204384737650514125562;0.24487658690203506495208785054274;0.24283725124452310017986178536376;0.24080371584473742041510035960528;0.23877602656868873731710323227162;0.23675422915052951600145547672582;0.23473836919152257785015081026359;0.23272849215901270092388131160988;0.23072464338540032979807392621296;0.22872686806712028140253778474289;0.22673521126362117250607752794167;0.22474971789635006524932236970926;0.22277043274773855596748717289302;0.22079740046019324939408079444547;0.21883066553508856433296614341089;0.21687027233176314755525027067051;0.21491626506651911876488725283707;0.21296868781162520134486726419709;0.21102758449432229559405982399767;0.2090929988958327712111895380076;0.20716497465037320147018817806384;0.20524355524417009499771324954054;0.20332878401447890270858920302999;0.20142070414860685501068360281351;0.19951935868293863007849608948163;0.19762479050196579688503106808639;0.19573704233731942236929057798989;0.19385615676680656438435335076065;0.19198217621344965122531789347704;0.19011514294452969142668052882073;0.18825509907063320280684592944453;0.18640208654470197258135044648952;0.1845561471610870918347302449547;0.1827173225546063761726145457942;0.18088565419960500602059028096846;0.17906118340902044128171155534801;0.1772439513334501670627219027665;0.17543399896022404682582873647334;0.17363136711247945109803936247772;0.1718360964482409380948979560344;0.17004822745950248785717917598959;0.16826780047131500994694874862034;0.1664948556408764601677319205919;0.16472943295662600959872179373633;0.16297157223734226594302754165255;0.16122131313124526963420635183866;0.15947869511510198714532293706725;0.1577437574933358011008976973244;0.15601653939714066332555830740603;0.15429707978359774589449671111652;0.15258541743479731023214185370307;0.15088159095696357381299890221271;0.14918563877958423979919189150678;0.14749759915454385694744132706546;0.14581751015526028814051073823066;0.14414540967582700758953251352068;0.14248133543015784052698791128932;0.14082532495113619930293680226896;0.13917741558976892690679960651323;0.13753764451434363769166679958289;0.13590604870959038796840445684211;0.13428266497584750993610214209184;0.13266752992823177548231683431368;0.13106067999581216820814688617247;0.12946215142078854043461433320772;0.12787198025767421150078462233068;0.12629020237248228530901883459592;0.12471685344191751898534903375548;0.1231519689525706895416590214154;0.12159558420011912227565176181088;0.12004773428852993921722713821509;0.11850845412926847011192421632586;0.11697777844051099327415954576281;0.1154557417463615842656565746438;0.11394237837607329444367110227176;0.11243772246327410346822261999478;0.11094180794519681310106307137175;0.10945466856191377047480273176916;0.1079763378555757546983784322947;0.10650684916965552639922520938853;0.10504623564819570713524399252492;0.10359453023506115521001902379794;0.1021517656731961709581923969381;0.10071797450388575434487847815035;0.099293189066021692035235446383012;0.097877441495373140867286565480754;0.096470763723861929772596113252803;0.095073187478842358100195042425185;0.0936847442823852127880002171878;0.092305465450567336649356775524211;0.090935382092764971417864217073657;0.089574525110952041284662072939682;0.088222925199003432439326388703194;0.086880612842002546969411014288198;0.085547618315553630718994782000664;0.084223971685099041639688266513986;0.082909702805241125567192739254097;0.081604841319068810445713779699872;0.080309416657488919000229543598834;0.079023458038562588434672306902939;0.077746994466846075511057279072702;0.076480054732736613143373460843577;0.075222667411823096461631621423294;0.073974860864241431812615701346658;0.072736663234035159320001184823923;0.071508102448520294291967047684011;0.070289206217655719743930831100442;0.06908000203341801981338221594342;0.067880517169181642245234797883313;0.066690778679103335235822669346817;0.065510813397512468458927514802781;0.064340647938305295383543125353754;0.063180308694345155284821657915018;0.062029821836866561035606082441518;0.060889213314885726191505455062725;0.059758508854614589278497760460596;0.058637733958880777773714498835034;0.057526913906552734623289779847255;0.056426073751968952585400529642357;0.055335238324373370311093367490685;0.054254432227355209317209983055363;0.053183679838293862474074558122084;0.052123005307809389119455545369419;0.051072432559217451064625947765308;0.050031985287990077271302880035364;0.049001686961220980442988093273016;0.04798156081709631370912916281668;0.046971629864370534335193951847032;0.045971916881847485480960813220008;0.044982444417866696007024529535556;0.044003234789794509751459372637328;0.043034310083521154499663907699869;0.042075692152962140824001835426316;0.041127402619565822661229503864888;0.040189462871825232248568227078067;0.039261894064796187819865735946223;0.038344717119619620149251204566099;0.037437952723050116343728177525918;0.036541621326989126572470922837965;0.035655743148023777422395141911693;0.034780338166970736768490723989089;0.0339154261284257407815800888784;0.033061026540318172450838574150112;0.032217158673470969176833023084328;0.031383841561166136990834729658673;0.030561093998715427311196890514111;0.029748934543036231747947795156506;0.028947381512233305578263298230013;0.028156452985185376203247642479255;0.027376166801137580275593563783332;0.026606540559298896830853209394263;0.025847591618445353578437106989441;0.02509933709652845124082887195982;0.024361793870289027985620577965165;0.02363497857487673048382248452981;0.022918907603474591994086040358525;0.022213597106929605651259862497682;0.021519062993388182736254066185211;0.020835320927937328594481414256734;0.02016238633225159171402651736571;0.019500274384245008807425847408012;0.018849000017728712030873339244863;0.018208577922074309363154043239774;0.017579022541882538543944747289061;0.016960348076657194571481568345916;0.016352568480485274449165444821119;0.015755697461721951402324748414685;0.015169748482681433277008409277187;0.01459473475933348307620462946943;0.014030669261005046521972872142214;0.01347756471008809686651375159272;0.012935433581752309173396042751847;0.012404288103663951847721591548179;0.01188414025570999621450596350769;0.011375001769727999256787143167458;0.010876884129241204401949971725116;0.010389798569200026090442179338424;0.009913756075728086258891380566638;0.0094487673858749121613698207511334;0.0089948429873734636608162418269785;0.0085519931184036557247907239798224;0.008120227767361598569806346858968;0.0076995566726339448315741265105316;0.0072899893223787315399420094763627;0.0068915349543108850305372925504344;0.0065042025554942206611030997009948;0.0061280008621386050648993659706321;0.0057629383594029470749831034481758;0.0054090232812036287413093305076472;0.0050662636100292091079211331816623;0.0047346670767599019491456147079589;0.0044142411604936038216351334995124;0.0041049930883769181200193543190835;0.0038069298354423408703439690725645;0.0035200581244507755940276183537208;0.0032443844257400433761517888342496;0.0029799149570789440488738364365418;0.0027266556835268129788119040313177;0.0024846123172992951033677400118904;0.0022537903176392259929627925885143;0.00203419489069373016221220495936;0.0018258309893965374293145487172296;0.0016287033133565165243794581328984;0.00144281630875153776827346518985;0.001268174168228275444647579206503;0.0011047808308075057759367609833134;0.00095263998179551112599483531084843;0.00081175505270059122864267919794656;0.00068212922115606922091046726563945;0.00056376541084829367989073034550529;0.00045666629145085790852931495464873;0.00036083427856448135884193106903695;0.00027627153366222012564890064822976;0.00020297996404095020039903829456307;0.00014096122277840184011665769503452;9.0216708695634029169241330237128e-05;5.0747566325726189973011059919372e-05;2.2554685887743453065468202112243e-05;5.6387032669191761158344888826832e-06],dataType);
props.OverlapLength = cast(882,dataType);
props.SampleRate = cast(44100,dataType);
props.FFTLength = uint16(1323);
props.NumFeatures = uint8(41);
end

function [config, outputIndex] = getConfig(dataType, props)
powerNormalizationFactor = 1/(sum(props.Window)^2);

config.OneSidedSpectrumBins = uint16(1:662);

linearSpectrumFrequencyBins = 1:662;
config.linearSpectrum.FrequencyBins = uint16(linearSpectrumFrequencyBins);
config.linearSpectrum.NormalizationFactor = cast(2*powerNormalizationFactor,dataType);

melFilterbank = designAuditoryFilterBank(props.SampleRate, ...
 "FrequencyScale","mel", ...
 "FFTLength",props.FFTLength, ...
 "OneSided",true, ...
 "FrequencyRange",[0 22050], ...
 "NumBands",32, ...
 "Normalization","bandwidth", ...
 "FilterBankDesignDomain","linear");
melFilterbank = melFilterbank*powerNormalizationFactor;
config.melSpectrum.FilterBank = cast(melFilterbank,dataType);

FFTLength = cast(props.FFTLength,'like',props.SampleRate);
w = (props.SampleRate/FFTLength)*(linearSpectrumFrequencyBins-1);
w(end) = props.SampleRate*(FFTLength-1)/(2*FFTLength);
config.SpectralDescriptorInput.FrequencyVector = cast(w(:),dataType);

outputIndex.mfcc = uint8(1:13);
outputIndex.mfccDelta = uint8(14:26);
outputIndex.mfccDeltaDelta = uint8(27:39);
outputIndex.spectralCentroid = uint8(40);
outputIndex.pitch = uint8(41);
end

function state = getState(dataType, numChannels)
state.NumChannels = numChannels;
state.mfccDelta = zeros(8,13,numChannels,dataType);
state.mfccDeltaDelta = zeros(8,13,numChannels,dataType);
end

function state = reset(state)
state.mfccDelta(:,:,:) = 0;
state.mfccDeltaDelta(:,:,:) = 0;
end

The generated function contains help text that indicates any requirements on the input. In this
example, the sample rate of the input should be 44.1 kHz, the frame input to the function should be
1323 samples, and successive frames should be overlapped by 882 samples before calling the
function. The differences between the audioFeatureExtractor object and the function are

 generateMATLABFunction

4-15

described in more detail in Approximate Equivalency Between audioFeatureExtractor and Generated
Function on page 4-19.

help extractAudioFeatures

 extractAudioFeatures Extract multiple features from streaming audio
 featureVector = extractAudioFeatures(audioIn) returns audio features
 extracted from audioIn.

 featureVector = extractAudioFeatures(audioIn,"Reset",TF) returns feature extractors
 to their initial conditions before extracting features.

 Parameters of the audioFeatureExtractor used to generate this
 function must be honored when calling this function.
 - Sample rate of the input should be 44100 Hz.
 - Frame length of the input should be 1323 samples.
 - Successive frames of the input should be overlapped by
 882 samples before calling extractAudioFeatures.

 % EXAMPLE 1: Extract features
 source = dsp.ColoredNoise();
 inputBuffer = dsp.AsyncBuffer;
 for ii = 1:10
 audioIn = source();
 write(inputBuffer,audioIn);
 while inputBuffer.NumUnreadSamples > 441
 x = read(inputBuffer,1323,882);
 featureVector = extractAudioFeatures(x);
 % ... do something with featureVector ...
 end
 end

 % EXAMPLE 2: Extract features from speech regions only
 [audioIn,fs] = audioread("Counting-16-44p1-mono-15secs.wav");
 audioIn = resample(audioIn,44100,fs);
 source = dsp.AsyncBuffer(size(audioIn,1));
 write(source,audioIn);
 TF = false;
 while source.NumUnreadSamples > 441
 x = read(source,1323,882);
 isSilence = var(x) < 0.01;
 if ~isSilence
 featureVector = extractAudioFeatures(x,"Reset",TF);
 TF = false;
 else
 TF = true;
 end
 % ... do something with featureVector ...
 end

 % EXAMPLE 3: Generate code that does not use reset
 targetDataType = "single";
 codegen extractAudioFeatures -args {ones(1323,1,targetDataType)}
 source = dsp.ColoredNoise('OutputDataType',targetDataType);
 inputBuffer = dsp.AsyncBuffer;

4 Classes

4-16

 for ii = 1:10
 audioIn = source();
 write(inputBuffer,audioIn);
 while inputBuffer.NumUnreadSamples > 441
 x = read(inputBuffer,1323,882);
 featureVector = extractAudioFeatures_mex(x);
 % ... do something with featureVector ...
 end
 end

 % EXAMPLE 4: Generate code that uses reset
 targetDataType = "single";
 codegen extractAudioFeatures -args {ones(1323,1,targetDataType),'Reset',true}
 [audioIn,fs] = audioread("Counting-16-44p1-mono-15secs.wav");
 audioIn = resample(audioIn,44100,fs);
 source = dsp.AsyncBuffer(size(audioIn,1));
 write(source,cast(audioIn,targetDataType));
 TF = false;
 while source.NumUnreadSamples > 441
 x = read(source,1323,882);
 isSilence = var(x) < 0.01;
 if ~isSilence
 featureVector = extractAudioFeatures_mex(x,'Reset',TF);
 TF = false;
 else
 TF = true;
 end
 % ... do something with featureVector ...
 end

 See also audioFeatureExtractor, dsp.AsyncBuffer, codegen.

The examples in the help show how to use the function directly in MATLAB and how to generate C/C+
+ code. Run the first example to see how to use the function to extract features in MATLAB.

source = dsp.ColoredNoise();
inputBuffer = dsp.AsyncBuffer;
for ii = 1:10
 audioIn = source();
 write(inputBuffer,audioIn);
 while inputBuffer.NumUnreadSamples > 441
 x = read(inputBuffer,1323,882);
 featureVector = extractAudioFeatures(x);
 % ... do something with featureVector ...
 end
end

Run the second example to see how to extract features in MATLAB while using the optional "Reset"
name-value pair. The Reset name-value pair enables you to reset states on the function. For example,
if you are only concerned with extracting features from regions of voiced speech and want to avoid
the overhead of extracting features constantly, you can use the "Reset" parameter to avoid bleeding
feature information between regions.

[audioIn,fs] = audioread("Counting-16-44p1-mono-15secs.wav");
source = dsp.AsyncBuffer(size(audioIn,1));
write(source,audioIn);
TF = false;

 generateMATLABFunction

4-17

while source.NumUnreadSamples > 441
 x = read(source,1323,882);
 isSilence = var(x) < 0.01;
 if ~isSilence
 featureVector = extractAudioFeatures(x,"Reset",TF);
 TF = false;
 else
 TF = true;
 end
 % ... do something with featureVector ...
end

Run the third example to see how to generate code that does not include the ability to reset state.
When generating code that does not use the 'Reset' parameter, only specify a prototype for the
audio input argument. The following code requires MATLAB Coder™.

targetDataType = "single";
codegen extractAudioFeatures -args {ones(1323,1,targetDataType)}

Code generation successful.

source = dsp.ColoredNoise('OutputDataType',targetDataType);
inputBuffer = dsp.AsyncBuffer;
for ii = 1:10
 audioIn = source();
 write(inputBuffer,audioIn);
 while inputBuffer.NumUnreadSamples > 441
 x = read(inputBuffer,1323,882);
 featureVector = extractAudioFeatures_mex(x);
 % ... do something with featureVector ...
 end
end

Run the fourth example to see how to generate code that can reset state. When generating code that
uses the 'Reset' parameter, specify prototype input arguments for the full function signature. The
following code requires MATLAB Coder™.

targetDataType = "single";
codegen extractAudioFeatures -args {ones(1323,1,targetDataType),'Reset',true}

Code generation successful.

[audioIn,fs] = audioread("Counting-16-44p1-mono-15secs.wav");
source = dsp.AsyncBuffer(size(audioIn,1));
write(source,cast(audioIn,targetDataType));
TF = false;
while source.NumUnreadSamples > 441
 x = read(source,1323,882);
 isSilence = var(x) < 0.01;
 if ~isSilence
 featureVector = extractAudioFeatures_mex(x,'Reset',TF);
 TF = false;
 else
 TF = true;
 end
 % ... do something with featureVector ...
end

4 Classes

4-18

Approximate Equivalency Between audioFeatureExtractor and Generated Function

When you call extract using audioFeatureExtractor, the input is buffered internally prior to
feature extraction. The output from extract is an L-by-M-by-N array, where L is the number of
feature vectors and is equal to the number of analysis windows. M is the number of features
extracted per analysis window. N is the number of channels.

featuresA = extract(afe,audioToVerify);
[L,M,N] = size(featuresA)

L = 1551

M = 41

N = 1

When you call the generated function, extractAudioFeatures, the input should represent a single
frame of audio data. The output from the generated function is an M-by-N matrix, where M is the
number of features extracted and N is the number of channels. Use the generated function to extract
features from the audio signal audioIn. Use the dsp.AsyncBuffer object to buffer the input into
the required frame length and overlap length prior to calling extractAudioFeatures. Reshape the
extracted feature vectors to match the orientation output from audioFeatureExtractor.

frameLength = 1323;
overlapLength = 882;
hopLength = frameLength - overlapLength;

featuresB = zeros(L,M,N);

buff = dsp.AsyncBuffer('Capacity',numel(audioToVerify));
write(buff,audioToVerify);

hop = 1;
while buff.NumUnreadSamples > hopLength
 if hop==1
 x = read(buff,frameLength);
 features = extractAudioFeatures(x,'Reset',true);
 else
 x = read(buff,frameLength,overlapLength);
 features = extractAudioFeatures(x);
 end
 featuresB(hop,:,:) = reshape(features,[1,M,N]);
 hop = hop + 1;
end

Visualize the difference between the output from audioFeatureExtractor and the generated
function. The differences between frames are less than 1.8e-14 and are due to the different code
paths being optimized for batch versus stream processing.

differenceBetweenFrames = sum(abs(featuresA-featuresB),2);
plot(differenceBetweenFrames)
xlabel('Frame')
title('Absolute Difference Between Feature Vectors')

 generateMATLABFunction

4-19

Input Arguments
afe — Input object
audioFeatureExtractor object

Input object, specified as an audioFeatureExtractor object.

fileName — File name
character vector | string scalar

File name where the generated function is saved, specified as a character vector or string scalar.
Data Types: char | string

TF — Flag to specify if function is for streaming
false (default) | true

Flag to specify if generated function is intended for stream processing, specified as true or false.
Data Types: logical

Version History
Introduced in R2020b

4 Classes

4-20

See Also
codegen | dsp.AsyncBuffer | audioFeatureExtractor | vggishEmbeddings

 generateMATLABFunction

4-21

setExtractorParameters
Set nondefault parameter values for individual feature extractors

Syntax
setExtractorParameters(aFE,featureName,params)
setExtractorParameters(aFE,featureName)

Description
setExtractorParameters(aFE,featureName,params) specifies parameters used to extract
featureName.

setExtractorParameters(aFE,featureName) returns the parameters used to extract
featureName to default values.

Examples

Extract Pitch Using the LHS Method

Read in an audio signal.

[audioIn,fs] = audioread("Counting-16-44p1-mono-15secs.wav");

Create an audioFeatureExtractor object to extract pitch. Set the method of pitch extraction to
"LHS".

aFE = audioFeatureExtractor(SampleRate=fs,pitch=true);
setExtractorParameters(aFE,"pitch",Method="LHS")

Call extract and plot the results.

f0 = extract(aFE,audioIn);
plot(f0)

4 Classes

4-22

Modify Spectral Rolloff Threshold and Mel Spectrum Parameters

Read in an audio signal.

[audioIn,fs] = audioread("Counting-16-44p1-mono-15secs.wav");

Create an audioFeatureExtractor object to extract the melSpectrum and
spectralRolloffPoint. Specify ten bands for the mel spectrum and set the threshold for the
rolloff point to 50% of the total energy.

aFE = audioFeatureExtractor(SampleRate=fs,melSpectrum=true,spectralRolloffPoint=true);
setExtractorParameters(aFE,"melSpectrum",NumBands=10)
setExtractorParameters(aFE,"spectralRolloffPoint",Threshold=0.5)

Call extract and plot the results.

features = extract(aFE,audioIn);
idx = info(aFE);

surf(10*log10(features(:,idx.melSpectrum)))
title("Mel Spectrum")

 setExtractorParameters

4-23

plot(features(:,idx.spectralRolloffPoint))
title("Spectral Rolloff Point")

4 Classes

4-24

To return individual audio feature extractors to their default values, call setExtractorParameters
without specifying any parameters to set.

setExtractorParameters(aFE,"melSpectrum")
setExtractorParameters(aFE,"spectralRolloffPoint")

Call extract and plot the results.

features = extract(aFE,audioIn);
idx = info(aFE);

surf(10*log10(features(:,idx.melSpectrum)))
title("Mel Spectrum")

 setExtractorParameters

4-25

plot(features(:,idx.spectralRolloffPoint))
title("Spectral Rolloff Point")

4 Classes

4-26

Input Arguments
aFE — Input object
audioFeatureExtractor object

Input object, specified as an audioFeatureExtractor object.

featureName — Name of feature extractor
character array | string

Name of feature extractor, specified as a character array or string.
Data Types: char | string

params — Parameters to set
name-value arguments | struct

Parameters to set, specified as name-value arguments or a struct.

Version History
Introduced in R2022a

 setExtractorParameters

4-27

See Also
Objects
audioFeatureExtractor

4 Classes

4-28

setExtractorParams
(To be removed) Set nondefault parameter values for individual feature extractors

Note The setExtractorParams function will be removed in a future release. Use
setExtractorParameters instead. For more information, see “Compatibility Considerations”.

Syntax
setExtractorParams(aFE,featureName,params)
setExtractorParams(aFE,featureName)

Description
setExtractorParams(aFE,featureName,params) specifies parameters used to extract
featureName.

setExtractorParams(aFE,featureName) returns the parameters used to extract featureName
to default values.

Examples

Extract Pitch Using the LHS Method

Read in an audio signal.

[audioIn,fs] = audioread("Counting-16-44p1-mono-15secs.wav");

Create an audioFeatureExtractor object to extract pitch. Set the method of pitch extraction to
"LHS".

aFE = audioFeatureExtractor(SampleRate=fs,pitch=true);
setExtractorParameters(aFE,"pitch",Method="LHS")

Call extract and plot the results.

f0 = extract(aFE,audioIn);
plot(f0)

 setExtractorParams

4-29

Modify Spectral Rolloff Threshold and Mel Spectrum Parameters

Read in an audio signal.

[audioIn,fs] = audioread("Counting-16-44p1-mono-15secs.wav");

Create an audioFeatureExtractor object to extract the melSpectrum and
spectralRolloffPoint. Specify ten bands for the mel spectrum and set the threshold for the
rolloff point to 50% of the total energy.

aFE = audioFeatureExtractor(SampleRate=fs,melSpectrum=true,spectralRolloffPoint=true);
setExtractorParameters(aFE,"melSpectrum",NumBands=10)
setExtractorParameters(aFE,"spectralRolloffPoint",Threshold=0.5)

Call extract and plot the results.

features = extract(aFE,audioIn);
idx = info(aFE);

surf(10*log10(features(:,idx.melSpectrum)))
title("Mel Spectrum")

4 Classes

4-30

plot(features(:,idx.spectralRolloffPoint))
title("Spectral Rolloff Point")

 setExtractorParams

4-31

To return individual audio feature extractors to their default values, call setExtractorParameters
without specifying any parameters to set.

setExtractorParameters(aFE,"melSpectrum")
setExtractorParameters(aFE,"spectralRolloffPoint")

Call extract and plot the results.

features = extract(aFE,audioIn);
idx = info(aFE);

surf(10*log10(features(:,idx.melSpectrum)))
title("Mel Spectrum")

4 Classes

4-32

plot(features(:,idx.spectralRolloffPoint))
title("Spectral Rolloff Point")

 setExtractorParams

4-33

Input Arguments
aFE — Input object
audioFeatureExtractor object

audioFeatureExtractor object.

featureName — Name of feature extractor
character array | string

Name of feature extractor, specified as a character array or string.
Data Types: char | string

params — Parameters to set
comma-separated name-value pairs | struct

Parameters to set, specified as comma-separated name-value pairs or as a struct.

Version History
Introduced in R2019b

setExtractorParams will be removed
Not recommended starting in R2022a

4 Classes

4-34

The setExtractorParams function will be removed in a future release. Use
setExtractorParameters instead. Existing calls to setExtractorParams continue to run.

See Also
Objects
audioFeatureExtractor

Functions
setExtractorParameters

 setExtractorParams

4-35

info
Output mapping and individual feature extractor parameters

Syntax
idx = info(aFE)
idx = info(aFE,"all")
[idx,params] = info(___)

Description
idx = info(aFE) returns a struct with field names corresponding to enabled feature extractors.
The field values correspond to the column indices that the extracted features occupy in the output
from extract.

idx = info(aFE,"all") returns a struct with field names corresponding to all available feature
extractors. If the feature extractor is disabled, the field value is empty.

[idx,params] = info(___) returns a second struct, params. The field names of params
correspond to the feature extractors with settable parameters. If the "all" flag is specified, params
contains all feature extractors with settable parameters. If the "all" flag is not specified, params
contains only the enabled feature extractors with settable parameters. You can set parameters using
setExtractorParameters.

Examples

Interpret Output from extract

Extract the mel spectrum, mel spectral centroid, and mel spectral skewness from concatenated white
and pink noise.

fs = 48e3;
aFE = audioFeatureExtractor("SampleRate",fs, ...
 "melSpectrum",true, ...
 "SpectralDescriptorInput","melSpectrum", ...
 "spectralCentroid",true, ...
 "spectralSkewness",true);

features = extract(aFE,[2*rand(fs,1)-1;pinknoise(fs,1)]);

Use info to determine which columns of the output correspond to which feature. Plot the features
separately.

idx = info(aFE);

surf(log10(features(:,idx.melSpectrum)),"EdgeColor","none");
view([90,-90])
axis tight
title("Mel Spectrum")
ylabel("Analysis Frame Number")

4 Classes

4-36

plot(features(:,idx.spectralCentroid))
axis tight
title("Mel Spectral Centroid")
xlabel("Analysis Frame Number")

 info

4-37

plot(features(:,idx.spectralSkewness))
axis tight
title("Mel Spectral Skewness")
xlabel("Analysis Frame Number")

4 Classes

4-38

Get List of All Features audioFeatureExtractor Provides

Create a default audioFeatureExtractor object. By default, all feature extractors are disabled.

aFE = audioFeatureExtractor

aFE =
 audioFeatureExtractor with properties:

 Properties
 Window: [1024x1 double]
 OverlapLength: 512
 SampleRate: 44100
 FFTLength: []
 SpectralDescriptorInput: 'linearSpectrum'
 FeatureVectorLength: 0

 Enabled Features
 none

 Disabled Features
 linearSpectrum, melSpectrum, barkSpectrum, erbSpectrum, mfcc, mfccDelta
 mfccDeltaDelta, gtcc, gtccDelta, gtccDeltaDelta, spectralCentroid, spectralCrest
 spectralDecrease, spectralEntropy, spectralFlatness, spectralFlux, spectralKurtosis, spectralRolloffPoint
 spectralSkewness, spectralSlope, spectralSpread, pitch, harmonicRatio, zerocrossrate

 info

4-39

 shortTimeEnergy

 To extract a feature, set the corresponding property to true.
 For example, obj.mfcc = true, adds mfcc to the list of enabled features.

The info function returns information about enabled feature extractors. To view information about
all feature extractors, call info using the "all" flag.

[idx,params] = info(aFE,"all")

idx = struct with fields:
 linearSpectrum: [1x0 double]
 melSpectrum: [1x0 double]
 barkSpectrum: [1x0 double]
 erbSpectrum: [1x0 double]
 mfcc: [1x0 double]
 mfccDelta: [1x0 double]
 mfccDeltaDelta: [1x0 double]
 gtcc: [1x0 double]
 gtccDelta: [1x0 double]
 gtccDeltaDelta: [1x0 double]
 spectralCentroid: [1x0 double]
 spectralCrest: [1x0 double]
 spectralDecrease: [1x0 double]
 spectralEntropy: [1x0 double]
 spectralFlatness: [1x0 double]
 spectralFlux: [1x0 double]
 spectralKurtosis: [1x0 double]
 spectralRolloffPoint: [1x0 double]
 spectralSkewness: [1x0 double]
 spectralSlope: [1x0 double]
 spectralSpread: [1x0 double]
 pitch: [1x0 double]
 harmonicRatio: [1x0 double]
 zerocrossrate: [1x0 double]
 shortTimeEnergy: [1x0 double]

params = struct with fields:
 linearSpectrum: [1x1 struct]
 melSpectrum: [1x1 struct]
 barkSpectrum: [1x1 struct]
 erbSpectrum: [1x1 struct]
 mfcc: [1x1 struct]
 gtcc: [1x1 struct]
 spectralFlux: [1x1 struct]
 spectralRolloffPoint: [1x1 struct]
 pitch: [1x1 struct]
 zerocrossrate: [1x1 struct]

Use the idx struct to enable all feature extractors on the audioFeatureExtractor object.

features = fieldnames(idx);
for i = 1:numel(features)
 aFE.(features{i}) = true;

4 Classes

4-40

end
aFE

aFE =
 audioFeatureExtractor with properties:

 Properties
 Window: [1024x1 double]
 OverlapLength: 512
 SampleRate: 44100
 FFTLength: []
 SpectralDescriptorInput: 'linearSpectrum'
 FeatureVectorLength: 713

 Enabled Features
 linearSpectrum, melSpectrum, barkSpectrum, erbSpectrum, mfcc, mfccDelta
 mfccDeltaDelta, gtcc, gtccDelta, gtccDeltaDelta, spectralCentroid, spectralCrest
 spectralDecrease, spectralEntropy, spectralFlatness, spectralFlux, spectralKurtosis, spectralRolloffPoint
 spectralSkewness, spectralSlope, spectralSpread, pitch, harmonicRatio, zerocrossrate
 shortTimeEnergy

 Disabled Features
 none

 To extract a feature, set the corresponding property to true.
 For example, obj.mfcc = true, adds mfcc to the list of enabled features.

Determine Settable Parameters of Individual Feature Extractors

Create an audioFeatureExtractor to extract the ERB spectrum.

aFE = audioFeatureExtractor(erbSpectrum=true)

aFE =
 audioFeatureExtractor with properties:

 Properties
 Window: [1024x1 double]
 OverlapLength: 512
 SampleRate: 44100
 FFTLength: []
 SpectralDescriptorInput: 'linearSpectrum'
 FeatureVectorLength: 43

 Enabled Features
 erbSpectrum

 Disabled Features
 linearSpectrum, melSpectrum, barkSpectrum, mfcc, mfccDelta, mfccDeltaDelta
 gtcc, gtccDelta, gtccDeltaDelta, spectralCentroid, spectralCrest, spectralDecrease
 spectralEntropy, spectralFlatness, spectralFlux, spectralKurtosis, spectralRolloffPoint, spectralSkewness
 spectralSlope, spectralSpread, pitch, harmonicRatio, zerocrossrate, shortTimeEnergy

 info

4-41

 To extract a feature, set the corresponding property to true.
 For example, obj.mfcc = true, adds mfcc to the list of enabled features.

The second output argument from info is a struct that contains the settable parameters of the
individual feature extractors and their current value.

[~,params] = info(aFE)

params = struct with fields:
 erbSpectrum: [1x1 struct]

params.erbSpectrum

ans = struct with fields:
 NumBands: 43
 FrequencyRange: [0 22050]
 FilterBankNormalization: "bandwidth"
 WindowNormalization: 1
 SpectrumType: "power"

If you are using the default parameter values, then the parameters are dynamic and updated when
properties they depend on are updated. For example, the default frequency range of the ERB filter
bank and the default number of bandpass filters in the ERB filter bank depends on the sample rate.
Decrease the sample rate of the audioFeatureExtractor object and then call info again.

aFE.SampleRate = 16e3;
[~,params] = info(aFE);
params.erbSpectrum

ans = struct with fields:
 NumBands: 34
 FrequencyRange: [0 8000]
 FilterBankNormalization: "bandwidth"
 WindowNormalization: 1
 SpectrumType: "power"

You can modify the individual feature extractor parameters using setExtractorParameters. Set
the number of bands to 40 and the spectrum type to "magnitude". Call info to confirm that the
parameters are updated.

params.erbSpectrum.NumBands = 40;
params.erbSpectrum.SpectrumType = "magnitude";
setExtractorParameters(aFE,erbSpectrum=params.erbSpectrum)
[~,params] = info(aFE);
params.erbSpectrum

ans = struct with fields:
 NumBands: 40
 FrequencyRange: [0 8000]
 FilterBankNormalization: "bandwidth"
 WindowNormalization: 1
 SpectrumType: "magnitude"

4 Classes

4-42

When you set individual feature extractor parameters, they remain at the set value until you set them
to another value or return them to defaults. Return the sample rate of the audioFeatureExtractor
object to its initial value and then call info. The parameters remain at their set value.

aFE.SampleRate = 44.1e3;

[~,params] = info(aFE);
params.erbSpectrum

ans = struct with fields:
 NumBands: 40
 FrequencyRange: [0 8000]
 FilterBankNormalization: "bandwidth"
 WindowNormalization: 1
 SpectrumType: "magnitude"

To return parameters to their default values, call setExtractorParameters and specify no
parameters.

setExtractorParameters(aFE,"erbSpectrum")
[~,params] = info(aFE);
params.erbSpectrum

ans = struct with fields:
 NumBands: 43
 FrequencyRange: [0 22050]
 FilterBankNormalization: "bandwidth"
 WindowNormalization: 1
 SpectrumType: "power"

Input Arguments
aFE — Input object
audioFeatureExtractor object

audioFeatureExtractor object.

Output Arguments
idx — Mapping of requested features with output from extract
struct

Mapping of requested features with output from extract, returned as a struct with field names
corresponding to individual feature extractors and field values corresponding to column indices.

params — Settable parameters of individual feature extractors
struct

Settable parameters of individual feature extractors, returned as a struct with field names
corresponding to individual feature extractors and field values containing parameter specification
structs. The parameter specification structs have field names corresponding to settable parameter
names and field values corresponding to the current parameter setting.

 info

4-43

Version History
Introduced in R2019b

See Also
audioFeatureExtractor

4 Classes

4-44

extract
Extract audio features

Syntax
features = extract(aFE,audioIn)

Description
features = extract(aFE,audioIn) returns an array containing features of the audio input.

Examples

Extract and Normalize Audio Features

Read in an audio signal.

[audioIn,fs] = audioread("Counting-16-44p1-mono-15secs.wav");

Create an audioFeatureExtractor to extract the centroid of the Bark spectrum, the kurtosis of
the Bark spectrum, and the pitch of an audio signal.

aFE = audioFeatureExtractor("SampleRate",fs, ...
 "SpectralDescriptorInput","barkSpectrum", ...
 "spectralCentroid",true, ...
 "spectralKurtosis",true, ...
 "pitch",true)

aFE =
 audioFeatureExtractor with properties:

 Properties
 Window: [1024x1 double]
 OverlapLength: 512
 SampleRate: 44100
 FFTLength: []
 SpectralDescriptorInput: 'barkSpectrum'
 FeatureVectorLength: 3

 Enabled Features
 spectralCentroid, spectralKurtosis, pitch

 Disabled Features
 linearSpectrum, melSpectrum, barkSpectrum, erbSpectrum, mfcc, mfccDelta
 mfccDeltaDelta, gtcc, gtccDelta, gtccDeltaDelta, spectralCrest, spectralDecrease
 spectralEntropy, spectralFlatness, spectralFlux, spectralRolloffPoint, spectralSkewness, spectralSlope
 spectralSpread, harmonicRatio, zerocrossrate, shortTimeEnergy

 To extract a feature, set the corresponding property to true.
 For example, obj.mfcc = true, adds mfcc to the list of enabled features.

 extract

4-45

Call extract to extract the features from the audio signal. Normalize the features by their mean and
standard deviation.

features = extract(aFE,audioIn);
features = (features - mean(features,1))./std(features,[],1);

Plot the normalized features over time.

idx = info(aFE);
duration = size(audioIn,1)/fs;

subplot(2,1,1)
t = linspace(0,duration,size(audioIn,1));
plot(t,audioIn)

subplot(2,1,2)
t = linspace(0,duration,size(features,1));
plot(t,features(:,idx.spectralCentroid), ...
 t,features(:,idx.spectralKurtosis), ...
 t,features(:,idx.pitch));
legend("Spectral Centroid","Spectral Kurtosis", "Pitch")
xlabel("Time (s)")

4 Classes

4-46

Input Arguments
aFE — Input object
audioFeatureExtractor object

audioFeatureExtractor object.

audioIn — Input audio
column vector | matrix

Input audio, specified as a column vector or matrix of independent channels (columns).
Data Types: single | double

Output Arguments
features — Extracted audio features
vector | matrix | 3-D array

Extracted audio features, returned as an L-by-M-by-N array, where:

• L –– Number of feature vectors (hops)
• M –– Number of features extracted per analysis window
• N –– Number of channels

Data Types: single | double

Version History
Introduced in R2019b

See Also
audioFeatureExtractor | Extract Audio Features

 extract

4-47

audioFeatureExtractor
Streamline audio feature extraction

Description
audioFeatureExtractor encapsulates multiple audio feature extractors into a streamlined and
modular implementation.

Creation

Syntax
aFE = audioFeatureExtractor()
aFE = audioFeatureExtractor(Name=Value)

Description

aFE = audioFeatureExtractor() creates an audio feature extractor with default property
values.

aFE = audioFeatureExtractor(Name=Value) specifies nondefault properties for aFE using one
or more name-value arguments.

Properties
Main Properties

Window — Analysis window
hamming(1024,"periodic") (default) | real vector

Analysis window, specified as a real vector.
Data Types: single | double

OverlapLength — Overlap length of adjacent analysis windows
512 (default) | integer in the range [0, numel(Window))

Overlap length of adjacent analysis windows, specified as an integer in the range [0,
numel(Window)).
Data Types: single | double

FFTLength — FFT length
[] (default) | positive integer

FFT length, specified as an integer. The default value of [] means that the FFT length is equal to the
window length numel(Window).
Data Types: single | double

4 Classes

4-48

SampleRate — Input sample rate (Hz)
44100 (default) | positive scalar

Input sample rate in Hz, specified as a positive scalar.
Data Types: single | double

SpectralDescriptorInput — Input to spectral descriptors
"linearSpectrum" (default) | "melSpectrum" | "barkSpectrum" | "erbSpectrum"

Input to spectral descriptors, specified as "linearSpectrum", "melSpectrum", "barkSpectrum",
or "erbSpectrum".

Spectral descriptors affected by this property are:

• spectralCentroid
• spectralCrest
• spectralDecrease
• spectralEntropy
• spectralFlatness
• spectralFlux
• spectralKurtosis
• spectralRolloffPoint
• spectralSkewness
• spectralSlope
• spectralSpread

The spectrum input to the spectral descriptors is the same as output from the corresponding feature:

• linearSpectrum
• melSpectrum
• barkSpectrum
• erbSpectrum

For example, if you set SpectralDescriptorInput to "barkSpectrum", and spectralCentroid
to true, then aFE returns the centroid of the default Bark spectrum.

[audioIn,fs] = audioread("Counting-16-44p1-mono-15secs.wav");
aFE = audioFeatureExtractor(SampleRate=fs, ...
 SpectralDescriptorInput="barkSpectrum", ...
 spectralCentroid=true);
barkSpectralCentroid = extract(aFE,audioIn);

If you specify a nondefault barkSpectrum using setExtractorParameters, then the nondefault
Bark spectrum is the input to the spectral descriptors. For example, if you call
setExtractorParameters(aFE,"barkSpectrum",NumBands=40), then aFE returns the centroid
of a 40-band Bark spectrum.

setExtractorParameters(aFE,"barkSpectrum",NumBands=40)
bark40SpectralCentroid = extract(aFE,audioIn);

Data Types: char | string

 audioFeatureExtractor

4-49

FeatureVectorLength — Number of features output from extract
positive integer

This property is read-only.

Total number of features output from extract for the current object configuration, specified as a
positive integer. FeatureVectorLength is equal to the second dimension of the output from the
extract function.
Data Types: single | double

Features to Extract

linearSpectrum — Extract linear spectrum
false (default) | true

Extract the one-sided linear spectrum, specified as true or false.

To set parameters of the linear spectrum extraction, use setExtractorParameters:

setExtractorParameters(aFE,"linearSpectrum",Name=Value)

Settable parameters for the linear spectrum extraction are:

• FrequencyRange –– Frequency range of the extracted spectrum in Hz, specified as a two-element
vector of increasing numbers in the range [0, SampleRate/2]. If unspecified, FrequencyRange
defaults to [0, SampleRate/2].

• SpectrumType –– Spectrum type, specified as "power" or "magnitude". If unspecified,
SpectrumType defaults to "power".

• WindowNormalization –– Apply window normalization, specified as true or false. If
unspecified, WindowNormalization defaults to true.

Data Types: logical

melSpectrum — Extract mel spectrum
false (default) | true

Extract the one-sided mel spectrum, specified as true or false.

To set parameters of the mel spectrum extraction, use setExtractorParameters:

setExtractorParameters(aFE,"melSpectrum",Name=Value)

Settable parameters for the mel spectrum extraction are:

• FrequencyRange –– Frequency range of the extracted spectrum in Hz, specified as a two-element
vector of increasing numbers in the range [0, SampleRate/2]. If unspecified, FrequencyRange
defaults to [0, SampleRate/2].

• SpectrumType –– Spectrum type, specified as "power" or "magnitude". If unspecified,
SpectrumType defaults to "power".

• NumBands –– Number of mel bands, specified as an integer. If unspecified, NumBands defaults to
32.

• FilterBankNormalization –– Normalization applied to bandpass filters, specified as
"bandwidth", "area", or "none". If unspecified, FilterBankNormalization defaults to
"bandwidth".

4 Classes

4-50

• WindowNormalization –– Apply window normalization, specified as true or false. If
unspecified, WindowNormalization defaults to true.

• FilterBankDesignDomain –– Domain in which the filter bank is designed, specified as either
"linear" or "warped". If unspecified, FilterBankDesignDomain defaults to "linear".

Data Types: logical

barkSpectrum — Extract Bark spectrum
false (default) | true

Extract the one-sided Bark spectrum, specified as true or false.

To set parameters of the Bark spectrum extraction, use setExtractorParameters:

setExtractorParameters(aFE,"barkSpectrum",Name=Value)

Settable parameters for the Bark spectrum extraction are:

• FrequencyRange –– Frequency range of the extracted spectrum in Hz, specified as a two-element
vector of increasing numbers in the range [0, SampleRate/2]. If unspecified, FrequencyRange
defaults to [0, SampleRate/2].

• SpectrumType –– Spectrum type, specified as "power" or "magnitude". If unspecified,
SpectrumType defaults to "power".

• NumBands –– Number of Bark bands, specified as an integer. If unspecified, NumBands defaults to
32.

• FilterBankNormalization –– Normalization applied to bandpass filters, specified as
"bandwidth", "area", or "none". If unspecified, FilterBankNormalization defaults to
"bandwidth".

• WindowNormalization –– Apply window normalization, specified as true or false. If
unspecified, WindowNormalization defaults to true.

• FilterBankDesignDomain –– Domain in which the filter bank is designed, specified as either
"linear" or "warped". If unspecified, FilterBankDesignDomain defaults to "linear".

Data Types: logical

erbSpectrum — Extract ERB spectrum
false (default) | true

Extract the one-sided ERB spectrum, specified as true or false.

To set parameters of the ERB spectrum extraction, use setExtractorParameters:

setExtractorParameters(aFE,"erbSpectrum",Name=Value)

Settable parameters for the ERB spectrum extraction are:

• FrequencyRange –– Frequency range of the extracted spectrum in Hz, specified as a two-element
vector of increasing numbers in the range [0, SampleRate/2]. If unspecified, FrequencyRange
defaults to [0, SampleRate/2].

• SpectrumType –– Spectrum type, specified as "power" or "magnitude". If unspecified,
SpectrumType defaults to "power".

• NumBands –– Number of ERB bands, specified as an integer. If unspecified, NumBands defaults to
ceil(hz2erb(FrequencyRange(2))-hz2erb(FrequencyRange(1))).

 audioFeatureExtractor

4-51

• FilterBankNormalization –– Normalization applied to bandpass filters, specified as
"bandwidth", "area", or "none". If unspecified, FilterBankNormalization defaults to
"bandwidth".

• WindowNormalization –– Apply window normalization, specified as true or false. If
unspecified, WindowNormalization defaults to true.

Data Types: logical

mfcc — Extract mel-frequency cepstral coefficients (MFCC)
false (default) | true

Extract mel-frequency cepstral coefficients (MFCC), specified as true or false.

To set parameters of the MFCC extraction, use setExtractorParameters:

setExtractorParameters(aFE,"mfcc",Name=Value)

Settable parameters for the MFCC extraction are:

• NumCoeffs –– Number of coefficients returned for each window, specified as a positive integer. If
unspecified, NumCoeffs defaults to 13.

• DeltaWindowLength –– Delta window length, specified as an odd integer greater than 2. If
unspecified, DeltaWindowLength defaults to 9. This parameter affects the mfccDelta and
mfccDeltaDelta features.

• Rectification –– Type of nonlinear rectification, specified as "log" or "cubic-root".

The mel-frequency cepstral coefficients are calculated using the melSpectrum.
Data Types: logical

mfccDelta — Extract delta of MFCC
false (default) | true

Extract delta of MFCC, specified as true or false.

The delta MFCC is calculated based on the extracted MFCC. Parameters set on mfcc affect
mfccDelta.
Data Types: logical

mfccDeltaDelta — Extract delta-delta of MFCC
false (default) | true

Extract delta-delta of MFCC, specified as true or false.

The delta-delta MFCC is calculated based on the extracted MFCC. Parameters set on mfcc affect
mfccDeltaDelta.
Data Types: logical

gtcc — Extract gammatone cepstral coefficients (GTCC)
false (default) | true

Extract gammatone cepstral coefficients (GTCC), specified as true or false.

To set parameters of the GTCC extraction, use setExtractorParameters:

4 Classes

4-52

setExtractorParameters(aFE,"gtcc",Name=Value)

Settable parameters for the GTCC extraction are:

• NumCoeffs –– Number of coefficients returned for each window, specified as a positive integer. If
unspecified, NumCoeffs defaults to 13.

• DeltaWindowLength –– Delta window length, specified as an odd integer greater than 2. If
unspecified, DeltaWindowLength defaults to 9. This parameter affects the gtccDelta and
gtccDeltaDelta features.

• Rectification –– Type of nonlinear rectification, specified as "log" or "cubic-root".

The gammatone cepstral coefficients are calculated using the erbSpectrum.
Data Types: logical

gtccDelta — Extract delta of GTCC
false (default) | true

Extract delta of GTCC, specified as true or false.

The delta GTCC is calculated based on the extracted GTCC. Parameters set on gtcc affect
gtccDelta.
Data Types: logical

gtccDeltaDelta — Extract delta-delta of GTCC
false (default) | true

Extract delta-delta of GTCC, specified as true or false.

The delta-delta GTCC is calculated based on the extracted GTCC. Parameters set on gtcc affect
gtccDeltaDelta.
Data Types: logical

spectralCentroid — Extract spectral centroid
false (default) | true

Extract spectral centroid, specified as true or false.

The spectral centroid is calculated on one of the following spectral representations, as specified by
the SpectralDescriptorInput property:

• linearSpectrum
• melSpectrum
• barkSpectrum
• erbSpectrum

Data Types: logical

spectralCrest — Extract spectral crest
false (default) | true

Extract spectral crest, specified as true or false.

 audioFeatureExtractor

4-53

The spectral crest is calculated on one of the following spectral representations, as specified by the
SpectralDescriptorInput property:

• linearSpectrum
• melSpectrum
• barkSpectrum
• erbSpectrum

Data Types: logical

spectralDecrease — Extract spectral decrease
false (default) | true

Extract spectral decrease, specified as true or false.

The spectral decrease is calculated on one of the following spectral representations, as specified by
the SpectralDescriptorInput property:

• linearSpectrum
• melSpectrum
• barkSpectrum
• erbSpectrum

Data Types: logical

spectralEntropy — Extract spectral entropy
false (default) | true

Extract spectral entropy, specified as true or false.

The spectral entropy is calculated on one of the following spectral representations, as specified by the
SpectralDescriptorInput property:

• linearSpectrum
• melSpectrum
• barkSpectrum
• erbSpectrum

Data Types: logical

spectralFlatness — Extract spectral flatness
false (default) | true

Extract spectral flatness, specified as true or false.

The spectral flatness is calculated on one of the following spectral representations, as specified by the
SpectralDescriptorInput property:

• linearSpectrum
• melSpectrum
• barkSpectrum

4 Classes

4-54

• erbSpectrum

Data Types: logical

spectralFlux — Extract spectral flux
false (default) | true

Extract spectral flux, specified as true or false.

The spectral flux is calculated on one of the following spectral representations, as specified by the
SpectralDescriptorInput property:

• linearSpectrum
• melSpectrum
• barkSpectrum
• erbSpectrum

To set parameters of the spectral flux extraction, use setExtractorParameters:

setExtractorParameters(aFE,"spectralFlux",Name=Value)

Settable parameters for the spectral flux extraction are:

• NormType –– Norm type used to calculate the spectral flux, specified as 1 or 2. If unspecified,
NormType defaults to 2.

Data Types: logical

spectralKurtosis — Extract spectral kurtosis
false (default) | true

Extract spectral kurtosis, specified as true or false.

The spectral kurtosis is calculated on one of the following spectral representations, as specified by
the SpectralDescriptorInput property:

• linearSpectrum
• melSpectrum
• barkSpectrum
• erbSpectrum

Data Types: logical

spectralRolloffPoint — Extract spectral rolloff point
false (default) | true

Extract spectral rolloff point, specified as true or false.

The spectral rolloff point is calculated on one of the following spectral representations, as specified
by the SpectralDescriptorInput property:

• linearSpectrum
• melSpectrum

 audioFeatureExtractor

4-55

• barkSpectrum
• erbSpectrum

To set parameters of the spectral rolloff point extraction, use setExtractorParameters:

setExtractorParameters(aFE,"spectralRolloffPoint",Name=Value)

Settable parameters for the spectral flux extraction are:

• Threshold –– Threshold of the rolloff point, specified as a scalar in the range (0, 1). If
unspecified, Threshold defaults to 0.95.

Data Types: logical

spectralSkewness — Extract spectral skewness
false (default) | true

Extract spectral skewness, specified as true or false.

The spectral skewness is calculated on one of the following spectral representations, as specified by
the SpectralDescriptorInput property:

• linearSpectrum
• melSpectrum
• barkSpectrum
• erbSpectrum

Data Types: logical

spectralSlope — Extract spectral slope
false (default) | true

Extract spectral slope, specified as true or false.

The spectral slope is calculated on one of the following spectral representations, as specified by the
SpectralDescriptorInput property:

• linearSpectrum
• melSpectrum
• barkSpectrum
• erbSpectrum

Data Types: logical

spectralSpread — Extract spectral spread
false (default) | true

Extract spectral spread, specified as true or false.

The spectral spread is calculated on one of the following spectral representations, as specified by the
SpectralDescriptorInput property:

• linearSpectrum

4 Classes

4-56

• melSpectrum
• barkSpectrum
• erbSpectrum

Data Types: logical

pitch — Extract pitch
false (default) | true

Extract pitch, specified as true or false.

To set parameters of the pitch extraction, use setExtractorParameters:

setExtractorParameters(aFE,"pitch",Name=Value)

Settable parameters for the pitch extraction are:

• Method –– Method used to calculate the pitch, specified as "PEF", "NCF", "CEP", "LHS", or
"SRH". If unspecified, Method defaults to "NCF". For a description of available pitch extraction
methods, see pitch.

• Range –– Range within to search for the pitch in Hz, specified as a two-element row vector of
increasing values. If unspecified, Range defaults to [50,400].

• MedianFilterLength –– Median filter length used to smooth pitch estimates over time, specified
as a positive integer. If unspecified, MedianFilterLength defaults to 1 (no median filtering).

Data Types: logical

harmonicRatio — Extract harmonic ratio
false (default) | true

Extract harmonic ratio, specified as true or false.
Data Types: logical

zerocrossrate — Extract zero-crossing rate
false (default) | true

Extract zero-crossing rate, specified as true or false.

To set parameters of the zero-crossing rate extraction, use setExtractorParameters:

setExtractorParameters(aFE,"zerocrossrate",Name=Value)

Settable parameters for the zero-crossing rate extraction are:

• Method –– Method for computing the zero-crossing rate, specified as "difference" or
"comparison". If unspecified, Method, defaults to "difference". For more information, see
zerocrossrate.

• Level –– Signal level for which the crossing rate is computed, specified as a real scalar.
audioFeatureExtractor subtracts the Level value from the signal and then finds the zero
crossings. If unspecified, Level defaults to 0.

• Threshold –– Threshold above and below the Level value over which the crossing rate is
computed, specified as a real scalar. audioFeatureExtractor sets all the values of the input in
the range [–Threshold, Threshold] to 0 and then finds the zero crossings. If unspecified,
Threshold defaults to 0.

 audioFeatureExtractor

4-57

• TransitionEdge — Transitions to include when counting zero crossings, specified as
"falling", "rising", or "both". If you specify "falling", only negative-going transitions are
counted. If you specify "rising", only positive-going transitions are counted. If unspecified,
TransitionEdge defaults to "both".

• ZeroPositive — Sign convention, specified as a logical scalar. If you specify ZeroPositive as
true, then 0 is considered positive. If you specify ZeroPositive as false, then
audioFeatureExtractor considers 0, –1, and +1 to have distinct signs following the convention
of the sign function. If unspecified, ZeroPositive defaults to false.

Data Types: logical

shortTimeEnergy — Extract short-time energy
false (default) | true

Extract short-time energy, specified as true or false. The short-time energy is computed using
sTE = sum(xbw.^2,1),

where xbw is the buffered and windowed signal.

Example: Chirp Function

Generate a chirp sampled at 1 kHz for 3 seconds. The instantaneous frequency is 100 Hz at t = 0 and
crosses 200 Hz at t = 1 second. Divide the signal into 103-sample segments with 43 samples of
overlap between adjoining segments. Window each segment with a periodic Hamming window.

fs = 1e3;
x = chirp(0:1/fs:3,100,1,200)';

win = hamming(103,"periodic");
nover = 43;

[xb,~] = buffer(x,length(win),nover,"nodelay");
xbw = xb.*win;

Compute the short-time energy using the definition.

Edef = sum(xbw.^2,1)';

Use audioFeatureExtractor to compute the short-time energy.

EaFE = extract(audioFeatureExtractor(shortTimeEnergy=true, ...
 SampleRate=fs,Window=win,OverlapLength=nover),x);

Verify that both procedures give the same short-time energy.

dff = max(abs(EaFE-Edef))

dff = 0

Data Types: logical

Object Functions
extract Extract audio features
setExtractorParameters Set nondefault parameter values for individual feature extractors
info Output mapping and individual feature extractor parameters
generateMATLABFunction Create MATLAB function compatible with C/C++ code generation

4 Classes

4-58

plotFeatures Plot extracted audio features

Examples

Extract Multiple Audio Features

Read in an audio signal.

[audioIn,fs] = audioread("Counting-16-44p1-mono-15secs.wav");

Create an audioFeatureExtractor object that extracts the MFCC, delta MFCC, delta-delta MFCC,
pitch, spectral centroid, zero-crossing rate, and short-time energy of the signal. Use a 30 ms analysis
window with 20 ms overlap.

aFE = audioFeatureExtractor(...
 SampleRate=fs, ...
 Window=hamming(round(0.03*fs),"periodic"), ...
 OverlapLength=round(0.02*fs), ...
 mfcc=true, ...
 mfccDelta=true, ...
 mfccDeltaDelta=true, ...
 pitch=true, ...
 spectralCentroid=true, ...
 zerocrossrate=true, ...
 shortTimeEnergy=true);

Call extract to extract the audio features from the audio signal.

features = extract(aFE,audioIn);

Use info to determine which column of the feature extraction matrix corresponds to the requested
pitch extraction.

idx = info(aFE)

idx = struct with fields:
 mfcc: [1 2 3 4 5 6 7 8 9 10 11 12 13]
 mfccDelta: [14 15 16 17 18 19 20 21 22 23 24 25 26]
 mfccDeltaDelta: [27 28 29 30 31 32 33 34 35 36 37 38 39]
 spectralCentroid: 40
 pitch: 41
 zerocrossrate: 42
 shortTimeEnergy: 43

Plot the detected pitch over time.

t = linspace(0,size(audioIn,1)/fs,size(features,1));
plot(t,features(:,idx.pitch))
title("Pitch")
xlabel("Time (s)")
ylabel("Frequency (Hz)")

 audioFeatureExtractor

4-59

Plot the zero-crossing rate over time.

plot(t,features(:,idx.zerocrossrate))
title("Zero-Crossing Rate")
xlabel("Time (s)")

4 Classes

4-60

Plot the short-time energy over time.

plot(t,features(:,idx.shortTimeEnergy))
title("Short-Time Energy")
xlabel("Time (s)")

 audioFeatureExtractor

4-61

Extract Features from Dataset

Create an audio datastore that points to audio samples included with Audio Toolbox®.

folder = fullfile(matlabroot,"toolbox","audio","samples");
ads = audioDatastore(folder);

Find all files that correspond to a sample rate of 44.1 kHz and then subset the datastore.

keepFile = cellfun(@(x)contains(x,"44p1"),ads.Files);
ads = subset(ads,keepFile);

Convert the data to a tall array. tall arrays are evaluated only when you request them explicitly
using gather. MATLAB® automatically optimizes the queued calculations by minimizing the number
of passes through the data. If you have Parallel Computing Toolbox™, you can spread the calculations
across multiple workers. The audio data is represented as an M-by-1 tall cell array, where M is the
number of files in the audio datastore.

adsTall = tall(ads)

Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 6).

adsTall =

4 Classes

4-62

 M×1 tall cell array

 { 539648×1 double}
 { 227497×1 double}
 { 8000×1 double}
 { 685056×1 double}
 { 882688×2 double}
 {1115760×2 double}
 { 505200×2 double}
 {3195904×2 double}
 : :
 : :

Create an audioFeatureExtractor object to extract the mel spectrum, Bark spectrum, ERB
spectrum, and linear spectrum from each audio file. Use the default analysis window and overlap
length for the spectrum extraction.

aFE = audioFeatureExtractor(SampleRate=44.1e3, ...
 melSpectrum=true, ...
 barkSpectrum=true, ...
 erbSpectrum=true, ...
 linearSpectrum=true);

Define a cellfun function so that audio features are extracted from each cell of the tall array. Call
gather to evaluate the tall array.

specsTall = cellfun(@(x)extract(aFE,x),adsTall,UniformOutput=false);
specs = gather(specsTall);

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 14 sec
Evaluation completed in 14 sec

The specs variable returned from gather is a numFiles-by-1 cell array, where numFiles is the number
of files in the datastore. Each element of the cell array is a numHops-by-numFeatures-by-
numChannels array, where the number of hops and number of channels depends on the length and
number of channels of the audio file, and the number of features is the requested number of features
from the audio data.

numFiles = numel(specs)

numFiles = 12

[numHops1,numFeaturesFile1,numChanelsFile1] = size(specs{1})

numHops1 = 1053

numFeaturesFile1 = 620

numChanelsFile1 = 1

[numHops2,numFeaturesFile2,numChanelsFile2] = size(specs{2})

numHops2 = 443

numFeaturesFile2 = 620

numChanelsFile2 = 1

 audioFeatureExtractor

4-63

Visualize Extracted Audio Features

Use plotFeatures to visualize audio features extracted with an audioFeatureExtractor object.

Read in an audio signal from a file.

[audioIn,fs] = audioread("Counting-16-44p1-mono-15secs.wav");

Create an audioFeatureExtractor object that extracts the gammatone cepstral coefficients
(GTCCs) and the delta of the GTCCs. Set the SampleRate property to the sample rate of the audio
signal, and use the default values for the other properties.

afe = audioFeatureExtractor(SampleRate=fs,gtcc=true,gtccDelta=true);

Plot the features extracted from the audio signal.

plotFeatures(afe,audioIn)

Algorithms
The audioFeatureExtractor creates a feature extraction pipeline based on your selected features.
To reduce computations, audioFeatureExtractor reuses intermediary representations and
outputs some intermediate representations as features.

4 Classes

4-64

For example, to create an object that extracts the centroid of the Bark spectrum, the flux of the Bark
spectrum, the pitch, the harmonic ratio, and the delta-delta of the MFCC, specify the
audioFeatureExtractor as follows.

aFE = audioFeatureExtractor(...
 SpectralDescriptorInput="barkSpectrum", ...
 spectralCentroid=true, ...
 spectralFlux=true, ...
 pitch=true, ...
 harmonicRatio=true, ...
 mfccDeltaDelta=true)

aFE =

 audioFeatureExtractor with properties:

 Properties
 Window: [1024×1 double]
 OverlapLength: 512
 SampleRate: 44100
 FFTLength: []
 SpectralDescriptorInput: 'barkSpectrum'

 Enabled Features
 mfccDeltaDelta, spectralCentroid, spectralFlux, pitch, harmonicRatio

 Disabled Features
 linearSpectrum, melSpectrum, barkSpectrum, erbSpectrum, mfcc, mfccDelta
 gtcc, gtccDelta, gtccDeltaDelta, spectralCrest, spectralDecrease, spectralEntropy
 spectralFlatness, spectralKurtosis, spectralRolloffPoint, spectralSkewness, spectralSlope, spectralSpread

 To extract a feature, set the corresponding property to true.
 For example, obj.mfcc = true, adds mfcc to the list of enabled features.

 audioFeatureExtractor

4-65

This configuration corresponds to the highlighted feature extraction pipeline.

Note Because audioFeatureExtractor reuses intermediary representations, the features output
from audioFeatureExtractor might not correspond with the default configuration of features
output by corresponding individual feature extractors.

Version History
Introduced in R2019b

Visualize extracted features

Use the plotFeatures object function to visualize extracted audio features.

Computation of deltas and delta-deltas
Behavior changed in R2020b

The audioDelta function is now used to compute mfccDelta, mfccDeltaDelta, gtccDelta, and
gtccDeltaDelta. The audioDelta algorithm has a different startup behavior than the previous
algorithm. The default window length used to compute the deltas has changed from 2 to 9. A delta
window length of 2 is no longer supported.

4 Classes

4-66

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• You cannot generate code directly from audioFeatureExtractor. You can generate C/C++
code from the function returned by generateMATLABFunction.

• zerocrossrate code generation does not support disabling dynamic memory allocation when
the input is multichannel.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
Extract Audio Features | audioDatastore | audioDataAugmenter | Signal Labeler |
vggishEmbeddings

 audioFeatureExtractor

4-67

removeAugmentationMethod
Remove custom augmentation method

Syntax
removeAugmentationMethod(aug,algorithmName)

Description
removeAugmentationMethod(aug,algorithmName) removes the custom augmentation algorithm
from an audioDataAugmenter object.

Examples

Remove Augmentation Method

Create a default audioDataAugmenter object.

aug = audioDataAugmenter

aug =
 audioDataAugmenter with properties:

 AugmentationMode: 'sequential'
 AugmentationParameterSource: 'random'
 NumAugmentations: 1
 TimeStretchProbability: 0.5000
 SpeedupFactorRange: [0.8000 1.2000]
 PitchShiftProbability: 0.5000
 SemitoneShiftRange: [-2 2]
 VolumeControlProbability: 0.5000
 VolumeGainRange: [-3 3]
 AddNoiseProbability: 0.5000
 SNRRange: [0 10]
 TimeShiftProbability: 0.5000
 TimeShiftRange: [-0.0050 0.0050]

Add a custom augmentation method that applies a random DC offset.

algorithmName = 'DCOffset';
algorithmHandle = @(x)x+rand(1,'like',x);
addAugmentationMethod(aug,algorithmName,algorithmHandle)
aug

aug =
 audioDataAugmenter with properties:

 AugmentationMode: 'sequential'
 AugmentationParameterSource: 'random'
 NumAugmentations: 1

4 Classes

4-68

 TimeStretchProbability: 0.5000
 SpeedupFactorRange: [0.8000 1.2000]
 PitchShiftProbability: 0.5000
 SemitoneShiftRange: [-2 2]
 VolumeControlProbability: 0.5000
 VolumeGainRange: [-3 3]
 AddNoiseProbability: 0.5000
 SNRRange: [0 10]
 TimeShiftProbability: 0.5000
 TimeShiftRange: [-0.0050 0.0050]
 DCOffsetProbability: 0.5000

Remove the custom augmentation method.

removeAugmentationMethod(aug,algorithmName)
aug

aug =
 audioDataAugmenter with properties:

 AugmentationMode: 'sequential'
 AugmentationParameterSource: 'random'
 NumAugmentations: 1
 TimeStretchProbability: 0.5000
 SpeedupFactorRange: [0.8000 1.2000]
 PitchShiftProbability: 0.5000
 SemitoneShiftRange: [-2 2]
 VolumeControlProbability: 0.5000
 VolumeGainRange: [-3 3]
 AddNoiseProbability: 0.5000
 SNRRange: [0 10]
 TimeShiftProbability: 0.5000
 TimeShiftRange: [-0.0050 0.0050]

Input Arguments
aug — Audio data augmenter
audioDataAugmenter object

audioDataAugmenter object.

algorithmName — Algorithm name
character vector | string

Algorithm name, specified as a character vector or string. algorithmName must match the algorithm
name you used to add the algorithm using addAugmentationMethod.
Data Types: char | string

Version History
Introduced in R2019b

 removeAugmentationMethod

4-69

See Also
addAugmentationMethod | audioDataAugmenter

4 Classes

4-70

augment
Augment audio data

Syntax
data = augment(aug,audioIn)
data = augment(aug,audioIn,fs)

Description
data = augment(aug,audioIn) returns a table containing augmented audio data and information
about the augmentation applied.

data = augment(aug,audioIn,fs) specifies the sample rate of the audio input.

Examples

Apply Random Sequential Augmentations

Read in an audio signal and listen to it.

[audioIn,fs] = audioread("Counting-16-44p1-mono-15secs.wav");
sound(audioIn,fs)

Create an audioDataAugmenter object that applies time stretching, volume control, and time
shifting in cascade. Apply each of the augmentations with 80% probability. Set NumAugmentations
to 5 to output five independently augmented signals. To skip pitch shifting and noise addition for each
augmentation, set the respective probabilities to 0. Define parameter ranges for each relevant
augmentation algorithm.

augmenter = audioDataAugmenter(...
 "AugmentationMode","sequential", ...
 "NumAugmentations",5, ...
 ...
 "TimeStretchProbability",0.8, ...
 "SpeedupFactorRange", [1.3,1.4], ...
 ...
 "PitchShiftProbability",0, ...
 ...
 "VolumeControlProbability",0.8, ...
 "VolumeGainRange",[-5,5], ...
 ...
 "AddNoiseProbability",0, ...
 ...
 "TimeShiftProbability",0.8, ...
 "TimeShiftRange", [-500e-3,500e-3])

augmenter =
 audioDataAugmenter with properties:

 AugmentationMode: "sequential"

 augment

4-71

 AugmentationParameterSource: 'random'
 NumAugmentations: 5
 TimeStretchProbability: 0.8000
 SpeedupFactorRange: [1.3000 1.4000]
 PitchShiftProbability: 0
 VolumeControlProbability: 0.8000
 VolumeGainRange: [-5 5]
 AddNoiseProbability: 0
 TimeShiftProbability: 0.8000
 TimeShiftRange: [-0.5000 0.5000]

Call augment on the audio to create 5 augmentations. The augmented audio is returned in a table
with variables Audio and AugmentationInfo. The number of rows in the table is defined by
NumAugmentations.

data = augment(augmenter,audioIn,fs)

data=5×2 table
 Audio AugmentationInfo
 _________________ ________________

 {685056x1 double} 1x1 struct
 {685056x1 double} 1x1 struct
 {505183x1 double} 1x1 struct
 {685056x1 double} 1x1 struct
 {490728x1 double} 1x1 struct

In the current augmentation pipeline, augmentation parameters are assigned randomly from within
the specified ranges. To determine the exact parameters used for an augmentation, inspect
AugmentationInfo.

augmentationToInspect = ;
data.AugmentationInfo(augmentationToInspect)

ans = struct with fields:
 SpeedupFactor: 1
 VolumeGain: 4.3399
 TimeShift: 0.4502

Listen to the augmentation you are inspecting. Plot time representation of the original and
augmented signals.

augmentation = data.Audio{augmentationToInspect};
sound(augmentation,fs)

t = (0:(numel(audioIn)-1))/fs;
taug = (0:(numel(augmentation)-1))/fs;
plot(t,audioIn,taug,augmentation)
legend("Original Audio","Augmented Audio")
ylabel("Amplitude")
xlabel("Time (s)")

4 Classes

4-72

Apply Specified Sequential Augmentations

Read in an audio signal and listen to it.

[audioIn,fs] = audioread("Counting-16-44p1-mono-15secs.wav");
sound(audioIn,fs)

Create an audioDataAugmenter object that applies time stretching, pitch shifting, and noise
corruption in cascade. Specify the time stretch speedup factors as 0.9, 1.1, and 1.2. Specify the
pitch shifting in semitones as -2, -1, 1, and 2. Specify the noise corruption SNR as 10 dB and 15 dB.

augmenter = audioDataAugmenter(...
 "AugmentationMode","sequential", ...
 "AugmentationParameterSource","specify", ...
 "SpeedupFactor",[0.9,1.1,1.2], ...
 "ApplyTimeStretch",true, ...
 "ApplyPitchShift",true, ...
 "SemitoneShift",[-2,-1,1,2], ...
 "SNR",[10,15], ...
 "ApplyVolumeControl",false, ...
 "ApplyTimeShift",false)

augmenter =
 audioDataAugmenter with properties:

 augment

4-73

 AugmentationMode: "sequential"
 AugmentationParameterSource: "specify"
 ApplyTimeStretch: 1
 SpeedupFactor: [0.9000 1.1000 1.2000]
 ApplyPitchShift: 1
 SemitoneShift: [-2 -1 1 2]
 ApplyVolumeControl: 0
 ApplyAddNoise: 1
 SNR: [10 15]
 ApplyTimeShift: 0

Call augment on the audio to create 24 augmentations. The augmentations represent every
combination of the specified augmentation parameters (3 × 4 × 2 = 24).

data = augment(augmenter,audioIn,fs)

data=24×2 table
 Audio AugmentationInfo
 _________________ ________________

 {761243x1 double} 1x1 struct
 {622888x1 double} 1x1 struct
 {571263x1 double} 1x1 struct
 {761243x1 double} 1x1 struct
 {622888x1 double} 1x1 struct
 {571263x1 double} 1x1 struct
 {761243x1 double} 1x1 struct
 {622888x1 double} 1x1 struct
 {571263x1 double} 1x1 struct
 {761243x1 double} 1x1 struct
 {622888x1 double} 1x1 struct
 {571263x1 double} 1x1 struct
 {761243x1 double} 1x1 struct
 {622888x1 double} 1x1 struct
 {571263x1 double} 1x1 struct
 {761243x1 double} 1x1 struct
 ⋮

You can check the parameter configuration of each augmentation using the AugmentationInfo
table variable.

augmentationToInspect = ;
data.AugmentationInfo(augmentationToInspect)

ans = struct with fields:
 SpeedupFactor: 0.9000
 SemitoneShift: -2
 SNR: 10

Listen to the augmentation you are inspecting. Plot the time-domain representation of the original
and augmented signals.

augmentation = data.Audio{augmentationToInspect};
sound(augmentation,fs)

4 Classes

4-74

t = (0:(numel(audioIn)-1))/fs;
taug = (0:(numel(augmentation)-1))/fs;
plot(t,audioIn,taug,augmentation)
legend("Original Audio","Augmented Audio")
ylabel("Amplitude")
xlabel("Time (s)")

Apply Random Independent Augmentations

Read in an audio signal and listen to it.

[audioIn,fs] = audioread("Counting-16-44p1-mono-15secs.wav");

Create an audioDataAugmenter object that applies noise corruption, and time shifting in parallel
branches. For the noise corruption branch, randomly apply noise with an SNR in the range 0 dB to 20
dB. For the time shifting branch, randomly apply time shifting in the range -300 ms to 300 ms. Apply
augmentation 2 times for each branch, for 4 total augmentations.

augmenter = audioDataAugmenter(...
 "AugmentationMode","independent", ...
 "AugmentationParameterSource","random", ...
 "NumAugmentations",2, ...
 "ApplyTimeStretch",false, ...
 "ApplyPitchShift",false, ...

 augment

4-75

 "ApplyVolumeControl",false, ...
 "SNRRange",[0,20], ...
 "TimeShiftRange",[-300e-3,300e-3])

augmenter =
 audioDataAugmenter with properties:

 AugmentationMode: "independent"
 AugmentationParameterSource: "random"
 NumAugmentations: 2
 ApplyTimeStretch: 0
 ApplyPitchShift: 0
 ApplyVolumeControl: 0
 ApplyAddNoise: 1
 SNRRange: [0 20]
 ApplyTimeShift: 1
 TimeShiftRange: [-0.3000 0.3000]

Call augment on the audio to create 3 augmentations.

data = augment(augmenter,audioIn,fs);

You can check the parameter configuration of each augmentation using the AugmentatioInfo table
variable.

augmentationToInspect = ;
data.AugmentationInfo{augmentationToInspect}

ans = struct with fields:
 TimeShift: 0.0016

Listen to the audio you are inspecting. Plot the time-domain representation of the original and
augmented signals.

augmentation = data.Audio{augmentationToInspect};
sound(augmentation,fs)

t = (0:(numel(audioIn)-1))/fs;
taug = (0:(numel(augmentation)-1))/fs;
plot(t,audioIn,taug,augmentation)
legend("Original Audio","Augmented Audio")
ylabel("Amplitude")
xlabel("Time (s)")

4 Classes

4-76

Apply Specified Independent Augmentations

Read in an audio signal and listen to it.

[audioIn,fs] = audioread("Counting-16-44p1-mono-15secs.wav");

Create an audioDataAugmenter object that applies volume control, noise corruption, and time
shifting in parallel branches.

augmenter = audioDataAugmenter(...
 "AugmentationMode","independent", ...
 "AugmentationParameterSource","specify", ...
 "ApplyTimeStretch",false, ...
 "ApplyPitchShift",false, ...
 "VolumeGain",2, ...
 "SNR",0, ...
 "TimeShift",2)

augmenter =
 audioDataAugmenter with properties:

 AugmentationMode: "independent"
 AugmentationParameterSource: "specify"
 ApplyTimeStretch: 0
 ApplyPitchShift: 0

 augment

4-77

 ApplyVolumeControl: 1
 VolumeGain: 2
 ApplyAddNoise: 1
 SNR: 0
 ApplyTimeShift: 1
 TimeShift: 2

Call augment on the audio to create 3 augmentations.

data = augment(augmenter,audioIn,fs)

data=3×2 table
 Audio AugmentationInfo
 _________________ ________________

 {685056x1 double} {1x1 struct}
 {685056x1 double} {1x1 struct}
 {685056x1 double} {1x1 struct}

You can check the parameter configuration of each augmentation using the AugmentatioInfo table
variable.

augmentationToInspect = ;
data.AugmentationInfo{augmentationToInspect}

ans = struct with fields:
 TimeShift: 2

Listen to the audio you are inspecting. Plot the time-domain representations of the original and
augmented signals.

augmentation = data.Audio{augmentationToInspect};
sound(augmentation,fs)

t = (0:(numel(audioIn)-1))/fs;
taug = (0:(numel(augmentation)-1))/fs;
plot(t,audioIn,taug,augmentation)
legend("Original Audio","Augmented Audio")
ylabel("Amplitude")
xlabel("Time (s)")

4 Classes

4-78

Augment Audio Dataset

The audioDataAugmenter supports multiple workflows for augmenting your datastore, including:

• Offline augmentation
• Augmentation using tall arrays
• Augmentation using transform datastores

In each workflow, begin by creating an audio datastore to point to your audio data. In this example,
you create an audio datastore that points to audio samples included with Audio Toolbox™. Count the
number of files in the dataset.

folder = fullfile(matlabroot,"toolbox","audio","samples");
ADS = audioDatastore(folder)

ADS =
 audioDatastore with properties:

 Files: {
 ' ...\matlab\toolbox\audio\samples\Ambiance-16-44p1-mono-12secs.wav';
 ' ...\matlab\toolbox\audio\samples\AudioArray-16-16-4channels-20secs.wav';
 ' ...\toolbox\audio\samples\ChurchImpulseResponse-16-44p1-mono-5secs.wav'
 ... and 26 more
 }

 augment

4-79

 AlternateFileSystemRoots: {}
 OutputDataType: 'double'
 Labels: {}

numFilesInDataset = numel(ADS.Files)

numFilesInDataset = 29

Create an audioDataAugmenter that applies random sequential augmentations. Set
NumAugmentations to 2.

aug = audioDataAugmenter('NumAugmentations',2)

aug =
 audioDataAugmenter with properties:

 AugmentationMode: 'sequential'
 AugmentationParameterSource: 'random'
 NumAugmentations: 2
 TimeStretchProbability: 0.5000
 SpeedupFactorRange: [0.8000 1.2000]
 PitchShiftProbability: 0.5000
 SemitoneShiftRange: [-2 2]
 VolumeControlProbability: 0.5000
 VolumeGainRange: [-3 3]
 AddNoiseProbability: 0.5000
 SNRRange: [0 10]
 TimeShiftProbability: 0.5000
 TimeShiftRange: [-0.0050 0.0050]

Offline Augmentation

To augment the audio dataset, create two augmentations of each file and then write the
augmentations as WAV files.

while hasdata(ADS)
 [audioIn,info] = read(ADS);

 data = augment(aug,audioIn,info.SampleRate);

 [~,fn] = fileparts(info.FileName);
 for i = 1:size(data,1)
 augmentedAudio = data.Audio{i};

 % If augmentation caused an audio signal to have values outside of -1 and 1,
 % normalize the audio signal to avoid clipping when writing.
 if max(abs(augmentedAudio),[],'all')>1
 augmentedAudio = augmentedAudio/max(abs(augmentedAudio),[],'all');
 end

 audiowrite(sprintf('%s_aug%d.wav',fn,i),augmentedAudio,info.SampleRate)
 end
end

Create an audioDatastore that points to the augmented dataset and confirm that the number of
files in the dataset is double the original number of files.

4 Classes

4-80

augmentedADS = audioDatastore(pwd)

augmentedADS =
 audioDatastore with properties:

 Files: {
 ' ...\Examples\audio-ex28074079\Ambiance-16-44p1-mono-12secs_aug1.wav';
 ' ...\Examples\audio-ex28074079\Ambiance-16-44p1-mono-12secs_aug2.wav';
 ' ...\Examples\audio-ex28074079\AudioArray-16-16-4channels-20secs_aug1.wav'
 ... and 55 more
 }
 AlternateFileSystemRoots: {}
 OutputDataType: 'double'
 Labels: {}

numFilesInAugmentedDataset = numel(augmentedADS.Files)

numFilesInAugmentedDataset = 58

Augment Using Tall Arrays

When augmenting a dataset using tall arrays, the input data to the augmenter should be sampled at a
consistent rate. Subset the original audio dataset to only include files with a sample rate of 44.1 kHz.
Most datasets are already cleaned to have a consistent sample rate.

keepFile = cellfun(@(x)contains(x,'44p1'),ADS.Files);
ads44p1 = subset(ADS,keepFile);
fs = 44.1e3;

Convert the audio datastore to a tall array. tall arrays are evaluated only when you request them
explicitly using gather. MATLAB® automatically optimizes the queued calculations by minimizing
the number of passes through the data. If you have the Parallel Computing Toolbox™, you can spread
the calculations across multiple machines. The audio data is represented as an M-by-1 tall cell array,
where M is the number of files in the audio datastore.

adsTall = tall(ads44p1)

Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 6).

adsTall =

 M×1 tall cell array

 { 539648×1 double}
 { 227497×1 double}
 { 8000×1 double}
 { 685056×1 double}
 { 882688×2 double}
 {1115760×2 double}
 { 505200×2 double}
 {3195904×2 double}
 : :
 : :

Define a cellfun function so that augmentation is applied to each cell of the tall array. Call gather
to evaluate the tall array.

 augment

4-81

augTall = cellfun(@(x)augment(aug,x,fs),adsTall,"UniformOutput",false);
augmentedDataset = gather(augTall)

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1 min 34 sec
Evaluation completed in 1 min 34 sec

augmentedDataset=12×1 cell array
 {2×2 table}
 {2×2 table}
 {2×2 table}
 {2×2 table}
 {2×2 table}
 {2×2 table}
 {2×2 table}
 {2×2 table}
 {2×2 table}
 {2×2 table}
 {2×2 table}
 {2×2 table}

The augmented dataset is returned as a numFiles-by-1 cell array, where numFiles is the number of
files in the datastore. Each element of the cell array is a numAugmentationsPerFile-by-2 table, where
numAugmentationsPerFile is the number of augmentations returned per file.

numFiles = numel(augmentedDataset)

numFiles = 12

numAugmentationsPerFile = size(augmentedDataset{1},1)

numAugmentationsPerFile = 2

Augment Using Transform Datastore

You can perform online data augmentation while you train your machine learning application using a
transform datastore. Call transform to create a new datastore that applies data augmentation while
reading.

transformADS = transform(ADS,@(x,info)augment(aug,x,info),'IncludeInfo',true)

transformADS =
 TransformedDatastore with properties:

 UnderlyingDatastore: [1×1 audioDatastore]
 Transforms: {@(x,info)augment(aug,x,info)}
 IncludeInfo: 1

Call read to return the augmented first file from the transform datastore.

augmentedRead = read(transformADS)

augmentedRead=2×2 table
 Audio AugmentationInfo
 _________________ ________________

 {539648×1 double} [1×1 struct]

4 Classes

4-82

 {586683×1 double} [1×1 struct]

Input Arguments
aug — Audio data augmenter
audioDataAugmenter object

audioDataAugmenter object.

audioIn — Audio input
vector | matrix

Audio input, specified as a column vector or matrix of independent channels (columns).
Data Types: single | double

fs — Sample rate (Hz)
44100 (default) | positive scalar

Sample rate in Hz, specified as a positive scalar. The allowable range of fs depends on the properties
of the audioDataAugmenter object.
Data Types: single | double

Output Arguments
data — Augmented audio and augmentation information
table

Augmented audio and augmentation information, returned as a two-column table. The first column
holds the augmented audio signal. The second column holds information about the applied
augmentation methods. The number of rows in data corresponds to the number of output augmented
signals. The number of output augmented signals depends on the property values of the object.

Version History
Introduced in R2019b

See Also
audioDataAugmenter | addAugmentationMethod | removeAugmentationMethod | table

 augment

4-83

addAugmentationMethod
Add custom augmentation method

Syntax
addAugmentationMethod(aug,algorithmName,algorithmHandle)
addAugmentationMethod(aug,algorithmName,algorithmHandle,Name,Value)

Description
addAugmentationMethod(aug,algorithmName,algorithmHandle) adds a custom
augmentation algorithm to an audioDataAugmenter object.

addAugmentationMethod(aug,algorithmName,algorithmHandle,Name,Value) specifies
options using one or more Name,Value pair arguments.

Examples

Add Custom Augmentation Method

You can expand the capabilities of audioDataAugmenter by adding custom augmentation methods.

Read in an audio signal and listen to it.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');
sound(audioIn,fs)

Create an audioDataAugmenter object. Set the probability of applying white noise to 0.

augmenter = audioDataAugmenter('AddNoiseProbability',0)

augmenter =
 audioDataAugmenter with properties:

 AugmentationMode: 'sequential'
 AugmentationParameterSource: 'random'
 NumAugmentations: 1
 TimeStretchProbability: 0.5000
 SpeedupFactorRange: [0.8000 1.2000]
 PitchShiftProbability: 0.5000
 SemitoneShiftRange: [-2 2]
 VolumeControlProbability: 0.5000
 VolumeGainRange: [-3 3]
 AddNoiseProbability: 0
 TimeShiftProbability: 0.5000
 TimeShiftRange: [-0.0050 0.0050]

Specify a custom augmentation algorithm that applies pink noise. The AddPinkNoise algorithm is
added to the augmenter properties.

4 Classes

4-84

algorithmName = 'AddPinkNoise';
algorithmHandle = @(x)x+pinknoise(size(x),'like',x);
addAugmentationMethod(augmenter,algorithmName,algorithmHandle)

augmenter

augmenter =
 audioDataAugmenter with properties:

 AugmentationMode: 'sequential'
 AugmentationParameterSource: 'random'
 NumAugmentations: 1
 TimeStretchProbability: 0.5000
 SpeedupFactorRange: [0.8000 1.2000]
 PitchShiftProbability: 0.5000
 SemitoneShiftRange: [-2 2]
 VolumeControlProbability: 0.5000
 VolumeGainRange: [-3 3]
 AddNoiseProbability: 0
 TimeShiftProbability: 0.5000
 TimeShiftRange: [-0.0050 0.0050]
 AddPinkNoiseProbability: 0.5000

Set the probability of adding pink noise to 1.

augmenter.AddPinkNoiseProbability = 1

augmenter =
 audioDataAugmenter with properties:

 AugmentationMode: 'sequential'
 AugmentationParameterSource: 'random'
 NumAugmentations: 1
 TimeStretchProbability: 0.5000
 SpeedupFactorRange: [0.8000 1.2000]
 PitchShiftProbability: 0.5000
 SemitoneShiftRange: [-2 2]
 VolumeControlProbability: 0.5000
 VolumeGainRange: [-3 3]
 AddNoiseProbability: 0
 TimeShiftProbability: 0.5000
 TimeShiftRange: [-0.0050 0.0050]
 AddPinkNoiseProbability: 1

Augment the original signal and listen to the result. Inspect parameters of the augmentation
algorithms applied.

data = augment(augmenter,audioIn,fs);
sound(data.Audio{1},fs)

data.AugmentationInfo(1)

ans = struct with fields:
 SpeedupFactor: 1
 SemitoneShift: 0
 VolumeGain: 2.4803
 TimeShift: -0.0022

 addAugmentationMethod

4-85

 AddPinkNoise: 'Applied'

Plot the mel spectrograms of the original and augmented signals.

melSpectrogram(audioIn,fs)
title('Original Signal')

melSpectrogram(data.Audio{1},fs)
title('Augmented Signal')

4 Classes

4-86

Specify Parameters of Custom Augmentation Method

In this example, you add a custom augmentation method that applies median filtering to your audio.

Read in an audio signal and listen to it.

[audioIn,fs] = audioread("Counting-16-44p1-mono-15secs.wav");
sound(audioIn,fs)

Create a random sequential augmenter that adds noise with an SNR range of 5 dB to 10 dB. Set the
probability of applying volume control, time stretching, pitch shifting, and time shifting to 0. Set
NumAugmentations to 4 to create 4 separate augmentations.

aug = audioDataAugmenter('NumAugmentations',4, ...
 "AddNoiseProbability",1, ...
 "SNRRange",[5,10], ...
 "VolumeControlProbability",0, ...
 "TimeStretchProbability",0, ...
 "TimeShiftProbability",0, ...
 "PitchShiftProbability",0)

aug =
 audioDataAugmenter with properties:

 AugmentationMode: 'sequential'

 addAugmentationMethod

4-87

 AugmentationParameterSource: 'random'
 NumAugmentations: 4
 TimeStretchProbability: 0
 PitchShiftProbability: 0
 VolumeControlProbability: 0
 AddNoiseProbability: 1
 SNRRange: [5 10]
 TimeShiftProbability: 0

Call addAugmentationMethod with an algorithm name and function handle. Specify the algorithm
name as MedianFilter and the function handle as movmedian with a 3-element window length. The
augmentation is added to the properties of your audioDataAugmenter object.

algorithmName = 'MedianFilter';
algorithmHandle = @(x)(movmedian(x,100));
addAugmentationMethod(aug,algorithmName,algorithmHandle)

aug

aug =
 audioDataAugmenter with properties:

 AugmentationMode: 'sequential'
 AugmentationParameterSource: 'random'
 NumAugmentations: 4
 TimeStretchProbability: 0
 PitchShiftProbability: 0
 VolumeControlProbability: 0
 AddNoiseProbability: 1
 SNRRange: [5 10]
 TimeShiftProbability: 0
 MedianFilterProbability: 0.5000

Set the probability of applying median filtering to 80%.

aug.MedianFilterProbability = 0.8

aug =
 audioDataAugmenter with properties:

 AugmentationMode: 'sequential'
 AugmentationParameterSource: 'random'
 NumAugmentations: 4
 TimeStretchProbability: 0
 PitchShiftProbability: 0
 VolumeControlProbability: 0
 AddNoiseProbability: 1
 SNRRange: [5 10]
 TimeShiftProbability: 0
 MedianFilterProbability: 0.8000

Call augment on the audio to create 4 augmentations.

data = augment(aug,audioIn,fs);

4 Classes

4-88

You can check the parameter configuration of each augmentation using the AugmentationInfo
table variable. If median filtering was applied for an augmentation, then AugmentationInfo lists
the parameter as 'Applied'. If median filtering was not applied for an augmentation, then
AugmentationInfo lists the parameter as 'Bypassed'.

augmentationToInspect = ;
data.AugmentationInfo(augmentationToInspect)

ans = struct with fields:
 SNR: 9.5787
 MedianFilter: 'Applied'

Listen to the audio you are inspecting. Plot the time-domain representation of the original and
augmented signals.

augmentation = data.Audio{augmentationToInspect};
sound(augmentation,fs)
t = (0:(numel(audioIn)-1))/fs;
taug = (0:(numel(augmentation)-1))/fs;
plot(t,audioIn,taug,augmentation)
legend("Original Audio","Augmented Audio")
ylabel("Amplitude")
xlabel("Time (s)")

You can specify additional parameters and corresponding parameter ranges (for use when
AugmentationParameterSource is set to 'random') and parameter values (for use when

 addAugmentationMethod

4-89

AugmentationParameterSource is set to 'specify'). You must specify additional parameters,
parameter ranges, and parameter values during your call to addAugmentationMethod.

Call removeAugmentationMethod to remove the MedianFilter augmentation method. Call
addAugmentationMethod again, this time specifying an augmentation parameter, parameter range,
and parameter value. The augmentation and parameter range is added to the properties of your
audioDataAugmenter object.

removeAugmentationMethod(aug,'MedianFilter')

algorithmName = 'MedianFilter';
augmentationParameter = 'MedianFilterWindowLength';
parameterRange = [1,200];
parameterValue = 100;

algorithmHandle = @(x,k)(movmedian(x,k));
addAugmentationMethod(aug,algorithmName,algorithmHandle, ...
 'AugmentationParameter',augmentationParameter, ...
 'ParameterRange',parameterRange, ...
 'ParameterValue',parameterValue)

aug

aug =
 audioDataAugmenter with properties:

 AugmentationMode: 'sequential'
 AugmentationParameterSource: 'random'
 NumAugmentations: 4
 TimeStretchProbability: 0
 PitchShiftProbability: 0
 VolumeControlProbability: 0
 AddNoiseProbability: 1
 SNRRange: [5 10]
 TimeShiftProbability: 0
 MedianFilterProbability: 0.5000
 MedianFilterWindowLengthRange: [1 200]

In the current augmentation pipeline configuration, the parameter value is not applicable.
ParameterValue is applicable when AugmetnationParameterSource is set to 'specify'. Set
AugmentationParameterSource to 'specify' to enable the current parameter value.

aug.AugmentationParameterSource = 'specify'

aug =
 audioDataAugmenter with properties:

 AugmentationMode: 'sequential'
 AugmentationParameterSource: 'specify'
 ApplyTimeStretch: 1
 SpeedupFactor: 0.8000
 ApplyPitchShift: 1
 SemitoneShift: -3
 ApplyVolumeControl: 1
 VolumeGain: -3
 ApplyAddNoise: 1
 SNR: 5

4 Classes

4-90

 ApplyTimeShift: 1
 TimeShift: 0.0050
 ApplyMedianFilter: 1
 MedianFilterWindowLength: 100

Set AugmentationParameterSource to random and then call augment.

aug.AugmentationParameterSource = "random";
data = augment(aug,audioIn,fs);

If median filtering was applied for an augmentation, then AugmentationInfo lists the value applied.

augmentationToInspect = ;
data.AugmentationInfo(augmentationToInspect)

ans = struct with fields:
 SNR: 8.7701
 MedianFilter: 117.9847

Listen to the audio you are inspecting. Plot the time-domain representation of the original and
augmented signals.

augmentation = data.Audio{augmentationToInspect};
sound(augmentation,fs)
t = (0:(numel(audioIn)-1))/fs;
taug = (0:(numel(augmentation)-1))/fs;
plot(t,audioIn,taug,augmentation)
legend("Original Audio","Augmented Audio")
ylabel("Amplitude")
xlabel("Time (s)")

 addAugmentationMethod

4-91

Specify Multiple Parameters of Custom Augmentation Method

Read in an audio signal and listen to it.

[audioIn,fs] = audioread('RockDrums-44p1-stereo-11secs.mp3');
sound(audioIn,fs)

Create and audioDataAugmenter object that outputs 5 augmentations. Set the
AddNoiseProbability to 0.

aug = audioDataAugmenter('NumAugmentations',5,'AddNoiseProbability',0);

Add reverberation as a custom augmentation algorithm. The applyReverb function creates a
reverberator object, updates the sample rate, pre-delay, and wet/dry mix as indicated, and then
applies reverberation. To minimize computational overhead, the reverberator object is persistent. The
object is reset on every call to avoid mixing the reverberation tail between audio files.

type applyReverb.m

function audioOut = applyReverb(audio,preDelay,wetDryMix,sampleRate)
 persistent reverbObject
 if isempty(reverbObject)
 reverbObject = reverberator;
 end
 reverbObject.SampleRate = sampleRate;

4 Classes

4-92

 reverbObject.PreDelay = preDelay;
 reverbObject.WetDryMix = wetDryMix;

 audioOut = reverbObject(audio);
 reset(reverbObject)
end

Add applyReverb as a custom augmentation method. To specify multiple parameters for a custom
method, specify the parameters, parameter ranges, and parameter values as cell arrays with the
same number of cells. Set the probability of applying reverberation to 1.

algorithmName = 'Reverb';
algorithmHandle = @(x,preDelay,weDryMix)applyReverb(x,preDelay,weDryMix,fs);
parameters = {'PreDelay','WetDryMix'};
parameterRanges = {[0,1],[0,1]};
parameterValues = {0,0.3};

addAugmentationMethod(aug,algorithmName,algorithmHandle, ...
 'AugmentationParameter',parameters, ...
 'ParameterRange',parameterRanges, ...
 'ParameterValue',parameterValues)

aug.ReverbProbability = 1

aug =
 audioDataAugmenter with properties:

 AugmentationMode: 'sequential'
 AugmentationParameterSource: 'random'
 NumAugmentations: 5
 TimeStretchProbability: 0.5000
 SpeedupFactorRange: [0.8000 1.2000]
 PitchShiftProbability: 0.5000
 SemitoneShiftRange: [-2 2]
 VolumeControlProbability: 0.5000
 VolumeGainRange: [-3 3]
 AddNoiseProbability: 0
 TimeShiftProbability: 0.5000
 TimeShiftRange: [-0.0050 0.0050]
 ReverbProbability: 1
 PreDelayRange: [0 1]
 WetDryMixRange: [0 1]

Call augment to create 5 augmentations.

data = augment(aug,audioIn,fs);

Check the configuration of each augmentation using AugmentationInfo.

augmentationToInspect = ;
data.AugmentationInfo(augmentationToInspect)

ans = struct with fields:
 SpeedupFactor: 1
 SemitoneShift: -1.4325
 VolumeGain: 0
 TimeShift: 0

 addAugmentationMethod

4-93

 Reverb: [0.2760 0.4984]

Listen to the audio you are inspecting. Plot the time-domain representation of the original and
augmented signals.

augmentation = data.Audio{augmentationToInspect};
sound(augmentation,fs)
t = (0:(size(audioIn,1)-1))/fs;
taug = (0:(size(augmentation,1)-1))/fs;
plot(t,audioIn(:,1),taug,augmentation(:,1))
legend("Original Audio","Augmented Audio")
ylabel("Amplitude")
xlabel("Time (s)")

Input Arguments
aug — Audio data augmenter
audioDataAugmenter object

audioDataAugmenter object.

algorithmName — Algorithm name
character vector | string

4 Classes

4-94

Algorithm name, specified as a character vector or string. algorithmName must be a unique
property name on the audioDataAugmenter, aug.
Data Types: char | string

algorithmHandle — Handle to function that implements custom augmentation algorithm
function_handle

Handle to function that implements custom augmentation algorithm, specified as a
function_handle.
Data Types: function_handle

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'AugmentationParameter,'PreDelay'

AugmentationParameter — Augmentation parameter
character vector | string | cell array of character vectors | cell array of strings

Augmentation parameter, specified as a character vector, string, cell array of character vectors, or
cell array of strings.

Use cell arrays to create multiple augmentation parameters. If you create multiple augmentation
parameters, you must also specify ParameterRange and ParameterValue as cell arrays containing
information for each augmentation parameter.
Example: 'AugmentationParameter','PreDelay'
Example: 'AugmentationParameter',{'PreDelay','HighCutFrequency'}
Data Types: char | string

ParameterRange — Parameter range
[0,1] (default) | two-element vector of nondecreasing values | cell array of two-element vectors of
nondecreasing values

Parameter range, specified as a two-element vector of nondecreasing values (for a single parameter)
or a cell array of two-element vectors of nondecreasing values (for multiple parameters).
Example: 'ParameterRange',[0,1]
Example: 'ParameterRange',{[0,1],[20,20000]}

Dependencies

To enable this property, set the AugmentationParameterSource property of your
audioDataAugmenter object to 'random'.
Data Types: single | double | cell

ParameterValue — Parameter value
0 (default) | scalar | vector | cell array of scalars or vectors

 addAugmentationMethod

4-95

Parameter value, specified as a scalar, vector, or cell array of scalars or vectors.
Example: 'ParameterValue',0
Example: 'ParameterValue',[0,0.5,1]
Example: 'ParameterValue',{0,20000}
Example: 'ParameterValue',{[0,0.5,1],20000}

Dependencies

To enable this property, set the AugmentationParameterSource property of your
audioDataAugmenter to 'specify'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64
Complex Number Support: Yes

Version History
Introduced in R2019b

See Also
removeAugmentationMethod | audioDataAugmenter | reverberator

4 Classes

4-96

setAugmenterParams
Set parameters of augmentation algorithm

Syntax
setAugmenterParams(aug,algorithmName,params)
setAugmenterParams(aug,algorithmName)

Description
setAugmenterParams(aug,algorithmName,params) sets parameters of the augmentation
algorithm associated with the audioDataAugmenter object.

setAugmenterParams(aug,algorithmName) without the params argument restores the
algorithmName parameters to their default values.

Examples

Set Augmenter Parameters

Modify the default parameters of the shiftPitch and stretchAudio augmentation algorithms.

Read in an audio signal and listen to it.

[audioIn,fs] = audioread('FemaleSpeech-16-8-mono-3secs.wav');
soundsc(audioIn,fs)

Create an audioDataAugmenter object that applies a pitch shift of 3 semitones and a time stretch
with a SpeedupFactor of 1.5.

aug = audioDataAugmenter('AugmentationParameterSource','specify', ...
 'ApplyPitchShift',true, ...
 'SemitoneShift',3, ...
 'ApplyTimeStretch',true, ...
 'SpeedupFactor',1.5, ...
 'ApplyVolumeControl',false, ...
 'ApplyAddNoise',false, ...
 'ApplyTimeShift',false)

aug =
 audioDataAugmenter with properties:

 AugmentationMode: 'sequential'
 AugmentationParameterSource: 'specify'
 ApplyTimeStretch: 1
 SpeedupFactor: 1.5000
 ApplyPitchShift: 1
 SemitoneShift: 3
 ApplyVolumeControl: 0
 ApplyAddNoise: 0

 setAugmenterParams

4-97

 ApplyTimeShift: 0

Call setAugmenterParams to set the LockPhase and PreserveFormants parameters of the
shiftPitch augmentation algorithm to false. Set the LockPhase parameter of the
stretchAudio augmentation algorithm to false. Set the CepstralOrder parameter of the
shiftPitch algorithm to 30.

Augment the original signal and listen to the result. The resulting file has an audible distortion that
sounds unnatural. View the parameters of the augmentation algorithms.

setAugmenterParams(aug,'shiftPitch','LockPhase',false,'PreserveFormants',false,'CepstralOrder',30);
setAugmenterParams(aug,'stretchAudio','LockPhase',false);
data = augment(aug,audioIn,fs);

pause(3)

augmentationPre = data.Audio{1};
soundsc(augmentationPre,fs)

data.AugmentationInfo(1)

ans = struct with fields:
 SpeedupFactor: 1.5000
 SemitoneShift: 3

augmenterParamsPre = getAugmenterParams(aug);
augmenterParamsPre.stretchAudio

ans = struct with fields:
 LockPhase: 0

augmenterParamsPre.shiftPitch

ans = struct with fields:
 LockPhase: 0
 PreserveFormants: 0
 CepstralOrder: 30

Plot the time-domain representation of the original and the augmented signals.

t = (0:(numel(audioIn)-1))/fs;
taug = (0:(numel(augmentationPre)-1))/fs;
plot(t,audioIn,taug,augmentationPre)
legend("Original Audio","Augmented Audio")
ylabel("Amplitude")
xlabel("Time (s)")

4 Classes

4-98

To partially compensate for the audible distortion and increase the fidelity of the augmentation
algorithms, apply formant preservation to the shiftPitch algorithm, apply phase-locking to both
algorithms, and change the cepstral order of the shiftPitch algorithm to 25. Listen to the
processed audio.

setAugmenterParams(aug,'shiftPitch','LockPhase',true,'PreserveFormants',true,'CepstralOrder',25);
setAugmenterParams(aug,'stretchAudio','LockPhase',true);
data = augment(aug,audioIn,fs);

augmentationPost = data.Audio{1};
soundsc(augmentationPost,fs)

data.AugmentationInfo(1)

ans = struct with fields:
 SpeedupFactor: 1.5000
 SemitoneShift: 3

augmenterParamsPost = getAugmenterParams(aug);
augmenterParamsPost.stretchAudio

ans = struct with fields:
 LockPhase: 1

augmenterParamsPost.shiftPitch

 setAugmenterParams

4-99

ans = struct with fields:
 LockPhase: 1
 PreserveFormants: 1
 CepstralOrder: 25

Plot the original audio as well as the augmented data before and after formant preservation, phase-
locking, and cepstral order modification.

taug = (0:(numel(augmentationPost)-1))/fs;
plot(t,audioIn,taug,augmentationPre)
hold on
plot(taug,augmentationPost,'LineStyle',':')
legend("Original Audio","Pre Formant Preservation," + ...
 " Phase-Locking, and Cepstral Order", ...
 "Post Formant Preservation, Phase-Locking, and Cepstral Order")
ylabel("Amplitude")
xlabel("Time (s)")
legend('Location','best')

Return the augmentation algorithm parameters to their default values. Call getAugmenterParams
to display the current parameter values for the audioAugmenter object.

setAugmenterParams(aug,'shiftPitch')
setAugmenterParams(aug,'stretchAudio')
augmenterParamsDefault = getAugmenterParams(aug);
augmenterParamsDefault.stretchAudio

4 Classes

4-100

ans = struct with fields:
 LockPhase: 0

augmenterParamsDefault.shiftPitch

ans = struct with fields:
 LockPhase: 0
 PreserveFormants: 0
 CepstralOrder: 30

Input Arguments
aug — Audio data augmenter
audioDataAugmenter object

Audio data augmenter, specified as an audioDataAugmenter object.

algorithmName — Algorithm name
'stretchAudio' | 'shiftPitch'

Algorithm name, specified as 'stretchAudio' or 'shiftPitch.

Note Augmentation algorithms must be modified independently using separate calls to
setAugmenterParams for each algorithm.

Data Types: char | string

params — Parameter used with augmentation algorithm
character vector | string | structure array

Parameter name, specified as a character vector, string, or structure array. Parameter values depend
on algorithmName. Specify params as one of these:

• When you set algorithmName to 'stretchAudio', specify params as 'LockPhase' and true
or false.

• When you set algorithmName to 'shiftPitch', specify params as one or all of these:

• 'LockPhase' and true or false
• 'PreserveFormants' and true or false
• 'CepstralOrder' and a positive integer

Example:
setAugmenterParams(aug,'shiftPitch','LockPhase',true,'PreserveFormants',false
,'CepstralOrder',15) enables the LockPhase parameter, disables the PreserveFormants
parameter, and sets a cepstral order of 15 for the shiftPitch augmentation algorithm.
Data Types: char | string | struct

 setAugmenterParams

4-101

Version History
Introduced in R2021a

See Also
removeAugmentationMethod | augment | getAugmenterParams | addAugmentationMethod |
audioDataAugmenter

4 Classes

4-102

getAugmenterParams
Get parameters of augmentation algorithm

Syntax
augmenterParams = getAugmenterParams(aug,algorithmName)
augmenterParams = getAugmenterParams(aug)

Description
augmenterParams = getAugmenterParams(aug,algorithmName) returns parameters of the
augmentation algorithm associated with the audioDataAugmenter object.

augmenterParams = getAugmenterParams(aug) returns the parameters of all augmentation
algorithms associated with the audioDataAugmenter object.

Examples

Set Augmenter Parameters

Modify the default parameters of the shiftPitch and stretchAudio augmentation algorithms.

Read in an audio signal and listen to it.

[audioIn,fs] = audioread('FemaleSpeech-16-8-mono-3secs.wav');
soundsc(audioIn,fs)

Create an audioDataAugmenter object that applies a pitch shift of 3 semitones and a time stretch
with a SpeedupFactor of 1.5.

aug = audioDataAugmenter('AugmentationParameterSource','specify', ...
 'ApplyPitchShift',true, ...
 'SemitoneShift',3, ...
 'ApplyTimeStretch',true, ...
 'SpeedupFactor',1.5, ...
 'ApplyVolumeControl',false, ...
 'ApplyAddNoise',false, ...
 'ApplyTimeShift',false)

aug =
 audioDataAugmenter with properties:

 AugmentationMode: 'sequential'
 AugmentationParameterSource: 'specify'
 ApplyTimeStretch: 1
 SpeedupFactor: 1.5000
 ApplyPitchShift: 1
 SemitoneShift: 3
 ApplyVolumeControl: 0
 ApplyAddNoise: 0

 getAugmenterParams

4-103

 ApplyTimeShift: 0

Call setAugmenterParams to set the LockPhase and PreserveFormants parameters of the
shiftPitch augmentation algorithm to false. Set the LockPhase parameter of the
stretchAudio augmentation algorithm to false. Set the CepstralOrder parameter of the
shiftPitch algorithm to 30.

Augment the original signal and listen to the result. The resulting file has an audible distortion that
sounds unnatural. View the parameters of the augmentation algorithms.

setAugmenterParams(aug,'shiftPitch','LockPhase',false,'PreserveFormants',false,'CepstralOrder',30);
setAugmenterParams(aug,'stretchAudio','LockPhase',false);
data = augment(aug,audioIn,fs);

pause(3)

augmentationPre = data.Audio{1};
soundsc(augmentationPre,fs)

data.AugmentationInfo(1)

ans = struct with fields:
 SpeedupFactor: 1.5000
 SemitoneShift: 3

augmenterParamsPre = getAugmenterParams(aug);
augmenterParamsPre.stretchAudio

ans = struct with fields:
 LockPhase: 0

augmenterParamsPre.shiftPitch

ans = struct with fields:
 LockPhase: 0
 PreserveFormants: 0
 CepstralOrder: 30

Plot the time-domain representation of the original and the augmented signals.

t = (0:(numel(audioIn)-1))/fs;
taug = (0:(numel(augmentationPre)-1))/fs;
plot(t,audioIn,taug,augmentationPre)
legend("Original Audio","Augmented Audio")
ylabel("Amplitude")
xlabel("Time (s)")

4 Classes

4-104

To partially compensate for the audible distortion and increase the fidelity of the augmentation
algorithms, apply formant preservation to the shiftPitch algorithm, apply phase-locking to both
algorithms, and change the cepstral order of the shiftPitch algorithm to 25. Listen to the
processed audio.

setAugmenterParams(aug,'shiftPitch','LockPhase',true,'PreserveFormants',true,'CepstralOrder',25);
setAugmenterParams(aug,'stretchAudio','LockPhase',true);
data = augment(aug,audioIn,fs);

augmentationPost = data.Audio{1};
soundsc(augmentationPost,fs)

data.AugmentationInfo(1)

ans = struct with fields:
 SpeedupFactor: 1.5000
 SemitoneShift: 3

augmenterParamsPost = getAugmenterParams(aug);
augmenterParamsPost.stretchAudio

ans = struct with fields:
 LockPhase: 1

augmenterParamsPost.shiftPitch

 getAugmenterParams

4-105

ans = struct with fields:
 LockPhase: 1
 PreserveFormants: 1
 CepstralOrder: 25

Plot the original audio as well as the augmented data before and after formant preservation, phase-
locking, and cepstral order modification.

taug = (0:(numel(augmentationPost)-1))/fs;
plot(t,audioIn,taug,augmentationPre)
hold on
plot(taug,augmentationPost,'LineStyle',':')
legend("Original Audio","Pre Formant Preservation," + ...
 " Phase-Locking, and Cepstral Order", ...
 "Post Formant Preservation, Phase-Locking, and Cepstral Order")
ylabel("Amplitude")
xlabel("Time (s)")
legend('Location','best')

Return the augmentation algorithm parameters to their default values. Call getAugmenterParams
to display the current parameter values for the audioAugmenter object.

setAugmenterParams(aug,'shiftPitch')
setAugmenterParams(aug,'stretchAudio')
augmenterParamsDefault = getAugmenterParams(aug);
augmenterParamsDefault.stretchAudio

4 Classes

4-106

ans = struct with fields:
 LockPhase: 0

augmenterParamsDefault.shiftPitch

ans = struct with fields:
 LockPhase: 0
 PreserveFormants: 0
 CepstralOrder: 30

Input Arguments
aug — Audio data augmenter
audioDataAugmenter object

Audio data augmenter, specified as an audioDataAugmenter object.

algorithmName — Algorithm name
'stretchAudio' | 'shiftPitch'

Algorithm name, specified as 'stretchAudio' or 'shiftPitch.
Data Types: char | string

Output Arguments
augmenterParams — Audio augmenter parameters
structure array

Audio augmenter parameters, returned as a structure array.
Data Types: struct

Version History
Introduced in R2021a

See Also
removeAugmentationMethod | augment | setAugmenterParams | addAugmentationMethod |
audioDataAugmenter

 getAugmenterParams

4-107

audioDataAugmenter
Augment audio data

Description
Enlarge your audio dataset using audio-specific augmentation techniques like pitch shifting, time-
scale modification, time shifting, noise addition, and volume control. You can create cascaded or
parallel augmentation pipelines to apply multiple algorithms deterministically or probabilistically.

Creation

Syntax
aug = audioDataAugmenter()
aug = audioDataAugmenter(Name,Value)

Description

aug = audioDataAugmenter() creates an audio data augmenter object with default property
values.

aug = audioDataAugmenter(Name,Value) specifies nondefault properties for aug using one or
more name-value arguments.

Properties
Augmentation Pipeline

AugmentationMode — Augmentation mode
'sequential' (default) | 'independent'

Augmentation mode, specified as 'sequential' or 'independent'.

• 'sequential' –– Augmentation algorithms are applied sequentially (in series).
• 'independent' –– Augmentation algorithms are applied independently (in parallel).

Data Types: char | string

AugmentationParameterSource — Source of augmentation parameters
'random' (default) | 'specify'

Source of augmentation parameters, specified as 'random' or 'specify'.

• 'random' –– Augmentation algorithms are applied probabilistically using a probability parameter
and a range parameter.

For example, to create an audioDataAugmenter that applies time-stretching using a speedup
factor between 0.5 and 1.5 with a 60% probability, enter the following in the Command Window:

4 Classes

4-108

aug = audioDataAugmenter('AugmentationParameterSource','random', ...
 'TimeStretchProbability',0.6, ...
 'SpeedupFactorRange',[0.5,1.5]);

When time-stretching is applied, the speedup factor is drawn from a uniform distribution centered
at 1 (the mean of the range) with a minimum of 0.5 and a maximum of 1.5.

• 'specify' –– Augmentation algorithms are applied deterministically using a logical parameter
and a specified parameter value. For example, to create an audioDataAugmenter that applies
time-stretching using a 1.5 speedup factor with a 100% probability, enter the following in the
Command Window:

aug = audioDataAugmenter('AugmentationParameterSource','specify', ...
 'ApplyTimeStretch',true, ...
 'SpeedupFactor',1.5);

Data Types: char | string

NumAugmentations — Number of augmented signals to output
1 (default) | positive integer

Number of augmented signals to output, specified as a positive integer.

Dependencies

To enable this property, set AugmentationParameterSource to 'random'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Stretch Time

TimeStretchProbability — Probability of applying time stretch
0.5 (default) | scalar in the range [0, 1]

Probability of applying time stretch, specified as a scalar in the range [0, 1]. Set the probability to 1
to apply time stretching every time you call augment. Set the probability to 0 to skip time stretching
every time you call augment.

Dependencies

To enable this property, set AugmentationParameterSource to 'random' and AugmentationMode to
'sequential'.
Data Types: single | double

SpeedupFactorRange — Range of time stretch speedup factor
[0.8 1.2] (default) | two-element row vector of positive nondecreasing values

Range of time stretch speedup factor, specified as a two-element row vector of positive nondecreasing
values.

Dependencies

To enable this property, set AugmentationParameterSource to 'random'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

ApplyTimeStretch — Apply time stretch
true (default) | false

 audioDataAugmenter

4-109

Apply time stretch, specified as true or false.

Dependencies

To enable this property, set AugmentationParameterSource to 'specify'.
Data Types: logical

SpeedupFactor — Time stretch speedup factor
0.8 (default) | real positive scalar | real positive vector

Time stretch speedup factor, specified as a scalar or vector of real positive values.

Dependencies

To enable this property, set AugmentationParameterSource to 'specify'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Shift Pitch

PitchShiftProbability — Probability of applying pitch shift
0.5 (default) | scalar in the range [0, 1]

Probability of applying pitch shift, specified as a scalar in the range [0, 1]. Set the probability to 1 to
apply pitch shifting every time you call augment. Set the probability to 0 to skip pitch shifting every
time you call augment.

Dependencies

To enable this property, set AugmentationParameterSource to 'random' and AugmentationMode to
'sequential'.
Data Types: single | double

SemitoneShiftRange — Range of pitch shift (semitones)
[-2,2] (default) | two-element row vector of nondecreasing values

Range of pitch shift in semitones, specified as a two-element row vector of nondecreasing values.

Dependencies

To enable this property, set AugmentationParameterSource to 'random'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

ApplyPitchShift — Apply pitch shift
true (default) | false

Apply pitch shift, specified as true or false.

Dependencies

To enable this property, set AugmentationParameterSource to 'specify'.
Data Types: logical

SemitoneShift — Pitch shift (semitones)
-3 (default) | real scalar | real vector

4 Classes

4-110

Pitch shift in semitones, specified as a real scalar or vector.

Dependencies

To enable this property, set AugmentationParameterSource to 'specify'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Control Volume

VolumeControlProbability — Probability of applying volume control
0.5 (default) | scalar in the range [0, 1]

Probability of applying volume control, specified as a scalar in the range [0, 1]. Set the probability to
1 to apply volume control every time you call augment. Set the probability to 0 to skip volume control
every time you call augment.

Dependencies

To enable this property, set AugmentationParameterSource to 'random' and AugmentationMode to
'sequential'.
Data Types: single | double

VolumeGainRange — Range of volume gain (dB)
[-3,3] (default) | two-element row vector of nondecreasing values

Range of volume gain in dB, specified as a two-element row vector of nondecreasing values.

Dependencies

To enable this property, set AugmentationParameterSource to 'random'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

ApplyVolumeControl — Apply volume gain
true (default) | false

Apply volume gain, specified as true or false.

Dependencies

To enable this property, set AugmentationParameterSource to 'specify'.
Data Types: logical

VolumeGain — Volume gain (dB)
-3 (default) | scalar | vector

Volume gain in dB, specified as a scalar or vector.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Add Noise

AddNoiseProbability — Probability of applying noise addition
0.5 (default) | scalar in the range [0, 1]

 audioDataAugmenter

4-111

Probability of applying Gaussian white noise addition, specified as a scalar in the range [0, 1]. Set the
probability to 1 to add noise every time you call augment. Set the probability to 0 to skip adding
noise every time you call augment.
Dependencies

To enable this property, set AugmentationParameterSource to 'random' and AugmentationMode to
'sequential'.
Data Types: single | double

SNRRange — Range of noise addition SNR (dB)
[0,10] (default) | two-element row vector of nondecreasing values

Range of noise addition SNR in dB, specified as a two-element row vector of nondecreasing values.
Dependencies

To enable this property, set AugmentationParameterSource to 'range'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

ApplyAddNoise — Apply noise addition
true (default) | false

Apply Gaussian white noise addition, specified as true or false.
Dependencies

To enable this property, set AugmentationParameterSource to 'specify'.
Data Types: logical

SNR — Noise addition SNR (dB)
5 (default) | scalar | vector

Noise addition SNR in dB, specified as a scalar or vector.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Shift Time

TimeShiftProbability — Probability of applying time shift
0.5 (default) | scalar in the range [0, 1]

Probability of applying time shift, specified as a scalar in the range [0, 1]. Set the probability to 1 to
apply time shifting every time you call augment. Set the property to 0 to skip time shifting every time
you call augment.

Time-shifting applies a circular shift on the time-domain audio data.
Dependencies

To enable this property, set AugmentationParameterSource to 'random' and AugmentationMode to
'sequential'.
Data Types: single | double

TimeShiftRange — Range of time shift (s)
[-5e-3,5e3] (default) | two-element row vector of nondecreasing values.

4 Classes

4-112

Range of time shift in seconds, specified as a two-element row vector of nondecreasing values.
Dependencies

To enable this property, set AugmentationParameterSource to 'random'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

ApplyTimeShift — Apply time shift
true (default) | false

Apply time shift, specified as true or false.
Dependencies

To enable this property, set AugmentationParameterSource to 'specify'.

Time-shifting applies a circular shift on the time-domain audio data.
Data Types: logical

TimeShift — Time shift (s)
5e-3 (default) | scalar | vector

Time shift in seconds, specified as a scalar or vector.
Dependencies

To enable this property, set AugmentationParameterSource to 'specify'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Object Functions
addAugmentationMethod Add custom augmentation method
removeAugmentationMethod Remove custom augmentation method
augment Augment audio data
setAugmenterParams Set parameters of augmentation algorithm
getAugmenterParams Get parameters of augmentation algorithm

Examples

Apply Random Sequential Augmentations

Read in an audio signal and listen to it.

[audioIn,fs] = audioread("Counting-16-44p1-mono-15secs.wav");
sound(audioIn,fs)

Create an audioDataAugmenter object that applies time stretching, volume control, and time
shifting in cascade. Apply each of the augmentations with 80% probability. Set NumAugmentations
to 5 to output five independently augmented signals. To skip pitch shifting and noise addition for each
augmentation, set the respective probabilities to 0. Define parameter ranges for each relevant
augmentation algorithm.

augmenter = audioDataAugmenter(...
 "AugmentationMode","sequential", ...

 audioDataAugmenter

4-113

 "NumAugmentations",5, ...
 ...
 "TimeStretchProbability",0.8, ...
 "SpeedupFactorRange", [1.3,1.4], ...
 ...
 "PitchShiftProbability",0, ...
 ...
 "VolumeControlProbability",0.8, ...
 "VolumeGainRange",[-5,5], ...
 ...
 "AddNoiseProbability",0, ...
 ...
 "TimeShiftProbability",0.8, ...
 "TimeShiftRange", [-500e-3,500e-3])

augmenter =
 audioDataAugmenter with properties:

 AugmentationMode: "sequential"
 AugmentationParameterSource: 'random'
 NumAugmentations: 5
 TimeStretchProbability: 0.8000
 SpeedupFactorRange: [1.3000 1.4000]
 PitchShiftProbability: 0
 VolumeControlProbability: 0.8000
 VolumeGainRange: [-5 5]
 AddNoiseProbability: 0
 TimeShiftProbability: 0.8000
 TimeShiftRange: [-0.5000 0.5000]

Call augment on the audio to create 5 augmentations. The augmented audio is returned in a table
with variables Audio and AugmentationInfo. The number of rows in the table is defined by
NumAugmentations.

data = augment(augmenter,audioIn,fs)

data=5×2 table
 Audio AugmentationInfo
 _________________ ________________

 {685056x1 double} 1x1 struct
 {685056x1 double} 1x1 struct
 {505183x1 double} 1x1 struct
 {685056x1 double} 1x1 struct
 {490728x1 double} 1x1 struct

In the current augmentation pipeline, augmentation parameters are assigned randomly from within
the specified ranges. To determine the exact parameters used for an augmentation, inspect
AugmentationInfo.

augmentationToInspect = ;
data.AugmentationInfo(augmentationToInspect)

ans = struct with fields:
 SpeedupFactor: 1

4 Classes

4-114

 VolumeGain: 4.3399
 TimeShift: 0.4502

Listen to the augmentation you are inspecting. Plot time representation of the original and
augmented signals.

augmentation = data.Audio{augmentationToInspect};
sound(augmentation,fs)

t = (0:(numel(audioIn)-1))/fs;
taug = (0:(numel(augmentation)-1))/fs;
plot(t,audioIn,taug,augmentation)
legend("Original Audio","Augmented Audio")
ylabel("Amplitude")
xlabel("Time (s)")

Apply Specified Sequential Augmentations

Read in an audio signal and listen to it.

[audioIn,fs] = audioread("Counting-16-44p1-mono-15secs.wav");
sound(audioIn,fs)

 audioDataAugmenter

4-115

Create an audioDataAugmenter object that applies time stretching, pitch shifting, and noise
corruption in cascade. Specify the time stretch speedup factors as 0.9, 1.1, and 1.2. Specify the
pitch shifting in semitones as -2, -1, 1, and 2. Specify the noise corruption SNR as 10 dB and 15 dB.

augmenter = audioDataAugmenter(...
 "AugmentationMode","sequential", ...
 "AugmentationParameterSource","specify", ...
 "SpeedupFactor",[0.9,1.1,1.2], ...
 "ApplyTimeStretch",true, ...
 "ApplyPitchShift",true, ...
 "SemitoneShift",[-2,-1,1,2], ...
 "SNR",[10,15], ...
 "ApplyVolumeControl",false, ...
 "ApplyTimeShift",false)

augmenter =
 audioDataAugmenter with properties:

 AugmentationMode: "sequential"
 AugmentationParameterSource: "specify"
 ApplyTimeStretch: 1
 SpeedupFactor: [0.9000 1.1000 1.2000]
 ApplyPitchShift: 1
 SemitoneShift: [-2 -1 1 2]
 ApplyVolumeControl: 0
 ApplyAddNoise: 1
 SNR: [10 15]
 ApplyTimeShift: 0

Call augment on the audio to create 24 augmentations. The augmentations represent every
combination of the specified augmentation parameters (3 × 4 × 2 = 24).

data = augment(augmenter,audioIn,fs)

data=24×2 table
 Audio AugmentationInfo
 _________________ ________________

 {761243x1 double} 1x1 struct
 {622888x1 double} 1x1 struct
 {571263x1 double} 1x1 struct
 {761243x1 double} 1x1 struct
 {622888x1 double} 1x1 struct
 {571263x1 double} 1x1 struct
 {761243x1 double} 1x1 struct
 {622888x1 double} 1x1 struct
 {571263x1 double} 1x1 struct
 {761243x1 double} 1x1 struct
 {622888x1 double} 1x1 struct
 {571263x1 double} 1x1 struct
 {761243x1 double} 1x1 struct
 {622888x1 double} 1x1 struct
 {571263x1 double} 1x1 struct
 {761243x1 double} 1x1 struct
 ⋮

4 Classes

4-116

You can check the parameter configuration of each augmentation using the AugmentationInfo
table variable.

augmentationToInspect = ;
data.AugmentationInfo(augmentationToInspect)

ans = struct with fields:
 SpeedupFactor: 0.9000
 SemitoneShift: -2
 SNR: 10

Listen to the augmentation you are inspecting. Plot the time-domain representation of the original
and augmented signals.

augmentation = data.Audio{augmentationToInspect};
sound(augmentation,fs)

t = (0:(numel(audioIn)-1))/fs;
taug = (0:(numel(augmentation)-1))/fs;
plot(t,audioIn,taug,augmentation)
legend("Original Audio","Augmented Audio")
ylabel("Amplitude")
xlabel("Time (s)")

 audioDataAugmenter

4-117

Apply Random Independent Augmentations

Read in an audio signal and listen to it.

[audioIn,fs] = audioread("Counting-16-44p1-mono-15secs.wav");

Create an audioDataAugmenter object that applies noise corruption, and time shifting in parallel
branches. For the noise corruption branch, randomly apply noise with an SNR in the range 0 dB to 20
dB. For the time shifting branch, randomly apply time shifting in the range -300 ms to 300 ms. Apply
augmentation 2 times for each branch, for 4 total augmentations.

augmenter = audioDataAugmenter(...
 "AugmentationMode","independent", ...
 "AugmentationParameterSource","random", ...
 "NumAugmentations",2, ...
 "ApplyTimeStretch",false, ...
 "ApplyPitchShift",false, ...
 "ApplyVolumeControl",false, ...
 "SNRRange",[0,20], ...
 "TimeShiftRange",[-300e-3,300e-3])

augmenter =
 audioDataAugmenter with properties:

 AugmentationMode: "independent"
 AugmentationParameterSource: "random"
 NumAugmentations: 2
 ApplyTimeStretch: 0
 ApplyPitchShift: 0
 ApplyVolumeControl: 0
 ApplyAddNoise: 1
 SNRRange: [0 20]
 ApplyTimeShift: 1
 TimeShiftRange: [-0.3000 0.3000]

Call augment on the audio to create 3 augmentations.

data = augment(augmenter,audioIn,fs);

You can check the parameter configuration of each augmentation using the AugmentatioInfo table
variable.

augmentationToInspect = ;
data.AugmentationInfo{augmentationToInspect}

ans = struct with fields:
 TimeShift: 0.0016

Listen to the audio you are inspecting. Plot the time-domain representation of the original and
augmented signals.

augmentation = data.Audio{augmentationToInspect};
sound(augmentation,fs)

4 Classes

4-118

t = (0:(numel(audioIn)-1))/fs;
taug = (0:(numel(augmentation)-1))/fs;
plot(t,audioIn,taug,augmentation)
legend("Original Audio","Augmented Audio")
ylabel("Amplitude")
xlabel("Time (s)")

Apply Specified Independent Augmentations

Read in an audio signal and listen to it.

[audioIn,fs] = audioread("Counting-16-44p1-mono-15secs.wav");

Create an audioDataAugmenter object that applies volume control, noise corruption, and time
shifting in parallel branches.

augmenter = audioDataAugmenter(...
 "AugmentationMode","independent", ...
 "AugmentationParameterSource","specify", ...
 "ApplyTimeStretch",false, ...
 "ApplyPitchShift",false, ...
 "VolumeGain",2, ...
 "SNR",0, ...
 "TimeShift",2)

 audioDataAugmenter

4-119

augmenter =
 audioDataAugmenter with properties:

 AugmentationMode: "independent"
 AugmentationParameterSource: "specify"
 ApplyTimeStretch: 0
 ApplyPitchShift: 0
 ApplyVolumeControl: 1
 VolumeGain: 2
 ApplyAddNoise: 1
 SNR: 0
 ApplyTimeShift: 1
 TimeShift: 2

Call augment on the audio to create 3 augmentations.

data = augment(augmenter,audioIn,fs)

data=3×2 table
 Audio AugmentationInfo
 _________________ ________________

 {685056x1 double} {1x1 struct}
 {685056x1 double} {1x1 struct}
 {685056x1 double} {1x1 struct}

You can check the parameter configuration of each augmentation using the AugmentatioInfo table
variable.

augmentationToInspect = ;
data.AugmentationInfo{augmentationToInspect}

ans = struct with fields:
 TimeShift: 2

Listen to the audio you are inspecting. Plot the time-domain representations of the original and
augmented signals.

augmentation = data.Audio{augmentationToInspect};
sound(augmentation,fs)

t = (0:(numel(audioIn)-1))/fs;
taug = (0:(numel(augmentation)-1))/fs;
plot(t,audioIn,taug,augmentation)
legend("Original Audio","Augmented Audio")
ylabel("Amplitude")
xlabel("Time (s)")

4 Classes

4-120

Augment Audio Dataset

The audioDataAugmenter supports multiple workflows for augmenting your datastore, including:

• Offline augmentation
• Augmentation using tall arrays
• Augmentation using transform datastores

In each workflow, begin by creating an audio datastore to point to your audio data. In this example,
you create an audio datastore that points to audio samples included with Audio Toolbox™. Count the
number of files in the dataset.

folder = fullfile(matlabroot,"toolbox","audio","samples");
ADS = audioDatastore(folder)

ADS =
 audioDatastore with properties:

 Files: {
 ' ...\matlab\toolbox\audio\samples\Ambiance-16-44p1-mono-12secs.wav';
 ' ...\matlab\toolbox\audio\samples\AudioArray-16-16-4channels-20secs.wav';
 ' ...\toolbox\audio\samples\ChurchImpulseResponse-16-44p1-mono-5secs.wav'
 ... and 26 more
 }

 audioDataAugmenter

4-121

 AlternateFileSystemRoots: {}
 OutputDataType: 'double'
 Labels: {}

numFilesInDataset = numel(ADS.Files)

numFilesInDataset = 29

Create an audioDataAugmenter that applies random sequential augmentations. Set
NumAugmentations to 2.

aug = audioDataAugmenter('NumAugmentations',2)

aug =
 audioDataAugmenter with properties:

 AugmentationMode: 'sequential'
 AugmentationParameterSource: 'random'
 NumAugmentations: 2
 TimeStretchProbability: 0.5000
 SpeedupFactorRange: [0.8000 1.2000]
 PitchShiftProbability: 0.5000
 SemitoneShiftRange: [-2 2]
 VolumeControlProbability: 0.5000
 VolumeGainRange: [-3 3]
 AddNoiseProbability: 0.5000
 SNRRange: [0 10]
 TimeShiftProbability: 0.5000
 TimeShiftRange: [-0.0050 0.0050]

Offline Augmentation

To augment the audio dataset, create two augmentations of each file and then write the
augmentations as WAV files.

while hasdata(ADS)
 [audioIn,info] = read(ADS);

 data = augment(aug,audioIn,info.SampleRate);

 [~,fn] = fileparts(info.FileName);
 for i = 1:size(data,1)
 augmentedAudio = data.Audio{i};

 % If augmentation caused an audio signal to have values outside of -1 and 1,
 % normalize the audio signal to avoid clipping when writing.
 if max(abs(augmentedAudio),[],'all')>1
 augmentedAudio = augmentedAudio/max(abs(augmentedAudio),[],'all');
 end

 audiowrite(sprintf('%s_aug%d.wav',fn,i),augmentedAudio,info.SampleRate)
 end
end

Create an audioDatastore that points to the augmented dataset and confirm that the number of
files in the dataset is double the original number of files.

4 Classes

4-122

augmentedADS = audioDatastore(pwd)

augmentedADS =
 audioDatastore with properties:

 Files: {
 ' ...\Examples\audio-ex28074079\Ambiance-16-44p1-mono-12secs_aug1.wav';
 ' ...\Examples\audio-ex28074079\Ambiance-16-44p1-mono-12secs_aug2.wav';
 ' ...\Examples\audio-ex28074079\AudioArray-16-16-4channels-20secs_aug1.wav'
 ... and 55 more
 }
 AlternateFileSystemRoots: {}
 OutputDataType: 'double'
 Labels: {}

numFilesInAugmentedDataset = numel(augmentedADS.Files)

numFilesInAugmentedDataset = 58

Augment Using Tall Arrays

When augmenting a dataset using tall arrays, the input data to the augmenter should be sampled at a
consistent rate. Subset the original audio dataset to only include files with a sample rate of 44.1 kHz.
Most datasets are already cleaned to have a consistent sample rate.

keepFile = cellfun(@(x)contains(x,'44p1'),ADS.Files);
ads44p1 = subset(ADS,keepFile);
fs = 44.1e3;

Convert the audio datastore to a tall array. tall arrays are evaluated only when you request them
explicitly using gather. MATLAB® automatically optimizes the queued calculations by minimizing
the number of passes through the data. If you have the Parallel Computing Toolbox™, you can spread
the calculations across multiple machines. The audio data is represented as an M-by-1 tall cell array,
where M is the number of files in the audio datastore.

adsTall = tall(ads44p1)

Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 6).

adsTall =

 M×1 tall cell array

 { 539648×1 double}
 { 227497×1 double}
 { 8000×1 double}
 { 685056×1 double}
 { 882688×2 double}
 {1115760×2 double}
 { 505200×2 double}
 {3195904×2 double}
 : :
 : :

Define a cellfun function so that augmentation is applied to each cell of the tall array. Call gather
to evaluate the tall array.

 audioDataAugmenter

4-123

augTall = cellfun(@(x)augment(aug,x,fs),adsTall,"UniformOutput",false);
augmentedDataset = gather(augTall)

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1 min 34 sec
Evaluation completed in 1 min 34 sec

augmentedDataset=12×1 cell array
 {2×2 table}
 {2×2 table}
 {2×2 table}
 {2×2 table}
 {2×2 table}
 {2×2 table}
 {2×2 table}
 {2×2 table}
 {2×2 table}
 {2×2 table}
 {2×2 table}
 {2×2 table}

The augmented dataset is returned as a numFiles-by-1 cell array, where numFiles is the number of
files in the datastore. Each element of the cell array is a numAugmentationsPerFile-by-2 table, where
numAugmentationsPerFile is the number of augmentations returned per file.

numFiles = numel(augmentedDataset)

numFiles = 12

numAugmentationsPerFile = size(augmentedDataset{1},1)

numAugmentationsPerFile = 2

Augment Using Transform Datastore

You can perform online data augmentation while you train your machine learning application using a
transform datastore. Call transform to create a new datastore that applies data augmentation while
reading.

transformADS = transform(ADS,@(x,info)augment(aug,x,info),'IncludeInfo',true)

transformADS =
 TransformedDatastore with properties:

 UnderlyingDatastore: [1×1 audioDatastore]
 Transforms: {@(x,info)augment(aug,x,info)}
 IncludeInfo: 1

Call read to return the augmented first file from the transform datastore.

augmentedRead = read(transformADS)

augmentedRead=2×2 table
 Audio AugmentationInfo
 _________________ ________________

 {539648×1 double} [1×1 struct]

4 Classes

4-124

 {586683×1 double} [1×1 struct]

Add Custom Augmentation Method

You can expand the capabilities of audioDataAugmenter by adding custom augmentation methods.

Read in an audio signal and listen to it.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');
sound(audioIn,fs)

Create an audioDataAugmenter object. Set the probability of applying white noise to 0.

augmenter = audioDataAugmenter('AddNoiseProbability',0)

augmenter =
 audioDataAugmenter with properties:

 AugmentationMode: 'sequential'
 AugmentationParameterSource: 'random'
 NumAugmentations: 1
 TimeStretchProbability: 0.5000
 SpeedupFactorRange: [0.8000 1.2000]
 PitchShiftProbability: 0.5000
 SemitoneShiftRange: [-2 2]
 VolumeControlProbability: 0.5000
 VolumeGainRange: [-3 3]
 AddNoiseProbability: 0
 TimeShiftProbability: 0.5000
 TimeShiftRange: [-0.0050 0.0050]

Specify a custom augmentation algorithm that applies pink noise. The AddPinkNoise algorithm is
added to the augmenter properties.

algorithmName = 'AddPinkNoise';
algorithmHandle = @(x)x+pinknoise(size(x),'like',x);
addAugmentationMethod(augmenter,algorithmName,algorithmHandle)

augmenter

augmenter =
 audioDataAugmenter with properties:

 AugmentationMode: 'sequential'
 AugmentationParameterSource: 'random'
 NumAugmentations: 1
 TimeStretchProbability: 0.5000
 SpeedupFactorRange: [0.8000 1.2000]
 PitchShiftProbability: 0.5000
 SemitoneShiftRange: [-2 2]
 VolumeControlProbability: 0.5000
 VolumeGainRange: [-3 3]
 AddNoiseProbability: 0
 TimeShiftProbability: 0.5000
 TimeShiftRange: [-0.0050 0.0050]

 audioDataAugmenter

4-125

 AddPinkNoiseProbability: 0.5000

Set the probability of adding pink noise to 1.

augmenter.AddPinkNoiseProbability = 1

augmenter =
 audioDataAugmenter with properties:

 AugmentationMode: 'sequential'
 AugmentationParameterSource: 'random'
 NumAugmentations: 1
 TimeStretchProbability: 0.5000
 SpeedupFactorRange: [0.8000 1.2000]
 PitchShiftProbability: 0.5000
 SemitoneShiftRange: [-2 2]
 VolumeControlProbability: 0.5000
 VolumeGainRange: [-3 3]
 AddNoiseProbability: 0
 TimeShiftProbability: 0.5000
 TimeShiftRange: [-0.0050 0.0050]
 AddPinkNoiseProbability: 1

Augment the original signal and listen to the result. Inspect parameters of the augmentation
algorithms applied.

data = augment(augmenter,audioIn,fs);
sound(data.Audio{1},fs)

data.AugmentationInfo(1)

ans = struct with fields:
 SpeedupFactor: 1
 SemitoneShift: 0
 VolumeGain: 2.4803
 TimeShift: -0.0022
 AddPinkNoise: 'Applied'

Plot the mel spectrograms of the original and augmented signals.

melSpectrogram(audioIn,fs)
title('Original Signal')

4 Classes

4-126

melSpectrogram(data.Audio{1},fs)
title('Augmented Signal')

 audioDataAugmenter

4-127

Algorithms
The audioDataAugmenter object enables you to configure your augmentation pipeline as
deterministic or probabilistic using the AugmentationParameterSource property. You can also choose
to apply the augmentations in series or in parallel using the AugmentationMode property. The
following sections describe the pipelines you can create and the applicable properties for each
architecture.

Random Sequential Augmentations

To define your augmentation as a sequence of probabilistically applied augmentations, set
AugmentationParameterSource to 'random' and AugmentationMode to 'sequential'.

The order that augmentations are applied is always the same. If you specify custom algorithms, they
are applied at the end of the sequence, in the order you specified them.

4 Classes

4-128

In this pipeline configuration, these parameters apply:

Augmentation Method Parameters
Stretch Time TimeStretchProbability

SpeedupFactorRange
Shift Pitch PitchShiftProbability

SemitoneShiftRange
Control Volume VolumeControlProbability

VolumeGainRange
Add Noise AddNoiseProbability

SNRRange
Shift Time TimeShiftProbability

TimeShiftRange

If you specify NumAugmentations as greater than 1, then the object applies NumAugmentations
parallel random sequential augmentations. The probability of applying an augmentation, and the
value of any parameters that are probabilistically determined, are independent.

Specified Sequential Augmentations

To define your augmentation as a sequence of deterministically applied augmentations, set
AugmentationParameterSource to 'specify' and AugmentationMode to 'sequential'.

The order that augmentations are applied is always the same. If you specify custom algorithms, they
are applied at the end of the sequence, in the order you specified them.

 audioDataAugmenter

4-129

In this pipeline configuration, these parameters apply:

Augmentation Method Parameters
Stretch Time ApplyTimeStretch

SpeedupFactor
Shift Pitch ApplyPitchShift

SemitoneShift
Control Volume ApplyVolumeControl

VolumeGain
Add Noise ApplyAddNoise

SNR
Shift Time ApplyTimeShift

TimeShift

If you specify an augmentation method as a vector, then each element of the vector creates a
separate branch in the augmentation pipeline. For example, the following object creates an
augmentation pipeline that results in four separate augmentations:

aug = audioDataAugmenter("AugmentationMode","sequential", ...
 "AugmentationParameterSource","specify", ...
 "SpeedupFactor",[0.8,1.2], ...
 "VolumeGain",[-3,-1])

aug =

 audioDataAugmenter with properties:

 AugmentationMode: "sequential"
 AugmentationParameterSource: "specify"
 ApplyTimeStretch: 1
 SpeedupFactor: [0.8000 1.2000]
 ApplyPitchShift: 1
 SemitoneShift: -3
 ApplyVolumeControl: 1
 VolumeGain: [-3 -1]
 ApplyAddNoise: 1
 SNR: 5
 ApplyTimeShift: 1
 TimeShift: 0.0050

4 Classes

4-130

Random Independent Augmentations

To define your augmentation as independently applied augmentations with randomly determined
parameters, set AugmentationParameterSource to 'random' and AugmentationMode to
'independent'.

 audioDataAugmenter

4-131

In this pipeline configuration, these parameters apply:

Augmentation Method Parameters
Stretch Time ApplyTimeStretch

SpeedupFactorRange

4 Classes

4-132

Augmentation Method Parameters
Shift Pitch ApplyPitchShift

SemitoneShiftRange
Control Volume ApplyVolumeControl

VolumeGainRange
Add Noise ApplyAddNoise

SNRRange
Shift Time ApplyTimeShift

TimeShiftRange

If you specify NumAugmentations as greater than 1, then the object applies NumAugmentations
parallel random independent augmentations. The value of any parameters that are probabilistically
determined are independent.

 audioDataAugmenter

4-133

Specified Independent Augmentations

To define your augmentation as deterministically applied independent augmentations with
deterministic parameters, set AugmentationParameterSource to 'specify' and AugmentationMode
to 'independent'.

4 Classes

4-134

In this pipeline configuration, these parameters apply:

Augmentation Method Parameters
Stretch Time ApplyTimeStretch

SpeedupFactor

 audioDataAugmenter

4-135

Augmentation Method Parameters
Shift Pitch ApplyPitchShift

SemitoneShift
Control Volume ApplyVolumeControl

VolumeGain
Add Noise ApplyAddNoise

SNR
Shift Time ApplyTimeShift

TimeShift

If you specify an augmentation method as a vector, then each element of the vector creates a
separate branch in the augmentation pipeline. For example, the following object creates an
augmentation pipeline that results in seven separate augmentations:

aug = audioDataAugmenter("AugmentationMode","independent", ...
 "AugmentationParameterSource","specify", ...
 "SpeedupFactor",[0.8,1.2], ...
 "VolumeGain",[-3,-1])

aug =

 audioDataAugmenter with properties:

 AugmentationMode: "independent"
 AugmentationParameterSource: "specify"
 ApplyTimeStretch: 1
 SpeedupFactor: [0.8000 1.2000]
 ApplyPitchShift: 1
 SemitoneShift: -3
 ApplyVolumeControl: 1
 VolumeGain: [-3 -1]
 ApplyAddNoise: 1
 SNR: 5
 ApplyTimeShift: 1
 TimeShift: 0.0050

4 Classes

4-136

Version History
Introduced in R2019b

References
[1] Salamon, Justin, and Juan Pablo Bello. "Deep Convolutional Neural Networks and Data

Augmentation for Environmental Sound Classification." IEEE Signal Processing Letters. Vol.
24, Issue 3, 2017.

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• LockPhase must be set to false for the time stretching and pitch shifting augmentations. For
more information, see setAugmenterParams.

 audioDataAugmenter

4-137

• Using gpuArray (Parallel Computing Toolbox) input with audioDataAugmenter is only
recommended for a GPU with compute capability 7.0 ("Volta") or above. Other hardware might not
offer any performance advantage. To check your GPU compute capability, see
ComputeCompability in the output from the gpuDevice (Parallel Computing Toolbox) function.
For more information, see “GPU Computing Requirements” (Parallel Computing Toolbox).

For an overview of GPU usage in MATLAB, see “Run MATLAB Functions on a GPU” (Parallel
Computing Toolbox).

See Also
shiftPitch | stretchAudio | audioTimeScaler | audioFeatureExtractor

4 Classes

4-138

writeall
Write datastore to files

Syntax
writeall(ADS,outputLocation)
writeall(ADS,outputLocation,Name,Value)

Description
writeall(ADS,outputLocation) writes the data from the audio datastore ADS to files located at
outputLocation.

writeall(ADS,outputLocation,Name,Value) writes the data with additional options specified
by one or more name-value pair arguments.
Example: writeall(ADS,outputLocation,OutputFormat="flac") writes the data to FLAC
files.

Examples

Write Audio Data Set to New Location

Create an audioDatastore object that points to the WAV audio samples included with Audio
Toolbox™. The audioDatastore object includes read-only properties indicating the supported file
formats, and the default output format (WAV).

folder = fullfile(matlabroot,'toolbox','audio','samples');
ads = audioDatastore(folder,'FileExtensions','.wav')

ads =
 audioDatastore with properties:

 Files: {
 'B:\matlab\toolbox\audio\samples\Ambiance-16-44p1-mono-12secs.wav';
 'B:\matlab\toolbox\audio\samples\AudioArray-16-16-4channels-20secs.wav';
 ' ...\toolbox\audio\samples\ChurchImpulseResponse-16-44p1-mono-5secs.wav'
 ... and 17 more
 }
 Folders: {
 'B:\matlab\toolbox\audio\samples'
 }
 AlternateFileSystemRoots: {}
 OutputDataType: 'double'
 Labels: {}
 SupportedOutputFormats: ["wav" "flac" "ogg" "opus" ...]
 DefaultOutputFormat: "wav"

Write the audio data set to your current folder. Save all files in the default (WAV) format.

 writeall

4-139

outputLocation = pwd;
writeall(ads,outputLocation)

The folder, samples, and the audio files that the folder contains have been written to your current
folder.

dir samples

.

..
Ambiance-16-44p1-mono-12secs.wav
AudioArray-16-16-4channels-20secs.wav
ChurchImpulseResponse-16-44p1-mono-5secs.wav
Click-16-44p1-mono-0.2secs.wav
Counting-16-44p1-mono-15secs.wav
Engine-16-44p1-stereo-20sec.wav
FemaleSpeech-16-8-mono-3secs.wav
Heli_16ch_ACN_SN3D.wav
JetAirplane-16-11p025-mono-16secs.wav
Laughter-16-8-mono-4secs.wav
MainStreetOne-16-16-mono-12secs.wav
NoisySpeech-16-22p5-mono-5secs.wav
Rainbow-16-8-mono-114secs.wav
RainbowNoisy-16-8-mono-114secs.wav
RockGuitar-16-44p1-stereo-72secs.wav
SpeechDFT-16-8-mono-5secs.wav
TrainWhistle-16-44p1-mono-9secs.wav
Turbine-16-44p1-mono-22secs.wav
WashingMachine-16-44p1-stereo-10secs.wav
multipleSounds-16-16-mono-18secs.wav

Pre-Extract Features from Audio Data Set

You can use pre-extracted features to reduce iteration time when developing a machine learning or
deep learning system. It is also a common practice to use pre-extracted features for unsupervised
learning tasks such as similarity clustering, and for content-based indexing tasks such as music
information retrieval (MIR).

Create an audioDatastore object that points to the audio samples included with Audio Toolbox™.

folder = fullfile(matlabroot,"toolbox","audio","samples");
ads = audioDatastore(folder)

ads =
 audioDatastore with properties:

 Files: {
 'B:\matlab\toolbox\audio\samples\Ambiance-16-44p1-mono-12secs.wav';
 'B:\matlab\toolbox\audio\samples\AudioArray-16-16-4channels-20secs.wav';
 ' ...\toolbox\audio\samples\ChurchImpulseResponse-16-44p1-mono-5secs.wav'
 ... and 32 more
 }
 Folders: {
 'B:\matlab\toolbox\audio\samples'
 }

4 Classes

4-140

 AlternateFileSystemRoots: {}
 OutputDataType: 'double'
 Labels: {}
 SupportedOutputFormats: ["wav" "flac" "ogg" "opus" ...]
 DefaultOutputFormat: "wav"

Create a custom write function that extracts mel frequency cepstral coefficients (mfcc) from the
audio and writes the them to a MAT file. The function definition is located at the end of this example.

function myWriter(audioIn,info,~)
 fs = info.ReadInfo.SampleRate;

 % Extract MFCC
 [coeffs,delta,deltaDelta] = mfcc(audioIn,fs);

 % Replace the file extension of the suggested output name with MAT.
 filename = strrep(info.SuggestedOutputName,".wav",".mat");

 % Save the MFCC coefficients to the MAT file.
 save(filename,"coeffs","delta","deltaDelta")
end

Define the output location for the extracted features.

outputLocation = pwd;

Call the writeall function with the audioDatastore object, output location, and custom write
function. Also specify the suffix _MFCC to the file names.

tic
writeall(ads,outputLocation,"WriteFcn",@myWriter,"FilenameSuffix","_MFCC")
fprintf("Data set creation completed (%0.0f seconds)\n",toc)

Data set creation completed (20 seconds)

You have now created a data set consisting of MFCCs for each audio file.

fds = fileDatastore(pwd,"ReadFcn",@load,"FileExtensions",".mat","IncludeSubfolders",true)

fds =
 FileDatastore with properties:

 Files: {
 ' ...\audio-ex80013303\samples\Ambiance-16-44p1-mono-12secs_MFCC.mat';
 ' ...\audio-ex80013303\samples\AudioArray-16-16-4channels-20secs_MFCC.mat';
 ' ...\samples\ChurchImpulseResponse-16-44p1-mono-5secs_MFCC.mat'
 ... and 32 more
 }
 Folders: {
 'C:\TEMP\Bdoc22b_2054784_6060\ibB18F8B\24\tp84714ec6\audio-ex80013303'
 }
 UniformRead: 0
 ReadMode: 'file'
 BlockSize: Inf
 PreviewFcn: @load
 SupportedOutputFormats: ["txt" "csv" "xlsx" "xls" ...]
 ReadFcn: @load

 writeall

4-141

 AlternateFileSystemRoots: {}

Helper Function

function myWriter(audioIn,info,~)
 fs = info.ReadInfo.SampleRate;
 [coeffs,delta,deltaDelta] = mfcc(audioIn,fs);
 filename = strrep(info.SuggestedOutputName,".wav",".mat");
 save(filename,"coeffs","delta","deltaDelta")
end

Augment Audio Data Set

Create an audioDatastore object that points to the audio samples included with Audio Toolbox™.

folder = fullfile(matlabroot,"toolbox","audio","samples");
ads = audioDatastore(folder);

Create an audioDataAugmenter object that outputs two augmentations for every input signal.

augmenter = audioDataAugmenter(NumAugmentations=2);

Define a custom write function, myWriter on page 4-142, that applies the audioDataAugmenter
object to an audio file and writes the resulting new signals to separate files.

Call the writeall function to create a new augmented data set. To speed up processing, set
UseParallel to true.

outputLocation = pwd;
writeall(ads,outputLocation,FilenameSuffix="_Aug", ...
 UseParallel=true,WriteFcn=@(x,y,z,a)myWriter(x,y,z,augmenter))

Create a new datastore that points to the augmented audio data set.

adsAug = audioDatastore(outputLocation,IncludeSubfolders=true);

myWriter Helper Function

function myWriter(audioIn,info,fileExtension,varargin)
 % Create convenient variables for the augmenter and sample rate
 augmenter = varargin{1};
 fs = info.ReadInfo.SampleRate;
 % Perform augmentation
 augmentations = augment(augmenter,audioIn,fs);
 for ii = 1:augmenter.NumAugmentations
 x = augmentations.Audio{ii};
 % Protect against clipping
 if any(x<-1|x>1)
 x = x./max(abs(x));
 end
 % Update the audio file name to include the augmentation number
 filename = insertBefore(info.SuggestedOutputName,("."+fileExtension),string(ii));
 % Write the audio file
 audiowrite(filename,x,fs)

4 Classes

4-142

 end
end

Segment Audio Data

Use the detectSpeech and writeall functions to create a new audio data set that contains
isolated speech segments.

Create an audioDatastore object that points to the audio samples included with this example.

ads = audioDatastore(pwd)

ads =
 audioDatastore with properties:

 Files: {
 ' ...\16\tp7a8a45df\audio-ex78151030\KeywordSpeech-16-16-mono-34secs.flac';
 ' ...\ibB18F8B\16\tp7a8a45df\audio-ex78151030\Plosives.wav';
 ' ...\ibB18F8B\16\tp7a8a45df\audio-ex78151030\Sibilance.wav'
 }
 Folders: {
 'C:\TEMP\Bdoc22b_2054784_6060\ibB18F8B\16\tp7a8a45df\audio-ex78151030'
 }
 AlternateFileSystemRoots: {}
 OutputDataType: 'double'
 Labels: {}
 SupportedOutputFormats: ["wav" "flac" "ogg" "opus" ...]
 DefaultOutputFormat: "wav"

Define a custom write function that first determines the regions of speech in the audio signals read
from the datastore, then writes the individual regions of speech to separate files. Append the region
number to the file names. The function definition is located at the end of this example.

function myWriter(audioIn,info,fileExtension)
 fs = info.ReadInfo.SampleRate;

 % Get indices corresponding to regions of speech
 idx = detectSpeech(audioIn,fs);

 % For each region of speech
 for ii = 1:size(idx,1)
 x = audioIn(idx(ii,1):idx(ii,2),:);

 % Create a unique file name
 filename = insertBefore(info.SuggestedOutputName,("."+fileExtension),string(ii));

 % Write the detected region of speech
 audiowrite(filename,x,fs)
 end
end

Call the writeall function using the custom write function to create a new data set that consists of
the isolated speech segments. Create a folder named segmented in your temporary directory and
then write the data to that folder.

 writeall

4-143

outputLocation = fullfile(tempdir,"segmented");
writeall(ads,outputLocation,'WriteFcn',@myWriter)

Create a new audioDatastore object that points to the segmented data set.

adsSegmented = audioDatastore(outputLocation,"IncludeSubfolders",true)

adsSegmented =
 audioDatastore with properties:

 Files: {
 ' ...\16\segmented\audio-ex78151030\KeywordSpeech-16-16-mono-34secs1.wav';
 ' ...\16\segmented\audio-ex78151030\KeywordSpeech-16-16-mono-34secs10.wav';
 ' ...\16\segmented\audio-ex78151030\KeywordSpeech-16-16-mono-34secs11.wav'
 ... and 24 more
 }
 Folders: {
 'C:\TEMP\Bdoc22b_2054784_6060\ibB18F8B\16\segmented'
 }
 AlternateFileSystemRoots: {}
 OutputDataType: 'double'
 Labels: {}
 SupportedOutputFormats: ["wav" "flac" "ogg" "opus" ...]
 DefaultOutputFormat: "wav"

Read a sample from the datastore and listen to it.

[audioIn,adsInfo] = read(adsSegmented);
sound(audioIn,adsInfo.SampleRate)

Supporting Function

function myWriter(audioIn,info,fileExtension)
 fs = info.ReadInfo.SampleRate;
 idx = detectSpeech(audioIn,fs);
 for ii = 1:size(idx,1)
 x = audioIn(idx(ii,1):idx(ii,2),:);
 filename = insertBefore(info.SuggestedOutputName,("."+fileExtension),string(ii));
 audiowrite(filename,x,fs)
 end
end

Clean Audio Data Set

Audio data sets, especially open-source audio data sets, might have inconsistent sampling rates,
numbers of channels, or durations. They might also contain garbage data, such as clips that are
labeled as containing speech but contain silence.

It is often a first step in machine learning and deep learning workflows to clean the audio data set.
This is particularly important for the validation and test data sets. Common types of cleaning include
resampling, converting to mono or stereo, trimming or expanding the duration of clips to a consistent
length, removing periods of silence, removing background noise, or gain normalization.

4 Classes

4-144

In this example, you clean an audio data set so that all the files have a sample rate of 16 kHz, are
mono, are in the FLAC format, and are normalized such that the max absolute magnitude of a signal
is 1.

Create an audioDatastore object that points to the audio samples included with Audio Toolbox™.

folder = fullfile(matlabroot,"toolbox","audio","samples");
ads = audioDatastore(folder);

Define a function, myTransform on page 4-145, that applies a sequence of operations on the audio
data. Create a transform datastore object that applies the cleaning operations.

adsTransform = transform(ads,@myTransform,IncludeInfo=true);

Call writeall on the transform datastore object to create the clean data set. Specify the format as
FLAC. Write the data set to your current folder.

outputLocation = pwd;
writeall(adsTransform,outputLocation,OutputFormat="flac")

Create a new datastore object that points to the clean data set.

adsClean = audioDatastore(outputLocation,IncludeSubfolders=true);

myTransform Supporting Function

function [audioOut,adsInfo] = myTransform(audioIn,adsInfo)
 fs = adsInfo.SampleRate;
 desiredFs = 16e3;

 % Convert to mono
 x = mean(audioIn,2);

 % Resample to 16 kHz
 y = resample(x,desiredFs,fs);
 adsInfo.SampleRate = desiredFs;

 % Normalize so that the max absolute value of a signal is 1
 audioOut = y/max(abs(y));
end

Input Arguments
ADS — Audio datastore
audioDatastore object

Audio datastore, specified as an audioDatastore object.

outputLocation — Folder location to write data
character vector | string

Folder location to write data, specified as a character vector or string. You can specify a full or
relative path in outputLocation.
Example: outputLocation = "../../dir/data"
Example: outputLocation = "C:\Users\MyName\Desktop"

 writeall

4-145

Data Types: char | string

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: FolderLayout="flatten"

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'FolderLayout','flatten'

FolderLayout — Layout of files in output folder
"duplicate" (default) | "flatten"

Layout of files in output folder, specified as "duplicate" or "flatten".

• "duplicate" –– Replicate the folder structure of the data that the audio datastore points to.
Specify the FolderLayout as "duplicate" to maintain correspondence between the input and
output data sets.

• "flatten" –– Write all the files from the input to the specified output folder without any
intermediate folders.

Data Types: char | string

OutputFormat — Output file format
"wav" (default) | "flac" | "ogg" | "opus" | "mp4" | "m4a"

Output file format, specified as "wav", "flac", "ogg", "opus", "mp4", or "m4a".
Data Types: char | string

BitsPerSample — Number of output bits per sample
16 (default) | 8 | 24 | 32 | 64

Number of output bits per sample, specified as an integer.

Dependencies

To enable this name-value pair argument, set OutputFormat to "wav" or "flac".
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

BitRate — Kilobits per second (kbit/s)
128 (default) | 64 | 96 | 160 | 192 | 256 | 320

Number of kilobits per second (kbit/s) used to compress audio files, specified as an integer. On
Windows 7 or later, the only valid values are 96, 128, 160, and 192.

In general, a larger BitRate value results in higher compression quality.

Dependencies

To enable this name-value pair argument, set OutputFormat to "m4a" or "mp4".
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

4 Classes

4-146

FilenamePrefix — Prefix added to file name
character vector | string

Prefix added to file name, specified a character vector or string.

The writeall function adds the specified prefix to the output file names. For example, the following
code adds today's date as the prefix to all the output file names:

prefixText = string(datetime("today"));
writeall(ADS,"C:\myFolder",FilenamePrefix=prefixText);

Data Types: char | string

FilenameSuffix — Suffix added to file name
character vector | string

Suffix added to the file name, specified as character vector or string. The file name suffix is applied
before the file extension.

The writeall function adds the specified suffix to the output file names. For example, the following
code adds the descriptive text "clean" as the suffix to all the output file names:

writeall(ADS,"C:\myFolder",FilenameSuffix="clean");

Data Types: char | string

UseParallel — Indicator to write in parallel
false (default) | true

Indicator to write in parallel, specified as false or true.

By default, the writeall function writes in serial. If you set UseParallel to true, then the
writeall function writes the output files in parallel.

Note Writing in parallel requires Parallel Computing Toolbox™.

Data Types: logical

WriteFcn — Custom write function
function handle

Custom write function, specified as a function handle. The specified function is responsible for
creating the output files. You can use WriteFcn to write data in a variety of formats, even if
writeall does not directly support the output format.

Function Signature

The custom write function requires three input arguments: audioIn, info, and
suggestedOutputType. The function can also accept additional inputs, such as name-value pairs,
after the first three required inputs.

function myWriter(audioIn,info,suggestedOutputType,varargin)

• audioIn contains data read from the input datastore ADS.

 writeall

4-147

• info is an object of type matlab.io.datastore.WriteInfo with fields listed in the table.

Field Description Type
ReadInfo The second output of the

read method.
struct

SuggestedOutputName A fully qualified, globally
unique file name that meets

the location and naming
requirements.

string

Location The specified
outputLocation passed to

writeall.

string

• suggestedOutputType –– Suggested output file type.

Example Function

A simple write function that resamples audio to 44.1 kHz before writing.

function myWriter(data,info,~)
 fs = info.ReadInfo.SampleRate;
 desiredFs = 44.1e3;
 data = resample(data,desiredFs,fs);
 audiowrite(writeInfo.SuggestedOutputName,data,desiredFs);
end

To use myWriter as in the writeall function, use these commands:

ads = audioDatastore(location);
outputLocation = "C:/tmp/MyData";
writeall(ads,outputLocation,WriteFcn=@myWriter)

Data Types: function_handle

Version History
Introduced in R2020a

Support for OPUS audio file format

The audioDatastore writeall function supports OPUS file format (.opus).

See Also
audioDatastore

4 Classes

4-148

transform
Transform audio datastore

Syntax
transformDatastore = transform(ADS,@fcn)
transformDatastore = transform(ADS,@fcn,Name,Value)

Description
transformDatastore = transform(ADS,@fcn) creates a new datastore that transforms output
from the read function.

transformDatastore = transform(ADS,@fcn,Name,Value) specifies options using one or
more Name,Value pair arguments.

Examples

Output Mono Audio from Datastore

Specify the file path to the audio samples included with Audio Toolbox™. Create an audio datastore
that points to the specified folder.

folder = fullfile(matlabroot,'toolbox','audio','samples');
ADS = audioDatastore(folder);

Call transform to create a new datastore that mixes multichannel signals to mono.

ADSnew = transform(ADS,@(x)mean(x,2));

Read from the new datastore and confirm that it only outputs mono signals.

while hasdata(ADSnew)
 audio = read(ADSnew);
 fprintf('Number of channels = %d\n',size(audio,2))
end

Number of channels = 1
Number of channels = 1
Number of channels = 1
Number of channels = 1
Number of channels = 1
Number of channels = 1
Number of channels = 1
Number of channels = 1
Number of channels = 1
Number of channels = 1
Number of channels = 1
Number of channels = 1
Number of channels = 1
Number of channels = 1

 transform

4-149

Number of channels = 1
Number of channels = 1
Number of channels = 1
Number of channels = 1
Number of channels = 1
Number of channels = 1
Number of channels = 1
Number of channels = 1
Number of channels = 1
Number of channels = 1
Number of channels = 1
Number of channels = 1
Number of channels = 1
Number of channels = 1
Number of channels = 1
Number of channels = 1
Number of channels = 1
Number of channels = 1
Number of channels = 1
Number of channels = 1
Number of channels = 1

Clip Audio to Five Seconds

The audio samples included with Audio Toolbox™ have varying durations. Use the transform
function to customize the read function so that it outputs a random five second segment of the audio
samples.

Specify the file path to the audio samples included with Audio Toolbox. Create an audio datastore that
points to the specified folder.

folder = fullfile(matlabroot,'toolbox','audio','samples');
ADS = audioDatastore(folder);

Define a function to take as input the output of the read function. Make the function extract five
seconds worth of data from the audio signal.

function [dataOut,info] = extractSegment(audioIn,info)
 [N,numChan] = size(audioIn);
 newN = round(info.SampleRate*5);
 if newN > N % signal length < 5 seconds
 numPad = newN - N + 1;
 dataOut = [audioIn;zeros(numPad,numChan,'like',audioIn)];
 elseif newN < N % signal length > 5 seconds
 start = randi(N - newN + 1);
 dataOut = audioIn(start:start+newN-1,:);
 else % signal length == 5 seconds
 dataOut = audioIn;
 end
end

Call transform to create a TransformedDatastore with Transforms set to the function you
defined.

ADSnew = transform(ADS,@extractSegment,'IncludeInfo',true)

4 Classes

4-150

ADSnew =
 TransformedDatastore with properties:

 UnderlyingDatastores: {audioDatastore}
 SupportedOutputFormats: ["txt" "csv" "xlsx" "xls" ...]
 Transforms: {@extractSegment}
 IncludeInfo: 1

Read the first three audio files and verify that the outputs are five second segments.

for i = 1:3
 [audio,info] = read(ADSnew);
 fprintf('Duration = %d seconds\n',size(audio,1)/info.SampleRate)
end

Duration = 5 seconds
Duration = 5 seconds
Duration = 5 seconds

Output Mel Spectrogram

Use transform to create an audio datastore that returns a mel spectrogram representation from the
read function.

Specify the file path to the audio samples included with Audio Toolbox™. Create an audio datastore
that points to the specified folder.

folder = fullfile(matlabroot,'toolbox','audio','samples');
ADS = audioDatastore(folder);

Define a function that transforms audio data from a time-domain representation to a log mel
spectrogram. The function adds the additional outputs from the melSpectrogram function to the
info struct output from reading the audio datastore.

function [dataOut,infoOut] = extractMelSpectrogram(audioIn,info)

 [S,F,T] = melSpectrogram(audioIn,info.SampleRate);

 dataOut = 10*log10(S+eps);
 infoOut = info;
 infoOut.CenterFrequencies = F;
 infoOut.TimeInstants = T;
end

Call transform to create a TransformedDatastore with Transforms set to
extractMelSpectrogram.

ADSnew = transform(ADS,@extractMelSpectrogram,'IncludeInfo',true)

ADSnew =
 TransformedDatastore with properties:

 UnderlyingDatastores: {audioDatastore}
 SupportedOutputFormats: ["txt" "csv" "xlsx" "xls" ...]

 transform

4-151

 Transforms: {@extractMelSpectrogram}
 IncludeInfo: 1

Read the first three audio files and plot the log mel spectrograms. If there are multiple channels, plot
only the first channel.

for i = 1:3
 [melSpec,info] = read(ADSnew);

 figure(i)
 surf(info.TimeInstants,info.CenterFrequencies,melSpec(:,:,1),'EdgeColor','none');
 xlabel('Time (s)')
 ylabel('Frequency (Hz)')
 [~,name] = fileparts(info.FileName);
 title(name)
 axis([0 info.TimeInstants(end) info.CenterFrequencies(1) info.CenterFrequencies(end)])
 view([0,90])
end

4 Classes

4-152

 transform

4-153

Output Spectral Shape Features

Use transform to create an audio datastore that returns feature vectors.

Specify the file path to the audio samples included with Audio Toolbox™. Create an audio datastore
that points to the specified folder.

folder = fullfile(matlabroot,'toolbox','audio','samples');
ADS = audioDatastore(folder);

Define a function, extractFeatureVector, that transforms the audio data from a time-domain
representation to feature vectors.

function [dataOut,info] = extractFeatureVector(audioIn,info)

 % Convert to frequency-domain representation
 windowLength = 256;
 overlapLength = 128;
 [~,f,~,S] = spectrogram(mean(audioIn,2), ...
 hann(windowLength,"Periodic"), ...
 overlapLength, ...
 windowLength, ...
 info.SampleRate, ...
 "power", ...

4 Classes

4-154

 "onesided");

 % Extract features
 [kurtosis,spread,centroid] = spectralKurtosis(S,f);
 skewness = spectralSkewness(S,f);
 crest = spectralCrest(S,f);
 decrease = spectralDecrease(S,f);
 entropy = spectralEntropy(S,f);
 flatness = spectralFlatness(S,f);
 flux = spectralFlux(S,f);
 rolloff = spectralRolloffPoint(S,f);
 slope = spectralSlope(S,f);

 % Concatenate to create feature vectors
 dataOut = [kurtosis,spread,centroid,skewness,crest,decrease,entropy,flatness,flux,rolloff,slope];

end

Call transform to create a TransformedDatastore with Transforms set to
extractFeatureVector.

ADSnew = transform(ADS,@extractFeatureVector,'IncludeInfo',true)

ADSnew =

 TransformedDatastore with properties:

 UnderlyingDatastores: {audioDatastore}
 SupportedOutputFormats: ["txt" "csv" "xlsx" "xls" ...]
 Transforms: {@extractFeatureVector}
 IncludeInfo: 1

Call read to return the feature vectors for the audio over time.

featureMatrix = read(ADSnew);
[numFeatureVectors,numFeatures] = size(featureMatrix)

numFeatureVectors =

 4215

numFeatures =

 11

Apply Bandpass Filtering

Use transform to create an audio datastore that applies bandpass filtering before returning audio
from the read function.

 transform

4-155

Specify the file path to the audio samples included with Audio Toolbox™. Create an audio datastore
that points to the specified folder.

folder = fullfile(matlabroot,'toolbox','audio','samples');
ADS = audioDatastore(folder);

Define a function, applyBandpassFilter, that applies a bandpass filter with a passband between 1
and 15 kHz.

function [audioOut,info] = applyBandpassFilter(audioIn,info)

 audioOut = bandpass(audioIn,[1e3,15e3],info.SampleRate);

end

Call transform to create a TransformedDatastore with Transforms set to
applyBandpassFilter.

ADSnew = transform(ADS,@applyBandpassFilter,'IncludeInfo',true)

ADSnew =
 TransformedDatastore with properties:

 UnderlyingDatastores: {audioDatastore}
 SupportedOutputFormats: ["txt" "csv" "xlsx" "xls" ...]
 Transforms: {@applyBandpassFilter}
 IncludeInfo: 1

Call read to return the bandpass filtered audio from the transform datastore. Call read to return the
bandpass filtered audio from the original datastore. Plot the spectrograms to visualize the difference.

[audio1,info1] = read(ADS);
[audio2,info2] = read(ADSnew);

spectrogram(audio1,hann(512),256,512,info1.SampleRate,'yaxis')
title('Original Signal')

4 Classes

4-156

spectrogram(audio2,hann(512),256,512,info2.SampleRate,'yaxis')
title('Filtered Signal')

 transform

4-157

Input Arguments
ADS — Audio datastore
audioDatastore object

Audio datastore, specified as an audioDatastore object.

@fcn — Function that transforms data
function handle

Function that transforms data, specified as a function handle. The signature of the function depends
on the IncludeInfo parameter.

• If IncludeInfo is set to false (default), the function transforms the audio output from read.
The info output from read is unaltered.

4 Classes

4-158

The transform function must have this signature:

function dataOut = fcn(audio)
...
end

• If IncludeInfo is set to true, the function transforms the audio output from read, and can use
or modify the information returned from read.

The transform function must have this signature:

function [dataOut,infoOut] = fcn(audio,infoIn)
...
end

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'IncludeInfo',tf

IncludeInfo — Pass info through customized read function
false (default) | true

 transform

4-159

Pass info through the customized read function, specified as true or false. If true, the transform
function can use or modify the information it gets from read. If unspecified, IncludeInfo defaults
to false.
Data Types: logical

Output Arguments
transformDatastore — New datastore with customized read
TransformedDatastore

New datastore with customized read, returned as a TransformedDatastore with
UnderlyingDatastore set to ADS, Transforms set to fcn, and IncludeInfo set to true or
false.

Version History
Introduced in R2019a

See Also
audioDatastore | combine | hasdata | preview | read | readall | reset

4 Classes

4-160

combine
Combine data from multiple datastores

Syntax
ADSnew = combine(ADS1,ADS2,...,ADSN)

Description
ADSnew = combine(ADS1,ADS2,...,ADSN) combines two or more datastores by horizontally
concatenating the data returned by read of the input datastores.

Examples

Combine Datastores

Create a datastore that maintains parity between the audio of the underlying datastores. Create two
separate audio datastores, and then create a combined datastore representing the two underlying
datastores.

Create a datastore ads1 that points to the audio files included with Audio Toolbox.

folder = fullfile(matlabroot,'toolbox','audio','samples');
ads1 = audioDatastore(folder);

Create a second datastore ads2 by adding noise to the audio in the ads1.

ads2 = transform(ads1,@(x) x + 0.01*randn(size(x)));

Create a combined datastore from ads1 and ads2.

adsCombined = combine(ads1,ads2);

Read the first pair of audio files from the combined datastore. Each read operation on this combined
datastore returns a pair of audio signals in a 1-by-2 cell array and a pair of info structs in a 1-by-2 cell
array.

[dataOut,infoOut] = read(adsCombined)

dataOut=1×2 cell array
 {539648x1 double} {539648x1 double}

infoOut=1×2 cell array
 {1x1 struct} {1x1 struct}

Plot the spectrograms of the first channels from both audio signals.

figure(1)
spectrogram(dataOut{1},hamming(512),256,512,infoOut{1}.SampleRate,'yaxis')
title('Original Data')

 combine

4-161

figure(2)
idx = size(dataOut,2)/2+1;
spectrogram(dataOut{2},hamming(512),256,512,infoOut{2}.SampleRate,'yaxis')
title('Noised Data')

4 Classes

4-162

Input Arguments
ADS1,ADS2,...,ADSN — Audio datastores to combine
audioDatastore objects

Audio datastores to combine, specified as two or more comma separated audioDatastore objects.

Output Arguments
ADSnew — New audio datastore with combined data
audioDatastore object

New audio datastore with combined data, returned as a
matlab.io.datastore.CombinedDatastore object.

Calling read on the combined datastore returns a cell array containing the output of calling read on
the individual datastores.

Version History
Introduced in R2019a

 combine

4-163

See Also
audioDatastore | transform | hasdata | preview | read | readall | reset

4 Classes

4-164

progress
Fraction of files read

Syntax
fractionRead = progress(ADS)

Description
fractionRead = progress(ADS) returns the fraction of files read in the datastore as a
normalized value in the range [0,1].

Examples

Return Fraction of Files Read

Create an audioDatastore object ADS. Read a file from the datastore and then call progress to
return the fraction of files read.

ADS = audioDatastore(fullfile(matlabroot,'toolbox','audio','samples'))

ADS =
 audioDatastore with properties:

 Files: {
 'B:\matlab\toolbox\audio\samples\Ambiance-16-44p1-mono-12secs.wav';
 'B:\matlab\toolbox\audio\samples\AudioArray-16-16-4channels-20secs.wav';
 ' ...\toolbox\audio\samples\ChurchImpulseResponse-16-44p1-mono-5secs.wav'
 ... and 32 more
 }
 Folders: {
 'B:\matlab\toolbox\audio\samples'
 }
 AlternateFileSystemRoots: {}
 OutputDataType: 'double'
 Labels: {}
 SupportedOutputFormats: ["wav" "flac" "ogg" "opus" ...]
 DefaultOutputFormat: "wav"

fractionOfFilesRead = progress(ADS)

fractionOfFilesRead = 0

data = read(ADS);
fractionOfFilesRead = progress(ADS)

fractionOfFilesRead = 0.0286

 progress

4-165

Input Arguments
ADS — Audio datastore
audioDatastore object

Specify ADS as an audioDatastore object.

Output Arguments
fractionRead — Fraction of files read
normalized value in the range [0,1]

Fraction of files read, returned as a normalized value in the range [0,1].
Data Types: double

Version History
Introduced in R2018b

See Also
audioDatastore | hasdata

Topics
“Train Speech Command Recognition Model Using Deep Learning”
“Speaker Identification Using Pitch and MFCC”
“Denoise Speech Using Deep Learning Networks”

4 Classes

4-166

numpartitions
Return estimate for reasonable number of partitions for parallel processing

Syntax
n = numpartitions(ADS)
n = numpartitions(ADS,pool)

Description
n = numpartitions(ADS) returns the default number of partitions for the datastore, ADS. The
default number of partitions is the total number of files.

n = numpartitions(ADS,pool) returns a reasonable number of partitions to parallelize ADS over
the parallel pool, based on the total number of files and the number of workers in pool. To parallelize
datastore access, you must have Parallel Computing Toolbox installed.

Examples

Estimate Reasonable Number of Partitions for Audio Datastore

numpartitions returns a reasonable number of partitions for an audio datastore. You can use
numpartitions as input to the partition function.

Specify the file path to the audio samples included with Audio Toolbox™. Create an audio datastore
that points to the specified folder.

folder = fullfile(matlabroot,'toolbox','audio','samples');

ADS = audioDatastore(folder);

Use numpartitions to estimate a reasonable number of partitions for the audio datastore, ADS. By
default, numpartitions returns the number of files the audio datastore points to.

n = numpartitions(ADS)

n = 35

Number of Partitions for Parallel Datastore Access

Partition a datastore to facilitate parallel access over the available parallel pool of workers.

Specify the file path to the audio samples included with Audio Toolbox™. Create an audio datastore
that points to the specified folder.

folder = fullfile(matlabroot,'toolbox','audio','samples');
ADS = audioDatastore(folder);

 numpartitions

4-167

Return an estimate for a reasonable number of partitions for parallel processing, given the current
parallel pool.

pool = gcp;
n = numpartitions(ADS,pool);

Partition the audio datastore and read the data in each part.

parfor ii = 1:n
 subds = partition(ADS,n,ii);
 while hasdata(subds)
 data = read(subds);
 end
end

Input Arguments
ADS — Audio datastore
audioDatastore object

Specify ADS as an audioDatastore object.

pool — Parallel pool
parallel pool object

Parallel pool object.

Output Arguments
n — Number of partitions
positive integer

Number of partitions to parallelize datastore access over.

Version History
Introduced in R2018b

See Also
audioDatastore | partition

Topics
“Train Speech Command Recognition Model Using Deep Learning”
“Speaker Identification Using Pitch and MFCC”
“Denoise Speech Using Deep Learning Networks”

4 Classes

4-168

partition
Partition datastore and return on partitioned portion

Syntax
subADS = partition(ADS,numPartitions,index)
subADS = partition(ADS,'Files',index)
subADS = partition(ADS,'Files',filename)

Description
subADS = partition(ADS,numPartitions,index) partitions datastore ADS into the number of
parts specified by numPartitions and returns the partition corresponding to the index.

subADS = partition(ADS,'Files',index) partitions the datastore by files and returns the
partition corresponding to the file of index index in the Files property.

subADS = partition(ADS,'Files',filename) partitions the datastore by files and returns the
partition corresponding to the file specified by filename.

Examples

Partition Datastore into Specific Number of Parts

Specify the file path to the audio samples included with Audio Toolbox™. Create an audio datastore
that points to the specified folder.

folder = fullfile(matlabroot,'toolbox','audio','samples');
ADS = audioDatastore(folder)

ADS =
 audioDatastore with properties:

 Files: {
 'B:\matlab\toolbox\audio\samples\Ambiance-16-44p1-mono-12secs.wav';
 'B:\matlab\toolbox\audio\samples\AudioArray-16-16-4channels-20secs.wav';
 ' ...\toolbox\audio\samples\ChurchImpulseResponse-16-44p1-mono-5secs.wav'
 ... and 32 more
 }
 Folders: {
 'B:\matlab\toolbox\audio\samples'
 }
 AlternateFileSystemRoots: {}
 OutputDataType: 'double'
 Labels: {}
 SupportedOutputFormats: ["wav" "flac" "ogg" "opus" ...]
 DefaultOutputFormat: "wav"

Partition the datastore into three parts.

 partition

4-169

subADS1 = partition(ADS,3,1)

subADS1 =
 audioDatastore with properties:

 Files: {
 'B:\matlab\toolbox\audio\samples\Ambiance-16-44p1-mono-12secs.wav';
 'B:\matlab\toolbox\audio\samples\AudioArray-16-16-4channels-20secs.wav';
 ' ...\toolbox\audio\samples\ChurchImpulseResponse-16-44p1-mono-5secs.wav'
 ... and 9 more
 }
 Folders: {
 'B:\matlab\toolbox\audio\samples'
 }
 AlternateFileSystemRoots: {}
 OutputDataType: 'double'
 Labels: {}
 SupportedOutputFormats: ["wav" "flac" "ogg" "opus" ...]
 DefaultOutputFormat: "wav"

subADS2 = partition(ADS,3,2)

subADS2 =
 audioDatastore with properties:

 Files: {
 'B:\matlab\toolbox\audio\samples\JetAirplane-16-11p025-mono-16secs.wav';
 'B:\matlab\toolbox\audio\samples\Laughter-16-8-mono-4secs.wav';
 'B:\matlab\toolbox\audio\samples\MainStreetOne-16-16-mono-12secs.wav'
 ... and 9 more
 }
 Folders: {
 'B:\matlab\toolbox\audio\samples'
 }
 AlternateFileSystemRoots: {}
 OutputDataType: 'double'
 Labels: {}
 SupportedOutputFormats: ["wav" "flac" "ogg" "opus" ...]
 DefaultOutputFormat: "wav"

subADS3 = partition(ADS,3,3)

subADS3 =
 audioDatastore with properties:

 Files: {
 'B:\matlab\toolbox\audio\samples\SingingAMajor-16-mono-18secs.ogg';
 'B:\matlab\toolbox\audio\samples\SoftGuitar-44p1_mono-10mins.ogg';
 'B:\matlab\toolbox\audio\samples\SpeechDFT-16-8-mono-5secs.wav'
 ... and 8 more
 }
 Folders: {
 'B:\matlab\toolbox\audio\samples'
 }
 AlternateFileSystemRoots: {}
 OutputDataType: 'double'
 Labels: {}

4 Classes

4-170

 SupportedOutputFormats: ["wav" "flac" "ogg" "opus" ...]
 DefaultOutputFormat: "wav"

Partition Datastore into Default Number of Parts

Specify the file path to the audio samples included with Audio Toolbox™. Create an audio datastore
that points to the specified folder.

folder = fullfile(matlabroot,'toolbox','audio','samples');
ADS = audioDatastore(folder);

Get the default number of partitions for ADS.

n = numpartitions(ADS);

Partition the datastore into the default number of partitions and return the datastore corresponding
to the first partition.

subADS = partition(ADS,n,1);

Read the data in subADS.

while hasdata(subADS)
 data = read(subADS);
end

Partition Datastore by Files

Specify the file path to the audio samples included with Audio Toolbox™. Create an audio datastore
that points to the specified folder.

folder = fullfile(matlabroot,'toolbox','audio','samples');
ADS = audioDatastore(folder);

Partition the datastore by files and return the part corresponding to the second file. subds contains
one file.

subds = partition(ADS,'Files',2)

subds =
 audioDatastore with properties:

 Files: {
 'B:\matlab\toolbox\audio\samples\AudioArray-16-16-4channels-20secs.wav'
 }
 Folders: {
 'B:\matlab\toolbox\audio\samples'
 }
 AlternateFileSystemRoots: {}
 OutputDataType: 'double'
 Labels: {}
 SupportedOutputFormats: ["wav" "flac" "ogg" "opus" ...]

 partition

4-171

 DefaultOutputFormat: "wav"

Number of Partitions for Parallel Datastore Access

Partition a datastore to facilitate parallel access over the available parallel pool of workers.

Specify the file path to the audio samples included with Audio Toolbox™. Create an audio datastore
that points to the specified folder.

folder = fullfile(matlabroot,'toolbox','audio','samples');
ADS = audioDatastore(folder);

Return an estimate for a reasonable number of partitions for parallel processing, given the current
parallel pool.

pool = gcp;
n = numpartitions(ADS,pool);

Partition the audio datastore and read the data in each part.

parfor ii = 1:n
 subds = partition(ADS,n,ii);
 while hasdata(subds)
 data = read(subds);
 end
end

Input Arguments
ADS — Audio datastore
audioDatastore object

Audio datastore, specified as an audioDatastore object.

numPartitions — Number of partitions
positive integer

Number of partitions, specified as a positive integer. Use numpartitions to estimate a reasonable
value for numPartitions.
Data Types: double

index — Index of sub-datastore
positive integer

Index of sub-datastore, specified as a positive integer in the range [1,numPartitions].
Data Types: double

filename — File name
character vector

File name, specified as a character vector.

4 Classes

4-172

The value of filename must match exactly the file name contained in the Files property of the
datastore.
Data Types: char

Output Arguments
subADS — Output audio datastore
audioDatastore object

Output audio datastore, returned as an audioDatastore object.

Version History
Introduced in R2018b

See Also
audioDatastore | numpartitions

Topics
“Train Speech Command Recognition Model Using Deep Learning”
“Speaker Identification Using Pitch and MFCC”
“Denoise Speech Using Deep Learning Networks”

 partition

4-173

countEachLabel
Count number of unique labels

Syntax
tbl = countEachLabel(ADS)
tbl = countEachLabel(ADS,'TableVariable',VariableName)

Description
tbl = countEachLabel(ADS) counts the number of times each unique label occurs in the
datastore. In other words, it counts the number of files with each unique label. The output tbl is a
table with variable names Label and Count.

tbl = countEachLabel(ADS,'TableVariable',VariableName) counts the number of times
each unique label occurs in the datastore. When the datastore Labels property is specified by a
table, you must specify VariableName. VariableName is the table variable (column) name you want
to count.

Examples

Label Count

Specify the file path to the audio samples included with Audio Toolbox™.

folder = fullfile(matlabroot,'toolbox','audio','samples');

Create an audio datastore that points to the specified folder. Specify the LabelSource property as
foldernames, so that the label associated with each file is set to the folder name that contains the
file.

ads = audioDatastore(folder,'Labelsource','foldernames')

ads =
 audioDatastore with properties:

 Files: {
 'B:\matlab\toolbox\audio\samples\Ambiance-16-44p1-mono-12secs.wav';
 'B:\matlab\toolbox\audio\samples\AudioArray-16-16-4channels-20secs.wav';
 ' ...\toolbox\audio\samples\ChurchImpulseResponse-16-44p1-mono-5secs.wav'
 ... and 32 more
 }
 Folders: {
 'B:\matlab\toolbox\audio\samples'
 }
 Labels: [samples; samples; samples ... and 32 more categorical]
 AlternateFileSystemRoots: {}
 OutputDataType: 'double'
 SupportedOutputFormats: ["wav" "flac" "ogg" "opus" ...]
 DefaultOutputFormat: "wav"

4 Classes

4-174

Call countEachLabel to count the number of times each unique label occurs.

tbl = countEachLabel(ads)

tbl=1×2 table
 Label Count
 _______ _____

 samples 35

Label Count when Labels Is Specified by Table

If the Labels property of an audio datastore is specified as a table, you must specify the table
variable name when counting labels.

Specify the file path to the audio samples included with Audio Toolbox™.

folder = fullfile(matlabroot,'toolbox','audio','samples');

Create an audio datastore that points to the specified folder.

ADS = audioDatastore(folder)

ADS =
 audioDatastore with properties:

 Files: {
 'B:\matlab\toolbox\audio\samples\Ambiance-16-44p1-mono-12secs.wav';
 'B:\matlab\toolbox\audio\samples\AudioArray-16-16-4channels-20secs.wav';
 ' ...\toolbox\audio\samples\ChurchImpulseResponse-16-44p1-mono-5secs.wav'
 ... and 32 more
 }
 Folders: {
 'B:\matlab\toolbox\audio\samples'
 }
 AlternateFileSystemRoots: {}
 OutputDataType: 'double'
 Labels: {}
 SupportedOutputFormats: ["wav" "flac" "ogg" "opus" ...]
 DefaultOutputFormat: "wav"

The file names contain information about the files. Parse the file names to collect information about
whether a file is mono or stereo and whether a file is longer than thirty seconds. Create a table
containing the parsed information and then set the Labels property of the audio datastore to the
label table.

numFiles = numel(ADS.Files);

numChannels = cell(numFiles,1);
isLong = cell(numFiles,1);

for i = 1:numFiles
 if ~isempty(strfind(ADS.Files{i},'mono'))

 countEachLabel

4-175

 numChannels{i} = 'mono';
 elseif ~isempty(strfind(ADS.Files{i},'stereo'))
 numChannels{i} = 'stereo';
 else
 numChannels{i} = 'unknown';
 end

 secs = str2double(regexp(ADS.Files{i}, '-(\d+)secs', 'tokens', 'once'));
 if secs > 30
 isLong{i} = true;
 elseif secs <= 30
 isLong{i} = false;
 else
 isLong{i} = 'unknown';
 end
end
labelTable = table(numChannels,isLong, ...
 'VariableNames',{'NumberOfChannels','IsLongerThan30Seconds'});

ADS.Labels = labelTable;

Call countEachLabel on the audio datastore and specify the TableVariable as
NumberOfChannels. Call countEachLabel and specify the TableVariable as
IsLongerThan30Seconds.

countNumberOfChannelLabels = countEachLabel(ADS,'TableVariable','NumberOfChannels')

countNumberOfChannelLabels=3×2 table
 NumberOfChannels Count
 ________________ _____

 mono 23
 stereo 10
 unknown 2

countDurationLabels = countEachLabel(ADS,'TableVariable','IsLongerThan30Seconds')

countDurationLabels=3×2 table
 IsLongerThan30Seconds Count
 _____________________ _____

 false 24
 true 6
 unknown 5

Input Arguments
ADS — Audio datastore
audioDatastore object

Specify ADS as an audioDatastore object.

VariableName — Label table variable name
character vector | string

4 Classes

4-176

Label table variable name, specified as a character vector or string that corresponds to a table
variable of the Label property.

This syntax is required if the Label property of audioDatastore is specified by a table.
Data Types: char | string

Output Arguments
tbl — Table of label counts
two-column table

Table of label counts, returned as a two-column table containing the name of each label in ADS and
the number of files associated with each label.
Data Types: table

Version History
Introduced in R2018b

See Also
audioDatastore | splitEachLabel

Topics
“Train Speech Command Recognition Model Using Deep Learning”
“Speaker Identification Using Pitch and MFCC”
“Denoise Speech Using Deep Learning Networks”

 countEachLabel

4-177

splitEachLabel
Splits datastore according to specified label proportions

Syntax
[ADS1,ADS2] = splitEachLabel(ADS,p)
[ADS1,...,ADSM] = splitEachLabel(ADS,p1,...,pN)
___ = splitEachLabel(___ ,'randomized')
___ = splitEachLabel(___ ,Name,Value)

Description
[ADS1,ADS2] = splitEachLabel(ADS,p) splits the audio files in ADS into two new datastores,
ADS1 and ADS2. The new datastore ADS1 contains the first p files from each label ,and ADS2 contains
the remaining files from each label. p can be either a number between 0 and 1, exclusive, indicating
the percentage of the files from each label to assign to ADS1, or an integer indicating the absolute
number of files from each label to assign to ADS1.

[ADS1,...,ADSM] = splitEachLabel(ADS,p1,...,pN) splits the datastore into N+1 new
datastores. The new datastore ADS1 contains the first p1 files from each label, the next new datastore
ADS2 contains the next p2 files, and so on. If p1,…,pN represent numbers of files, then their sum
must be no more than the number of files in the smallest label in the original datastore, ADS.

___ = splitEachLabel(___ ,'randomized') randomly assigns the specified proportion of files
from each label to the new datastores.

___ = splitEachLabel(___ ,Name,Value) specifies the properties of the new datastores using
one or more name-value pair arguments. For example, you can specify which labels to split with
'Include','labelname'.

Examples

Split by Fractions

Specify the file path to the audio samples included with Audio Toolbox™. Create an audio datastore
that points to the specified folder.

folder = fullfile(matlabroot,'toolbox','audio','samples');
ADS = audioDatastore(folder,'FileExtensions','.wav');

Add the label A to the first half of the files, and the label B to the second half. If there are an odd
number of files, assign the extra file the label B. Call countEachLabel to confirm that half of the
files are labeled A and half the files are labeled B.

labels = [repmat({'A'},1,floor(numel(ADS.Files)/2)), ...
 repmat({'B'},1,ceil(numel(ADS.Files)/2))];
ADS.Labels = labels;

countEachLabel(ADS)

4 Classes

4-178

ans=2×2 table
 Label Count
 _____ _____

 A 10
 B 10

Split ADS into two datastores, ADS1 and ADS2, specifying that each new datastore contains fifty
percent of each label and the corresponding files. Call countEachLabel to confirm that half of the
files are labeled A and half of the files are labeled B for each of the new datastores.

[ADS1,ADS2] = splitEachLabel(ADS,0.5)

ADS1 =
 audioDatastore with properties:

 Files: {
 'B:\matlab\toolbox\audio\samples\Ambiance-16-44p1-mono-12secs.wav';
 'B:\matlab\toolbox\audio\samples\AudioArray-16-16-4channels-20secs.wav';
 ' ...\toolbox\audio\samples\ChurchImpulseResponse-16-44p1-mono-5secs.wav'
 ... and 7 more
 }
 Folders: {
 'B:\matlab\toolbox\audio\samples'
 }
 Labels: {'A'; 'A'; 'A' ... and 7 more}
 AlternateFileSystemRoots: {}
 OutputDataType: 'double'
 SupportedOutputFormats: ["wav" "flac" "ogg" "opus" ...]
 DefaultOutputFormat: "wav"

ADS2 =
 audioDatastore with properties:

 Files: {
 'B:\matlab\toolbox\audio\samples\Engine-16-44p1-stereo-20sec.wav';
 'B:\matlab\toolbox\audio\samples\FemaleSpeech-16-8-mono-3secs.wav';
 'B:\matlab\toolbox\audio\samples\Heli_16ch_ACN_SN3D.wav'
 ... and 7 more
 }
 Folders: {
 'B:\matlab\toolbox\audio\samples'
 }
 Labels: {'A'; 'A'; 'A' ... and 7 more}
 AlternateFileSystemRoots: {}
 OutputDataType: 'double'
 SupportedOutputFormats: ["wav" "flac" "ogg" "opus" ...]
 DefaultOutputFormat: "wav"

ADS1count = countEachLabel(ADS1)

ADS1count=2×2 table
 Label Count
 _____ _____

 splitEachLabel

4-179

 A 5
 B 5

ADS2count = countEachLabel(ADS2)

ADS2count=2×2 table
 Label Count
 _____ _____

 A 5
 B 5

Split by Number of Files

Specify the file path to the audio samples included with Audio Toolbox™. Create an audio datastore
that points to the specified folder.

folder = fullfile(matlabroot,'toolbox','audio','samples');
ADS = audioDatastore(folder,'FileExtensions','.wav');

Add the label A to the first half of the files, and the label B to the second half. If there are an odd
number of files, assign the extra file the label B. Call countEachLabel to confirm that half of the
files are labeled A and half the files are labeled B.

labels = [repmat({'A'},1,floor(numel(ADS.Files)/2)), ...
 repmat({'B'},1,ceil(numel(ADS.Files)/2))];
ADS.Labels = labels;

countEachLabel(ADS)

ans=2×2 table
 Label Count
 _____ _____

 A 10
 B 10

Split ADS into two datastores, ADS1 and ADS2. Specify that ADS1 contains four of each label and its
corresponding file. ADS2 contains the remaining labels and corresponding files. Call
countEachLabel to confirm that ADS1 contains four files labeled A and four files labeled B, and that
ADS2 contains the remaining labels.

[ADS1,ADS2] = splitEachLabel(ADS,4)

ADS1 =
 audioDatastore with properties:

 Files: {
 'B:\matlab\toolbox\audio\samples\Ambiance-16-44p1-mono-12secs.wav';
 'B:\matlab\toolbox\audio\samples\AudioArray-16-16-4channels-20secs.wav';
 ' ...\toolbox\audio\samples\ChurchImpulseResponse-16-44p1-mono-5secs.wav'
 ... and 5 more
 }

4 Classes

4-180

 Folders: {
 'B:\matlab\toolbox\audio\samples'
 }
 Labels: {'A'; 'A'; 'A' ... and 5 more}
 AlternateFileSystemRoots: {}
 OutputDataType: 'double'
 SupportedOutputFormats: ["wav" "flac" "ogg" "opus" ...]
 DefaultOutputFormat: "wav"

ADS2 =
 audioDatastore with properties:

 Files: {
 'B:\matlab\toolbox\audio\samples\Counting-16-44p1-mono-15secs.wav';
 'B:\matlab\toolbox\audio\samples\Engine-16-44p1-stereo-20sec.wav';
 'B:\matlab\toolbox\audio\samples\FemaleSpeech-16-8-mono-3secs.wav'
 ... and 9 more
 }
 Folders: {
 'B:\matlab\toolbox\audio\samples'
 }
 Labels: {'A'; 'A'; 'A' ... and 9 more}
 AlternateFileSystemRoots: {}
 OutputDataType: 'double'
 SupportedOutputFormats: ["wav" "flac" "ogg" "opus" ...]
 DefaultOutputFormat: "wav"

ADS1count = countEachLabel(ADS1)

ADS1count=2×2 table
 Label Count
 _____ _____

 A 4
 B 4

ADS2count = countEachLabel(ADS2)

ADS2count=2×2 table
 Label Count
 _____ _____

 A 6
 B 6

Split Several Ways by Fractions

Specify the file path to the audio samples included with Audio Toolbox™. Create an audio datastore
that points to the specified folder.

folder = fullfile(matlabroot,'toolbox','audio','samples');
ADS = audioDatastore(folder,'FileExtensions','.wav');

 splitEachLabel

4-181

Add the label A to the first half of the files, and the label B to the second half. If there is an odd
number of files, assign the extra file the label B. Call countEachLabel to confirm that half of the
files are labeled A and half the files are labeled B.

labels = [repmat({'A'},1,floor(numel(ADS.Files)/2)), ...
 repmat({'B'},1,ceil(numel(ADS.Files)/2))];
ADS.Labels = labels;

countEachLabel(ADS)

ans=2×2 table
 Label Count
 _____ _____

 A 10
 B 10

Split ADS into three new datastores, ADS60, ADS10, and ADS30. The first datastore, ADS60, contains
the first 60% of files with the A label and the first 60% of files with the B label. ADS10 contains the
next 10% of files from each label. ADS30 contains the remaining 30% of files from each label. If the
percentage applied to a label does not result in a whole number of files, splitEachLabel rounds
down to the nearest whole number.

[ADS60,ADS10,ADS30] = splitEachLabel(ADS,0.6,0.1)

ADS60 =
 audioDatastore with properties:

 Files: {
 'B:\matlab\toolbox\audio\samples\Ambiance-16-44p1-mono-12secs.wav';
 'B:\matlab\toolbox\audio\samples\AudioArray-16-16-4channels-20secs.wav';
 ' ...\toolbox\audio\samples\ChurchImpulseResponse-16-44p1-mono-5secs.wav'
 ... and 9 more
 }
 Folders: {
 'B:\matlab\toolbox\audio\samples'
 }
 Labels: {'A'; 'A'; 'A' ... and 9 more}
 AlternateFileSystemRoots: {}
 OutputDataType: 'double'
 SupportedOutputFormats: ["wav" "flac" "ogg" "opus" ...]
 DefaultOutputFormat: "wav"

ADS10 =
 audioDatastore with properties:

 Files: {
 'B:\matlab\toolbox\audio\samples\FemaleSpeech-16-8-mono-3secs.wav';
 'B:\matlab\toolbox\audio\samples\TrainWhistle-16-44p1-mono-9secs.wav'
 }
 Folders: {
 'B:\matlab\toolbox\audio\samples'
 }
 Labels: {'A'; 'B'}
 AlternateFileSystemRoots: {}
 OutputDataType: 'double'

4 Classes

4-182

 SupportedOutputFormats: ["wav" "flac" "ogg" "opus" ...]
 DefaultOutputFormat: "wav"

ADS30 =
 audioDatastore with properties:

 Files: {
 'B:\matlab\toolbox\audio\samples\Heli_16ch_ACN_SN3D.wav';
 'B:\matlab\toolbox\audio\samples\JetAirplane-16-11p025-mono-16secs.wav';
 'B:\matlab\toolbox\audio\samples\Laughter-16-8-mono-4secs.wav'
 ... and 3 more
 }
 Folders: {
 'B:\matlab\toolbox\audio\samples'
 }
 Labels: {'A'; 'A'; 'A' ... and 3 more}
 AlternateFileSystemRoots: {}
 OutputDataType: 'double'
 SupportedOutputFormats: ["wav" "flac" "ogg" "opus" ...]
 DefaultOutputFormat: "wav"

Call countEachLabel to confirm the correct distribution of labels for each datastore.

countEachLabel(ADS60)

ans=2×2 table
 Label Count
 _____ _____

 A 6
 B 6

countEachLabel(ADS10)

ans=2×2 table
 Label Count
 _____ _____

 A 1
 B 1

countEachLabel(ADS30)

ans=2×2 table
 Label Count
 _____ _____

 A 3
 B 3

 splitEachLabel

4-183

Split Labels Several Ways by Number of Files

Specify the file path to the audio samples included with Audio Toolbox™. Create an audio datastore
that points to the specified folder.

folder = fullfile(matlabroot,'toolbox','audio','samples');
ADS = audioDatastore(folder,'FileExtensions','.wav');

Add the label A to the first half of the files, and the label B to the second half. If there is an odd
number of files, assign the extra file the label B. Call countEachLabel to confirm that half of the
files are labeled A and half the files are labeled B.

labels = [repmat({'A'},1,floor(numel(ADS.Files)/2)), ...
 repmat({'B'},1,ceil(numel(ADS.Files)/2))];
ADS.Labels = labels;

countEachLabel(ADS)

ans=2×2 table
 Label Count
 _____ _____

 A 10
 B 10

Split ADS into three new datastores, ADS1, ADS2, and ADS3. The first datastore, ADS1, contains the
first file with the A label and the first file with the B label. ADS2 contains the next file from each label.
ADS3 contains the remaining files from each label. If the percentage applied to a label does not result
in a whole number of files, splitEachLabel rounds down to the nearest whole number.

[ADS1,ADS2,ADS3] = splitEachLabel(ADS,1,1)

ADS1 =
 audioDatastore with properties:

 Files: {
 'B:\matlab\toolbox\audio\samples\Ambiance-16-44p1-mono-12secs.wav';
 'B:\matlab\toolbox\audio\samples\MainStreetOne-16-16-mono-12secs.wav'
 }
 Folders: {
 'B:\matlab\toolbox\audio\samples'
 }
 Labels: {'A'; 'B'}
 AlternateFileSystemRoots: {}
 OutputDataType: 'double'
 SupportedOutputFormats: ["wav" "flac" "ogg" "opus" ...]
 DefaultOutputFormat: "wav"

ADS2 =
 audioDatastore with properties:

 Files: {
 'B:\matlab\toolbox\audio\samples\AudioArray-16-16-4channels-20secs.wav';
 'B:\matlab\toolbox\audio\samples\NoisySpeech-16-22p5-mono-5secs.wav'
 }
 Folders: {

4 Classes

4-184

 'B:\matlab\toolbox\audio\samples'
 }
 Labels: {'A'; 'B'}
 AlternateFileSystemRoots: {}
 OutputDataType: 'double'
 SupportedOutputFormats: ["wav" "flac" "ogg" "opus" ...]
 DefaultOutputFormat: "wav"

ADS3 =
 audioDatastore with properties:

 Files: {
 ' ...\toolbox\audio\samples\ChurchImpulseResponse-16-44p1-mono-5secs.wav';
 'B:\matlab\toolbox\audio\samples\Click-16-44p1-mono-0.2secs.wav';
 'B:\matlab\toolbox\audio\samples\Counting-16-44p1-mono-15secs.wav'
 ... and 13 more
 }
 Folders: {
 'B:\matlab\toolbox\audio\samples'
 }
 Labels: {'A'; 'A'; 'A' ... and 13 more}
 AlternateFileSystemRoots: {}
 OutputDataType: 'double'
 SupportedOutputFormats: ["wav" "flac" "ogg" "opus" ...]
 DefaultOutputFormat: "wav"

Call countEachLabel to confirm the correct distribution of labels for each datastore.

countEachLabel(ADS1)

ans=2×2 table
 Label Count
 _____ _____

 A 1
 B 1

countEachLabel(ADS2)

ans=2×2 table
 Label Count
 _____ _____

 A 1
 B 1

countEachLabel(ADS3)

ans=2×2 table
 Label Count
 _____ _____

 A 8
 B 8

 splitEachLabel

4-185

Split Labels in Random Order

Specify the file path to the audio samples included with Audio Toolbox™. Create an audio datastore
that points to the specified folder.

folder = fullfile(matlabroot,'toolbox','audio','samples');
ADS = audioDatastore(folder,'FileExtensions','.wav')

ADS =
 audioDatastore with properties:

 Files: {
 'B:\matlab\toolbox\audio\samples\Ambiance-16-44p1-mono-12secs.wav';
 'B:\matlab\toolbox\audio\samples\AudioArray-16-16-4channels-20secs.wav';
 ' ...\toolbox\audio\samples\ChurchImpulseResponse-16-44p1-mono-5secs.wav'
 ... and 17 more
 }
 Folders: {
 'B:\matlab\toolbox\audio\samples'
 }
 AlternateFileSystemRoots: {}
 OutputDataType: 'double'
 Labels: {}
 SupportedOutputFormats: ["wav" "flac" "ogg" "opus" ...]
 DefaultOutputFormat: "wav"

Add the label A to the first half of the files, and the label B to the second half. If there is an odd
number of files, assign the extra file the label B. Call countEachLabel to confirm that half of the
files are labeled A and half the files are labeled B.

labels = [repmat({'A'},1,floor(numel(ADS.Files)/2)), ...
 repmat({'B'},1,ceil(numel(ADS.Files)/2))];
ADS.Labels = labels;

countEachLabel(ADS)

ans=2×2 table
 Label Count
 _____ _____

 A 10
 B 10

Create two new datastores from the files in ADS by randomly drawing from each label. The first
datastore, ADS1, contains two random files with the A label and two random files with the B label.
ADS2 contains the remaining files from each label.

[ADS1,ADS2] = splitEachLabel(ADS,2,'randomized')

ADS1 =
 audioDatastore with properties:

 Files: {

4 Classes

4-186

 ' ...\toolbox\audio\samples\ChurchImpulseResponse-16-44p1-mono-5secs.wav';
 'B:\matlab\toolbox\audio\samples\Engine-16-44p1-stereo-20sec.wav';
 'B:\matlab\toolbox\audio\samples\MainStreetOne-16-16-mono-12secs.wav'
 ... and 1 more
 }
 Folders: {
 'B:\matlab\toolbox\audio\samples'
 }
 Labels: {'A'; 'A'; 'B' ... and 1 more}
 AlternateFileSystemRoots: {}
 OutputDataType: 'double'
 SupportedOutputFormats: ["wav" "flac" "ogg" "opus" ...]
 DefaultOutputFormat: "wav"

ADS2 =
 audioDatastore with properties:

 Files: {
 'B:\matlab\toolbox\audio\samples\Ambiance-16-44p1-mono-12secs.wav';
 'B:\matlab\toolbox\audio\samples\AudioArray-16-16-4channels-20secs.wav';
 'B:\matlab\toolbox\audio\samples\Click-16-44p1-mono-0.2secs.wav'
 ... and 13 more
 }
 Folders: {
 'B:\matlab\toolbox\audio\samples'
 }
 Labels: {'A'; 'A'; 'A' ... and 13 more}
 AlternateFileSystemRoots: {}
 OutputDataType: 'double'
 SupportedOutputFormats: ["wav" "flac" "ogg" "opus" ...]
 DefaultOutputFormat: "wav"

Include and Exclude Specified Labels

Specify the file path to the audio samples included with Audio Toolbox™. Create an audio datastore
that points to the specified folder.

folder = fullfile(matlabroot,'toolbox','audio','samples');
ADS = audioDatastore(folder,'FileExtensions','.wav')

ADS =

 audioDatastore with properties:

 Files: {
 'B:\matlab\toolbox\audio\samples\Ambiance-16-44p1-mono-12secs.wav';
 'B:\matlab\toolbox\audio\samples\AudioArray-16-16-4channels-20secs.wav';
 ' ...\toolbox\audio\samples\ChurchImpulseResponse-16-44p1-mono-5secs.wav'
 ... and 17 more
 }
 Folders: {
 'B:\matlab\toolbox\audio\samples'
 }

 splitEachLabel

4-187

 AlternateFileSystemRoots: {}
 OutputDataType: 'double'
 Labels: {}
 SupportedOutputFormats: ["wav" "flac" "ogg" "opus" ...]
 DefaultOutputFormat: "wav"

Add the label A to the first half of the files, and the label B to the second half. If there is an odd
number of files, assign the extra file the label B. Call countEachLabel to confirm that half of the
files are labeled A and half the files are labeled B.

labels = [repmat({'A'},1,floor(numel(ADS.Files)/2)), ...
 repmat({'B'},1,ceil(numel(ADS.Files)/2))];
ADS.Labels = labels;

countEachLabel(ADS)

ans =

 2x2 table

 Label Count
 _____ _____

 A 10
 B 10

Create two new datastores from the files in ADS, including only the files with the A label. ADS1
contains the first 70% of files with the A label, and ADS2 contains the remaining 30% of labels with
the A label.

[ADS1,ADS2] = splitEachLabel(ADS,0.7,'Include','A')

ADS1 =

 audioDatastore with properties:

 Files: {
 'B:\matlab\toolbox\audio\samples\Ambiance-16-44p1-mono-12secs.wav';
 'B:\matlab\toolbox\audio\samples\AudioArray-16-16-4channels-20secs.wav';
 ' ...\toolbox\audio\samples\ChurchImpulseResponse-16-44p1-mono-5secs.wav'
 ... and 4 more
 }
 Folders: {
 'B:\matlab\toolbox\audio\samples'
 }
 Labels: {'A'; 'A'; 'A' ... and 4 more}
 AlternateFileSystemRoots: {}
 OutputDataType: 'double'
 SupportedOutputFormats: ["wav" "flac" "ogg" "opus" ...]
 DefaultOutputFormat: "wav"

ADS2 =

4 Classes

4-188

 audioDatastore with properties:

 Files: {
 'B:\matlab\toolbox\audio\samples\Heli_16ch_ACN_SN3D.wav';
 'B:\matlab\toolbox\audio\samples\JetAirplane-16-11p025-mono-16secs.wav';
 'B:\matlab\toolbox\audio\samples\Laughter-16-8-mono-4secs.wav'
 }
 Folders: {
 'B:\matlab\toolbox\audio\samples'
 }
 Labels: {'A'; 'A'; 'A'}
 AlternateFileSystemRoots: {}
 OutputDataType: 'double'
 SupportedOutputFormats: ["wav" "flac" "ogg" "opus" ...]
 DefaultOutputFormat: "wav"

Equivalently, you can split only the A label by excluding the B label.

[ADS1,ADS2] = splitEachLabel(ADS,0.7,'Exclude','B')

ADS1 =

 audioDatastore with properties:

 Files: {
 'B:\matlab\toolbox\audio\samples\Ambiance-16-44p1-mono-12secs.wav';
 'B:\matlab\toolbox\audio\samples\AudioArray-16-16-4channels-20secs.wav';
 ' ...\toolbox\audio\samples\ChurchImpulseResponse-16-44p1-mono-5secs.wav'
 ... and 4 more
 }
 Folders: {
 'B:\matlab\toolbox\audio\samples'
 }
 Labels: {'A'; 'A'; 'A' ... and 4 more}
 AlternateFileSystemRoots: {}
 OutputDataType: 'double'
 SupportedOutputFormats: ["wav" "flac" "ogg" "opus" ...]
 DefaultOutputFormat: "wav"

ADS2 =

 audioDatastore with properties:

 Files: {
 'B:\matlab\toolbox\audio\samples\Heli_16ch_ACN_SN3D.wav';
 'B:\matlab\toolbox\audio\samples\JetAirplane-16-11p025-mono-16secs.wav';
 'B:\matlab\toolbox\audio\samples\Laughter-16-8-mono-4secs.wav'
 }
 Folders: {
 'B:\matlab\toolbox\audio\samples'
 }
 Labels: {'A'; 'A'; 'A'}
 AlternateFileSystemRoots: {}
 OutputDataType: 'double'
 SupportedOutputFormats: ["wav" "flac" "ogg" "opus" ...]

 splitEachLabel

4-189

 DefaultOutputFormat: "wav"

Split Using Fraction and Label Table

Specify the file path to the audio samples included with Audio Toolbox™. Create an audio datastore
that points to the specified folder.

folder = fullfile(matlabroot,'toolbox','audio','samples');
ADS = audioDatastore(folder)

ADS =
 audioDatastore with properties:

 Files: {
 'B:\matlab\toolbox\audio\samples\Ambiance-16-44p1-mono-12secs.wav';
 'B:\matlab\toolbox\audio\samples\AudioArray-16-16-4channels-20secs.wav';
 ' ...\toolbox\audio\samples\ChurchImpulseResponse-16-44p1-mono-5secs.wav'
 ... and 32 more
 }
 Folders: {
 'B:\matlab\toolbox\audio\samples'
 }
 AlternateFileSystemRoots: {}
 OutputDataType: 'double'
 Labels: {}
 SupportedOutputFormats: ["wav" "flac" "ogg" "opus" ...]
 DefaultOutputFormat: "wav"

Create a label table with two variables:

• containsMusic -- Can be either true or false.
• instrument -- Can be Guitar, Drums, or Unknown.

containsGuitar = contains(ADS.Files,'guitar','IgnoreCase',true);
containsDrums = contains(ADS.Files,'drum','IgnoreCase',true);
containsMusic = or(containsGuitar,containsDrums);

instrument = strings(size(ADS.Files));
instrument(:) = "Unknown";
instrument(containsGuitar) = "Guitar";
instrument(containsDrums) = "Drums";

Assign the label table to the Labels property of audio datastore to associate the rows of the label
table with the rows of the datastore. Call countEachLabel to determine the incidences of
containsMusic and instrument.

labels = table(containsMusic,instrument);
ADS.Labels = labels;

containsMusicCount = countEachLabel(ADS,'TableVariable','containsMusic')

containsMusicCount=2×2 table
 containsMusic Count
 _____________ _____

4 Classes

4-190

 false 28
 true 7

instrumentCount = countEachLabel(ADS,'TableVariable','instrument')

instrumentCount=3×2 table
 instrument Count
 __________ _____

 Drums 4
 Guitar 3
 Unknown 28

Split the datastore ADS into two, based on whether the audio file contains music. ADS1 contains 70%
of the audio files that contain music, and ADS2 contains the rest. Call countEachLabel to verify that
the ratio of containsMusic == true to containsMusic == false is preserved for the new
datastores, within rounding.

[ADS1,ADS2] = splitEachLabel(ADS,0.7,'TableVariable','containsMusic');
ADS1_containsMusicCount = countEachLabel(ADS1,'TableVariable','containsMusic')

ADS1_containsMusicCount=2×2 table
 containsMusic Count
 _____________ _____

 false 20
 true 5

ADS2_containsMusicCount = countEachLabel(ADS2,'TableVariable','containsMusic')

ADS2_containsMusicCount=2×2 table
 containsMusic Count
 _____________ _____

 false 8
 true 2

Split the datastore ADS into two, based on the type of instrument present in the audio file. ADS3
contains 25% of the audio files that have an instrument label, and ADS4 contains the rest. Call
countEachLabel to verify that the ratio of instrument == "drums" to instrument ==
"guitar" is preserved for the new datastores, within rounding.

[ADS3,ADS4] = splitEachLabel(ADS,0.25,'TableVariable','instrument');
ADS3_instrumentCount = countEachLabel(ADS3,'TableVariable','instrument')

ADS3_instrumentCount=3×2 table
 instrument Count
 __________ _____

 Drums 1
 Guitar 1
 Unknown 7

 splitEachLabel

4-191

ADS4_instrumentCount = countEachLabel(ADS4,'TableVariable','instrument')

ADS4_instrumentCount=3×2 table
 instrument Count
 __________ _____

 Drums 3
 Guitar 2
 Unknown 21

Split by Number of Files and Label Table

Specify the file path to the audio samples included with Audio Toolbox™. Create an audio datastore
that points to the specified folder.

folder = fullfile(matlabroot,'toolbox','audio','samples');
ADS = audioDatastore(folder);

Create a label table with two variables:

• containsMusic - Can be either true or false.
• instrument - Can be Guitar, Drums, or Unknown.

containsGuitar = contains(ADS.Files,'guitar','IgnoreCase',true);
containsDrums = contains(ADS.Files,'drum','IgnoreCase',true);
containsMusic = or(containsGuitar,containsDrums);

instrument = strings(size(ADS.Files));
instrument(:) = "Unknown";
instrument(containsGuitar) = "Guitar";
instrument(containsDrums) = "Drums";

Assign the label table to the Labels property of audio datastore to associate the rows of the label
table with the rows of the datastore. Call countEachLabel to determine the incidences of
containsMusic and instrument.

labels = table(containsMusic,instrument);
ADS.Labels = labels;

containsMusicCount = countEachLabel(ADS,'TableVariable','containsMusic')

containsMusicCount=2×2 table
 containsMusic Count
 _____________ _____

 false 28
 true 7

instrumentCount = countEachLabel(ADS,'TableVariable','instrument');

Split the datastore ADS into two, based on whether the audio file contains music. ADS1 contains 5 of
each label under the table variable containsMusic, and ADS2 contains the rest. Call
countEachLabel to verify.

4 Classes

4-192

[ADS1,ADS2] = splitEachLabel(ADS,5,'TableVariable','containsMusic');
ADS1_containsMusicCount = countEachLabel(ADS1,'TableVariable','containsMusic')

ADS1_containsMusicCount=2×2 table
 containsMusic Count
 _____________ _____

 false 5
 true 5

ADS2_containsMusicCount = countEachLabel(ADS2,'TableVariable','containsMusic')

ADS2_containsMusicCount=2×2 table
 containsMusic Count
 _____________ _____

 false 23
 true 2

Split the datastore ADS into two, based on the type of instrument present in the audio file. ADS3
contains 2 of each label under the table variable instrument, and ADS4 contains the rest. Call
countEachLabel to verify.

[ADS3,ADS4] = splitEachLabel(ADS,2,'TableVariable','instrument');
ADS3_instrumentCount = countEachLabel(ADS3,'TableVariable','instrument')

ADS3_instrumentCount=3×2 table
 instrument Count
 __________ _____

 Drums 2
 Guitar 2
 Unknown 2

ADS4_instrumentCount = countEachLabel(ADS4,'TableVariable','instrument')

ADS4_instrumentCount=3×2 table
 instrument Count
 __________ _____

 Drums 2
 Guitar 1
 Unknown 26

Input Arguments
ADS — Input audio datastore
audioDatastore object

Input audio datastore, specified as an audioDatastore object.

p — Proportion of files to split
scalar in interval (0,1) | positive integer scalar

 splitEachLabel

4-193

Proportion of files to split, specified as a scalar in the interval (0,1), or a positive integer scalar.

If p is in the interval (0,1), it represents the percentage of the files from each label to assign to ADS1.
If p represents a percentage, and it does not result in a whole number, then splitEachLabel
rounds down to the nearest whole number.

If p is an integer, it represents the absolute number of files from each label to assign to ADS1. When p
represents a number of files, there must be at least p files associated with each label.
Data Types: double

p1,...,pN — List of proportions
scalars in interval (0,1) | positive integer scalars

List of proportions, specified as scalars in the interval (0,1) or positive integer scalars.

If the proportions are in the interval (0,1), they represent the percentage of the files from each label
to assign to the output datastores. When the proportions represent percentages, their sum must be
no more than 1.

If the proportions are integers, they indicate the absolute number of files from each label to assign to
the output datastores. When the proportions represent numbers of files, there must be enough files
associated with each label to satisfy each proportion.
Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [ADS1,ADS2] = splitEachLabel(ADS,0.5,'Exclude','noisy')

Include — Labels to include
categorical, logical, or numeric vector | cell array of character vectors | string array

Labels to include, specified as the comma-separated pair consisting of 'Include' and a vector, cell
array, or string array of label names with the same type as the Labels property. Each name must
match one of the labels in the Labels property of the datastore.

This option cannot be used with the 'Exclude' option.

Exclude — Labels to exclude
categorical, logical, or numeric vector | cell array of character vectors | string array

Labels to exclude, specified as the comma-separated pair consisting of 'Exclude' and a vector, cell
array, or string array of label names with the same type as the Labels property. Each name must
match one of the labels in the Labels property of the datastore.

This option cannot be used with the 'Include' option.

TableVariable — Label table variable name
char | string

4 Classes

4-194

Table variable name, specified as the comma-separated pair consisting of 'TableVariable' and a
character vector or string. When the Labels property of the audio datastore ADS is a table, you must
use 'TableVariable' to specify which label you are using to split.
Data Types: char | string

Output Arguments
[ADS1,ADS2] — Output audio datastores
audioDatastore objects

Output audio datastores, returned as audioDatastore objects. ADS1 contains the specified
proportion of files from each label in ADS, and ADS2 contains the remaining files.

[ADS1,...,ADSM] — List of output audio datastores
audioDatastore objects

List of output audio datastores, returned as audioDatastore objects. The number of elements in the
list is one more that the number of listed proportions. Each of the new datastores contains the
proportion of each label in ADS defined by p1,…,pN. Any files left over are assigned to the Mth
datastore.

Version History
Introduced in R2018b

See Also
audioDatastore | countEachLabel | subset

Topics
“Train Speech Command Recognition Model Using Deep Learning”
“Speaker Identification Using Pitch and MFCC”
“Denoise Speech Using Deep Learning Networks”

 splitEachLabel

4-195

preview
Read first file from datastore for preview

Syntax
data = preview(ADS)

Description
data = preview(ADS) always reads the first file from ADS. preview does not affect the state of
ADS.

Examples

Preview Data in Audio Datastore

Specify the file path to the audio samples included with Audio Toolbox™. Create an audio datastore
that points to the specified folder.

folder = fullfile(matlabroot,'toolbox','audio','samples');
ADS = audioDatastore(folder);

Preview the data in the audio datastore.

data = preview(ADS);
plot(data)

4 Classes

4-196

Input Arguments
ADS — Audio datastore
audioDatastore object

Specify ADS as an audioDatastore object.

Output Arguments
data — Subset of data
array of audio samples

Subset of data, returned as an array of audio samples.

Version History
Introduced in R2018b

See Also
audioDatastore | hasdata

Topics
“Train Speech Command Recognition Model Using Deep Learning”

 preview

4-197

“Speaker Identification Using Pitch and MFCC”
“Denoise Speech Using Deep Learning Networks”

4 Classes

4-198

subset
Create datastore with subset of files

Syntax
ADSsubset = subset(ADS,indices)

Description
ADSsubset = subset(ADS,indices) returns an audio datastore, ADSsubset, which contains a
subset of the files in ADS.

Examples

Create Datastore with Subset Based on File Name

subset creates an audio datastore containing a subset of the files of the original datastore.

Specify the file path to the audio samples included with Audio Toolbox™. Create an audio datastore
that points to the specified folder.

folder = fullfile(matlabroot,'toolbox','audio','samples');
ADS = audioDatastore(folder)

ADS =
 audioDatastore with properties:

 Files: {
 'B:\matlab\toolbox\audio\samples\Ambiance-16-44p1-mono-12secs.wav';
 'B:\matlab\toolbox\audio\samples\AudioArray-16-16-4channels-20secs.wav';
 ' ...\toolbox\audio\samples\ChurchImpulseResponse-16-44p1-mono-5secs.wav'
 ... and 32 more
 }
 Folders: {
 'B:\matlab\toolbox\audio\samples'
 }
 AlternateFileSystemRoots: {}
 OutputDataType: 'double'
 Labels: {}
 SupportedOutputFormats: ["wav" "flac" "ogg" "opus" ...]
 DefaultOutputFormat: "wav"

Create a logical vector indicating whether the file names in the audio datastore contain 'Guitar'.

fileContainsGuitar = cellfun(@(c)contains(c,'Guitar'),ADS.Files)

fileContainsGuitar = 35x1 logical array

 0
 0

 subset

4-199

 0
 0
 0
 0
 0
 0
 0
 0
 ⋮

Call subset with the audio datastore and the indices corresponding to the files you want create a
new audio datastore from.

ADSsubset = subset(ADS,fileContainsGuitar)

ADSsubset =
 audioDatastore with properties:

 Files: {
 'B:\matlab\toolbox\audio\samples\RockGuitar-16-44p1-stereo-72secs.wav';
 'B:\matlab\toolbox\audio\samples\RockGuitar-16-96-stereo-72secs.flac';
 'B:\matlab\toolbox\audio\samples\SoftGuitar-44p1_mono-10mins.ogg'
 }
 Folders: {
 'B:\matlab\toolbox\audio\samples'
 }
 AlternateFileSystemRoots: {}
 OutputDataType: 'double'
 Labels: {}
 SupportedOutputFormats: ["wav" "flac" "ogg" "opus" ...]
 DefaultOutputFormat: "wav"

Create Datastore with Every Other File

Specify the file path to the audio samples included with Audio Toolbox™. Create an audio datastore
that points to the specified folder.

folder = fullfile(matlabroot,'toolbox','audio','samples');
ADS = audioDatastore(folder)

ADS =
 audioDatastore with properties:

 Files: {
 'B:\matlab\toolbox\audio\samples\Ambiance-16-44p1-mono-12secs.wav';
 'B:\matlab\toolbox\audio\samples\AudioArray-16-16-4channels-20secs.wav';
 ' ...\toolbox\audio\samples\ChurchImpulseResponse-16-44p1-mono-5secs.wav'
 ... and 32 more
 }
 Folders: {
 'B:\matlab\toolbox\audio\samples'
 }
 AlternateFileSystemRoots: {}
 OutputDataType: 'double'

4 Classes

4-200

 Labels: {}
 SupportedOutputFormats: ["wav" "flac" "ogg" "opus" ...]
 DefaultOutputFormat: "wav"

Create an audio datastore containing every other file of the original datastore.

indices = 1:2:numel(ADS.Files);
ADSsubset = subset(ADS,indices)

ADSsubset =
 audioDatastore with properties:

 Files: {
 'B:\matlab\toolbox\audio\samples\Ambiance-16-44p1-mono-12secs.wav';
 ' ...\toolbox\audio\samples\ChurchImpulseResponse-16-44p1-mono-5secs.wav';
 'B:\matlab\toolbox\audio\samples\Counting-16-44p1-mono-15secs.wav'
 ... and 15 more
 }
 Folders: {
 'B:\matlab\toolbox\audio\samples'
 }
 AlternateFileSystemRoots: {}
 OutputDataType: 'double'
 Labels: {}
 SupportedOutputFormats: ["wav" "flac" "ogg" "opus" ...]
 DefaultOutputFormat: "wav"

Input Arguments
ADS — Audio datastore
audioDatastore object

Specify ADS as an audioDatastore object.

indices — Indices of files for subset
vector of indices | logical vector

Specify indices as:

• A vector containing the indices of files to be included in ADSsubset.
• A logical vector the same length as the number of files in ADS. If specifying indices as a logical

vector, true indicates that the corresponding files are included in ADSsubset.

Data Types: double | logical

Output Arguments
ADSsubset — Subset of audio datastore
audioDatastore object

Subset of audio datastore, returned as an audioDatastore object.

 subset

4-201

Version History
Introduced in R2018b

See Also
audioDatastore | splitEachLabel

Topics
“Train Speech Command Recognition Model Using Deep Learning”
“Speaker Identification Using Pitch and MFCC”
“Denoise Speech Using Deep Learning Networks”

4 Classes

4-202

shuffle
Shuffle files in datastore

Syntax
shuffledADS = shuffle(ADS)

Description
shuffledADS = shuffle(ADS) creates a deep copy of the input datastore, ADS, and shuffles the
files using randperm.

Examples

Shuffle Files

Create an audioDatastore object ADS. Shuffle the files to create a new datastore containing the
same files in random order.

ADS = audioDatastore(fullfile(matlabroot,'toolbox','audio','samples'))

ADS =
 audioDatastore with properties:

 Files: {
 'B:\matlab\toolbox\audio\samples\Ambiance-16-44p1-mono-12secs.wav';
 'B:\matlab\toolbox\audio\samples\AudioArray-16-16-4channels-20secs.wav';
 ' ...\toolbox\audio\samples\ChurchImpulseResponse-16-44p1-mono-5secs.wav'
 ... and 32 more
 }
 Folders: {
 'B:\matlab\toolbox\audio\samples'
 }
 AlternateFileSystemRoots: {}
 OutputDataType: 'double'
 Labels: {}
 SupportedOutputFormats: ["wav" "flac" "ogg" "opus" ...]
 DefaultOutputFormat: "wav"

ADSshuffled = shuffle(ADS)

ADSshuffled =
 audioDatastore with properties:

 Files: {
 'B:\matlab\toolbox\audio\samples\WashingMachine-16-8-mono-1000secs.mp3';
 'B:\matlab\toolbox\audio\samples\RockDrums-48-stereo-11secs.mp3';
 ' ...\matlab\toolbox\audio\samples\WaveGuideLoopOne-24-96-stereo-10secs.aif'
 ... and 32 more
 }

 shuffle

4-203

 Folders: {
 'B:\matlab\toolbox\audio\samples'
 }
 AlternateFileSystemRoots: {}
 OutputDataType: 'double'
 Labels: {}
 SupportedOutputFormats: ["wav" "flac" "ogg" "opus" ...]
 DefaultOutputFormat: "wav"

Input Arguments
ADS — Input audio datastore
audioDatastore object

Input audio datastore, specified as an audioDatastore object.

Output Arguments
shuffledADS — Shuffled audio datastore
audioDatastore object

Shuffled audio datastore, returned as an audioDatastore object containing randomly ordered files
from ADS.

Version History
Introduced in R2018b

See Also
audioDatastore

Topics
“Train Speech Command Recognition Model Using Deep Learning”
“Speaker Identification Using Pitch and MFCC”
“Denoise Speech Using Deep Learning Networks”

4 Classes

4-204

hasdata
Return true if there is more data in datastore

Syntax
tf = hasdata(ADS)

Description
tf = hasdata(ADS) returns logical 1 (true) if there is data available to read from the datastore
specified by ADS. Otherwise, it returns logical 0 (false).

Examples

Keep Reading While Datastore Has Data

hasdata returns a logical scalar indicating whether or not there is unread data in the datastore. You
can use audioDatastore to read files sequentially until all data is read.

Specify the file path to the audio samples included with Audio Toolbox™.

folder = fullfile(matlabroot,'toolbox','audio','samples');

Create an audio datastore that points to the specified folder.

ADS = audioDatastore(folder);

While the datastore has unread data, read from the datastore.

while hasdata(ADS)
 data = read(ADS);
end

Input Arguments
ADS — Audio datastore
audioDatastore object

Specify ADS as an audioDatastore object.

Output Arguments
tf — Indication if data is available to read
true | false

Indication is data is available to read from the datastore, returned as true or false.
Data Types: logical

 hasdata

4-205

Version History
Introduced in R2018b

See Also
audioDatastore | read | progress

Topics
“Train Speech Command Recognition Model Using Deep Learning”
“Speaker Identification Using Pitch and MFCC”
“Denoise Speech Using Deep Learning Networks”

4 Classes

4-206

reset
Reset datastore read pointer to start of data

Syntax
reset(ADS)

Description
reset(ADS) resets the datastore read pointer to the start of the data. Resetting allows re-reading
from the same datastore.

Examples

Reset Audio Datastore to Initial State

Create an audioDatastore object ADS.

folder = fullfile(matlabroot,'toolbox','audio','samples');
ADS = audioDatastore(folder);

While the datastore has unread files, call read in a loop to read files sequentially.

while hasdata(ADS)
 data = read(ADS);
end

Reset the datastore to the state where no data has been read from it. Read the first file from the
datastore.

reset(ADS)
data = read(ADS);

Input Arguments
ADS — Audio datastore
audioDatastore object

Specify ADS as an audioDatastore object.

Version History
Introduced in R2018b

See Also
audioDatastore

 reset

4-207

Topics
“Train Speech Command Recognition Model Using Deep Learning”
“Speaker Identification Using Pitch and MFCC”
“Denoise Speech Using Deep Learning Networks”

4 Classes

4-208

readall
Read all audio files from datastore

Syntax
data = readall(ADS)
data = readall(ADS,UseParallel=TF)

Description
data = readall(ADS) reads all audio files from the datastore.

If all the data in the datastore does not fit in memory, then readall returns an error.

data = readall(ADS,UseParallel=TF) reads the data in parallel if TF is true (requires Parallel
Computing Toolbox).

Examples

Read All Data in Audio Datastore

Specify the file path to the audio samples included with Audio Toolbox™. Create an audio datastore
that points to the specified folder.

folder = fullfile(matlabroot,'toolbox','audio','samples');
ADS = audioDatastore(folder);

Read all the data in the datastore.

readall(ADS)

ans=35×1 cell array
 { 539648x1 double}
 { 320512x4 double}
 { 227497x1 double}
 { 8000x1 double}
 { 685056x1 double}
 { 882688x2 double}
 { 24000x1 double}
 { 175104x1 double}
 {1115760x2 double}
 {1214832x2 double}
 { 263304x16 double}
 { 100868x1 double}
 { 180224x1 double}
 { 32768x1 double}
 { 192150x1 double}
 { 100352x1 double}
 ⋮

 readall

4-209

Input Arguments
ADS — Audio datastore
audioDatastore object

Specify ADS as an audioDatastore object.

TF — Read in parallel
false (default) | true

Read in parallel, specified as true or false. If you specify true, readall reads all data from the
datastore using a pool of parallel workers (requires Parallel Computing Toolbox). For more
information on parallel pools, see parpool. Parallel reading may result in improved performance
when reading data.
Example: readall(ds,UseParallel=true)

Output Arguments
data — All audio files in audio datastore
cell array

All files in the audio datastore, returned as a cell array where each cell corresponds to a file.

Version History
Introduced in R2018b

See Also
audioDatastore | read

Topics
“Train Speech Command Recognition Model Using Deep Learning”
“Speaker Identification Using Pitch and MFCC”
“Denoise Speech Using Deep Learning Networks”

4 Classes

4-210

read
Read next consecutive audio file

Syntax
data = read(ADS)
[data,info] = read(ADS)

Description
data = read(ADS) returns audio extracted from the datastore. Each subsequent call to the read
function continues reading from the endpoint of the previous call.

[data,info] = read(ADS) also returns information about the extracted audio data.

Examples

Read Data in Audio Datastore

Specify the file path to the audio samples included with Audio Toolbox™. Create an audio datastore
that points to the specified folder.

folder = fullfile(matlabroot,'toolbox','audio','samples');
ADS = audioDatastore(folder);

While the audio datastore has unread files, read consecutive files from the datastore. Use progress
to monitor the fraction of files read.

while hasdata(ADS)
 data = read(ADS);
 fprintf('Fraction of files read: %.2f\n',progress(ADS))
end

Fraction of files read: 0.03
Fraction of files read: 0.06
Fraction of files read: 0.09
Fraction of files read: 0.11
Fraction of files read: 0.14
Fraction of files read: 0.17
Fraction of files read: 0.20
Fraction of files read: 0.23
Fraction of files read: 0.26
Fraction of files read: 0.29
Fraction of files read: 0.31
Fraction of files read: 0.34
Fraction of files read: 0.37
Fraction of files read: 0.40
Fraction of files read: 0.43
Fraction of files read: 0.46
Fraction of files read: 0.49
Fraction of files read: 0.51

 read

4-211

Fraction of files read: 0.54
Fraction of files read: 0.57
Fraction of files read: 0.60
Fraction of files read: 0.63
Fraction of files read: 0.66
Fraction of files read: 0.69
Fraction of files read: 0.71
Fraction of files read: 0.74
Fraction of files read: 0.77
Fraction of files read: 0.80
Fraction of files read: 0.83
Fraction of files read: 0.86
Fraction of files read: 0.89
Fraction of files read: 0.91
Fraction of files read: 0.94
Fraction of files read: 0.97
Fraction of files read: 1.00

Return Information About Data

Specify the file path to the audio samples you want to include in the audio datastore. In this example,
the samples are located on a local desktop. Create an audio datastore that points to the specified
folder.

folder = 'C:\Users\audiouser\Desktop';
ADS = audioDatastore(folder,'LabelSource','foldernames');

When you read data from the datastore, you can additionally return information about the data as a
structure. The information structure contains the file name, any labels associated with the file, and
the sample rate of the file.

[data,info] = read(ADS);
info

info =

 struct with fields:

 SampleRate: 44100
 FileName: 'C:\Users\audiouser\Desktop\Turbine-16-44p1-mono-22secs.wav'
 Label: Desktop

Input Arguments
ADS — Audio datastore
audioDatastore object

Specify ADS as an audioDatastore object.

Output Arguments
data — Audio data
M-by-N matrix

4 Classes

4-212

Audio data, returned as a M-by-N matrix, where:

• M –– Total samples per channel in file.
• N –– Number of channels in file.

info — Information about audio data
struct

Information about audio data, returned as a struct with the following fields:

• FileName –– Name of the current file.
• Label –– All labels of the file.
• SampleRate –– Sample rate of the file.

Version History
Introduced in R2018b

See Also
audioDatastore | hasdata | readall

Topics
“Train Speech Command Recognition Model Using Deep Learning”
“Speaker Identification Using Pitch and MFCC”
“Denoise Speech Using Deep Learning Networks”

 read

4-213

audioDatastore
Datastore for collection of audio files

Description
Use an audioDatastore object to manage a collection of audio files, where each individual audio
file fits in memory, but the entire collection of audio files does not necessarily fit.

Creation
Syntax
ADS = audioDatastore(location)
ADS = audioDatastore(location,Name,Value)

Description

ADS = audioDatastore(location) creates a datastore ADS based on an audio file or collection of
audio files in location.

ADS = audioDatastore(location,Name,Value) specifies additional properties using one or
more name-value pair arguments.

Input Arguments

location — Files or folders to include in datastore
FileSet object | path | DsFileSet object

Files or folders included in the datastore, specified as a FileSet object, as file paths, or as a
DsFileSet object.

• FileSet object — You can specify location as a FileSet object. Specifying the location as a
FileSet object leads to a faster construction time for datastores compared to specifying a path
or DsFileSet object. For more information, see matlab.io.datastore.FileSet.

• File path — You can specify a single file path as a character vector or string scalar. You can specify
multiple file paths as a cell array of character vectors or a string array.

• DsFileSet object — You can specify a DsFileSet object. For more information, see
matlab.io.datastore.DsFileSet.

Files or folders may be local or remote:

• Local files or folders — Specify local paths to files or folders. If the files are not in the current
folder, then specify full or relative paths. Files within subfolders of the specified folder are not
automatically included in the datastore. You can use the wildcard character (*) when specifying
the local path. This character specifies that the datastore include all matching files or all files in
the matching folders.

• Remote files or folders — Specify full paths to remote files or folders as a uniform resource locator
(URL) of the form hdfs:///path_to_file. For more information, see “Work with Remote Data”.

4 Classes

4-214

When you specify a folder, the datastore includes only files with supported file formats and ignores
files with any other format. To specify a custom list of file extensions to include in your datastore, see
the FileExtensions property.
Example: 'song.wav'
Example: '../dir/music/song.wav'
Example: {'C:\dir\music\song.wav','C:\dir\speech\english.mp3'}
Example: 'C:\dir\music*.ogg'
Data Types: char | string | cell

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: ADS = audioDatastore('C:\dir\audiodata','FileExtensions','.ogg')

IncludeSubfolders — Subfolder inclusion flag
false (default) | true

Subfolder inclusion flag, specified as the comma-separated pair consisting of
'IncludeSubfolders' and true or false. Specify true to include all files and subfolders within
each folder or false to include only the files within each folder.

If you do not specify 'IncludeSubfolders', then the default value is false.
Example: 'IncludeSubfolders',true
Data Types: logical | double

LabelSource — Source providing label data
'none' (default) | 'foldernames'

Source providing label data, specified as the comma-separated pair consisting of 'LabelSource'
and 'none' or 'foldernames'. If 'none' is specified, then the Labels property is empty. If
'foldernames' is specified, then labels are assigned according to the folder names and stored in
the Labels property. You can later modify the labels by accessing the Labels property directly.
Data Types: char | string

FileExtensions — Audio file extensions
character vector | cell array of character vectors | string scalar | string array

Audio file extensions, specified as the comma-separated pair consisting of 'FileExtensions' and a
character vector, cell array of character vectors, string scalar, or string array. If you do not specify
'FileExtensions', then audioDatastore automatically includes all supported file types:

• .wav
• .avi
• .aif

 audioDatastore

4-215

• .aifc
• .aiff
• .mp3
• .au
• .snd
• .mp4
• .m4a
• .flac
• .ogg
• .mov
• .opus

Example: 'FileExtensions','.wav'
Example: 'FileExtensions',{'.mp3','.mp4'}
Data Types: char | cell | string

In addition to these name-value pairs, you also can specify any of the properties on this page as
name-value pairs, except for the Files property.

Properties
Files — Files included in datastore
character vector | cell array of character vectors | string scalar | string array

Files included in the datastore, specified as a character vector, cell array of character vectors, string
scalar, or string array. Each character vector or string is a full path to a file. The location argument
in the audioDatastore defines Files when the datastore is created.
Data Types: char | cell | string

Folders — Folders used to create audio datastore
N-by-1 cell array of character vectors

This property is read-only.

Folders used to create the audio datastore, returned as an N-by-1 cell array of character vectors.
Each row specifies a unique folder containing audio files that the audioDatastore object points to.
Data Types: cell

Labels — File labels
categorical, logical, or numeric vector | cell array | string array | table

File labels for the files in the datastore, specified as a vector, a cell array, a string array, or a table.
The order of the labels in the array or table corresponds to the order of the associated files in the
datastore.

If you specify LabelSource as 'foldernames' when creating the audioDatastore object, then
the label name for a file is the name of the folder containing it. If you do not specify LabelSource as
'foldernames', then Labels is an empty cell array or string array. If you change the Files

4 Classes

4-216

property after the datastore is created, then the Labels property is not automatically updated to
incorporate the added fields.
Data Types: categorical | cell | logical | double | single | string | table

OutputDataType — Data type of output read
'double' (default) | 'native'

Data type of the output, specified as 'double' or 'native'.

• 'double' –– Double-precision normalized samples.
• 'native' –– Native data type found in the file. Refer to audioread for more information about

data types when OutputDataType is set to native.

The default value of this property is 'double'.
Data Types: char | string

AlternateFileSystemRoots — Alternate file system root paths
string row vector | cell array of string vectors | cell array of character vectors

Alternate file system root paths, specified as a string row vector, a cell array of string vectors, or a
cell array of character vectors. Use AlternateFileSystemRoots when you create a datastore on a
local machine but must access and process data on another machine (possibly of a different operating
system). Also, when processing data using Parallel Computing Toolbox and MATLAB Parallel Server™,
and the data is stored on your local machines with a copy of the data available on different platform
cloud or cluster machines, you must use AlternateFileSystemRoots to associate the root paths.

• To associate a set of root paths that are equivalent to one another, specify
AlternateFileSystemRoots as a string vector. For example:

["Z:\datasets","/mynetwork/datasets"]
• To associate multiple sets of root paths that are equivalent for the datastore, specify

AlternateFileSystemRoots as a cell array containing multiple rows, where each row
represents a set of equivalent root paths. Specify each row in the cell array as either a string
vector or a cell array of character vectors. For example:

• Specify AlternateFileSystemRoots as a cell array of string vectors.

{["Z:\datasets", "/mynetwork/datasets"]; ...
 ["Y:\datasets", "/mynetwork2/datasets","S:\datasets"]}

• Alternatively, specify AlternateFileSystemRoots as a cell array of cell arrays of character
vectors.

{{'Z:\datasets', '/mynetwork/datasets'}; ...
 {'Y:\datasets", '/mynetwork2/datasets','S:\datasets'}}

The value of AlternateFileSystemRoots must satisfy these conditions:

• Contains one or more rows, where each row specifies a set of equivalent root paths.
• Each row specifies multiple root paths, and each root path must contain at least two characters.
• Root paths are unique and are not subfolders of one another.
• Contains at least one root path entry that points to the location of the files.

Data Types: char | cell | string

 audioDatastore

4-217

SupportedOutputFormats — Formats supported for writing audio files
["wav","flac","ogg","opus","mp4","m4a"]

This property is read-only.

Formats supported for writing audio files when using the writeall function, specified as
["wav","flac","ogg","opus","mp4","m4a"].
Data Types: string

DefaultOutputFormat — Default output audio file format
"wav" (default)

This property is read-only.

Default output format for writing audio files when using the writeall function, specified as "wav".
Data Types: string

Object Functions
read Read next consecutive audio file
readall Read all audio files from datastore
reset Reset datastore read pointer to start of data
hasdata Return true if there is more data in datastore
shuffle Shuffle files in datastore
subset Create datastore with subset of files
preview Read first file from datastore for preview
progress Fraction of files read
splitEachLabel Splits datastore according to specified label proportions
countEachLabel Count number of unique labels
partition Partition datastore and return on partitioned portion
numpartitions Return estimate for reasonable number of partitions for parallel processing
combine Combine data from multiple datastores
transform Transform audio datastore
writeall Write datastore to files
isPartitionable Determine whether datastore is partitionable
isShuffleable Determine whether datastore is shuffleable

Examples

Create Audio Datastore

Specify the file path to the audio samples included with Audio Toolbox™.

folder = fullfile(matlabroot,'toolbox','audio','samples');

Create an audio datastore that points to the specified folder.

ADS = audioDatastore(folder)

ADS =
 audioDatastore with properties:

 Files: {

4 Classes

4-218

 'B:\matlab\toolbox\audio\samples\Ambiance-16-44p1-mono-12secs.wav';
 'B:\matlab\toolbox\audio\samples\AudioArray-16-16-4channels-20secs.wav';
 ' ...\toolbox\audio\samples\ChurchImpulseResponse-16-44p1-mono-5secs.wav'
 ... and 32 more
 }
 Folders: {
 'B:\matlab\toolbox\audio\samples'
 }
 AlternateFileSystemRoots: {}
 OutputDataType: 'double'
 Labels: {}
 SupportedOutputFormats: ["wav" "flac" "ogg" "opus" ...]
 DefaultOutputFormat: "wav"

Specify File Extensions to Include

Specify the file path to the audio samples included with Audio Toolbox™.

folder = fullfile(matlabroot,'toolbox','audio','samples');

Create an audio datastore that points to the .ogg files in the specified folder.

ADS = audioDatastore(folder,'FileExtension','.ogg')

ADS =
 audioDatastore with properties:

 Files: {
 'B:\matlab\toolbox\audio\samples\FemaleVolumeUp-16-mono-11secs.ogg';
 'B:\matlab\toolbox\audio\samples\Hey-16-mono-6secs.ogg';
 'B:\matlab\toolbox\audio\samples\MaleVolumeUp-16-mono-6secs.ogg'
 ... and 2 more
 }
 Folders: {
 'B:\matlab\toolbox\audio\samples'
 }
 AlternateFileSystemRoots: {}
 OutputDataType: 'double'
 Labels: {}
 SupportedOutputFormats: ["wav" "flac" "ogg" "opus" ...]
 DefaultOutputFormat: "wav"

Version History
Introduced in R2018b

Support for OPUS audio file format

The audioDatastore object supports reading and writing OPUS file format (.opus).

 audioDatastore

4-219

See Also
datastore | mapreduce | tall

Topics
“Train Speech Command Recognition Model Using Deep Learning”
“Speaker Identification Using Pitch and MFCC”
“Denoise Speech Using Deep Learning Networks”

4 Classes

4-220

midimsg
Create MIDI message

Description
Create a MIDI message in MATLAB using midimsg. Create a MIDI device interface using
mididevice. Send and receive messages using midisend and midireceive. When you create a
MIDI message, you specify it as a MIDI message type.

For a tutorial on MIDI messages and interfacing with MIDI devices, see “MIDI Device Interface”.

Creation
Syntax
msg = midimsg('Note',channel,note,velocity,duration,timestamp)
msg = midimsg('NoteOn',channel,note,velocity,timestamp)
msg = midimsg('NoteOff',channel,note,velocity,timestamp)
msg = midimsg('ControlChange',channel,ccnumber,ccvalue,timestamp)
msg = midimsg('ProgramChange',channel,program,timestamp)
msg = midimsg('SystemExclusive',bytes,timestamp)
msg = midimsg('SystemExclusive',timestamp)
msg = midimsg('Data',bytes,timestamp)
msg = midimsg('EOX',timestamp)
msg = midimsg('TimingClock',timestamp)
msg = midimsg('Start',timestamp)
msg = midimsg('Continue',timestamp)
msg = midimsg('Stop',timestamp)
msg = midimsg('ActiveSensing',timestamp)
msg = midimsg('SystemReset',timestamp)
msg = midimsg('TuneRequest',timestamp)
msg = midimsg('MIDITimeCodeQuarterFrame',seq,value,timestamp)
msg = midimsg('SongPositionPointer',position,timestamp)
msg = midimsg('SongSelect',song,timestamp)

 midimsg

4-221

msg = midimsg('AllSoundOff',channel,timestamp)
msg = midimsg('ResetAllControllers',channel,timestamp)
msg = midimsg('LocalControl',channel,localcontrol,timestamp)
msg = midimsg('PolyOn',channel,timestamp)
msg = midimsg('MonoOn',channel,monoChannels,timestamp)
msg = midimsg('OmniOn',channel,timestamp)
msg = midimsg('OmniOff',channel,timestamp)
msg = midimsg('AllNotesOff',channel,timestamp)
msg = midimsg('PolyKeyPressure',channel,note,pressure,timestamp)
msg = midimsg('ChannelPressure',channel,pressure,timestamp)
msg = midimsg('PitchBend',channel,change,timestamp)
msg = midimsg
msg = midimsg(size)
msg = midimsg(0)

Description

msg = midimsg('Note',channel,note,velocity,duration,timestamp) returns two MIDI
messages: NoteOn and NoteOff, with specified Channel, Note, Velocity, and Timestamp
properties. The Timestamp property of the NoteOff message is determined as the Timestamp
property of the NoteOn message plus the duration.

msg = midimsg('NoteOn',channel,note,velocity,timestamp) returns a NoteOn midimsg,
with specified Channel, Note, Velocity, and Timestamp properties.

msg = midimsg('NoteOff',channel,note,velocity,timestamp) returns a NoteOff
midimsg, with specified Channel, Note, Velocity, and Timestamp properties.

msg = midimsg('ControlChange',channel,ccnumber,ccvalue,timestamp) returns a
ControlChange midimsg, with specified Channel, CCNumber, CCValue, and Timestamp
properties.

msg = midimsg('ProgramChange',channel,program,timestamp) returns a ProgramChange
midimsg, with specified Channel, Program, and Timestamp properties.

msg = midimsg('SystemExclusive',bytes,timestamp) returns a complete
SystemExclusive message sequence, with specified Timestamp property.

msg = midimsg('SystemExclusive',timestamp) returns a SystemExclusive midimsg, with
specified Timestamp property.

msg = midimsg('Data',bytes,timestamp) returns a Data midimsg for use in a System
Exclusive message, with specified MsgBytes and Timestamp properties. bytes is specified as a
scalar, vector, or multi-dimensional array of elements. Each element of bytes must be in the range
[0,127].

msg = midimsg('EOX',timestamp) returns an EOX midimsg, with specified Timestamp property.

msg = midimsg('TimingClock',timestamp) returns a TimingClock midimsg, with specified
Timestamp property.

msg = midimsg('Start',timestamp) returns a Start midimsg, with specified Timestamp
property.

4 Classes

4-222

msg = midimsg('Continue',timestamp) returns a Continue midimsg, with specified
Timestamp property.

msg = midimsg('Stop',timestamp) returns a Stop midimsg, with specified Timestamp
property.

msg = midimsg('ActiveSensing',timestamp) returns a ActiveSensing midimsg, with
specified Timestamp property.

msg = midimsg('SystemReset',timestamp) returns a SystemReset midimsg, with specified
Timestamp property.

msg = midimsg('TuneRequest',timestamp) returns a TuneRequest midimsg, with specified
Timestamp property.

msg = midimsg('MIDITimeCodeQuarterFrame',seq,value,timestamp) returns a
MIDITimeCodeQuarterFrame midimsg, with specified TimeCodeSequence, TimeCodeValue, and
Timestamp properties.

msg = midimsg('SongPositionPointer',position,timestamp) returns a
SongPositionPointer midimsg, with specified SongPosition and Timestamp properties.

msg = midimsg('SongSelect',song,timestamp) returns a SongSelect midimsg, with
specified Song and Timestamp properties.

msg = midimsg('AllSoundOff',channel,timestamp) returns a AllSoundOff midimsg, with
specified Channel and Timestamp properties.

msg = midimsg('ResetAllControllers',channel,timestamp) returns a
ResetAllControllers midimsg, with specified Channel and Timestamp properties.

msg = midimsg('LocalControl',channel,localcontrol,timestamp) returns a
LocalControl midimsg, with specified Channel, LocalControl, and Timestamp properties.

msg = midimsg('PolyOn',channel,timestamp) returns a PolyOn midimsg, with specified
Channel and Timestamp properties.

msg = midimsg('MonoOn',channel,monoChannels,timestamp) returns a MonoOn midimsg,
with specified Channel, MonoChannels, and Timestamp properties.

msg = midimsg('OmniOn',channel,timestamp) returns an OmniOn midimsg, with specified
Channel and Timestamp properties.

msg = midimsg('OmniOff',channel,timestamp) returns an OmniOff midimsg, with specified
Channel and Timestamp properties.

msg = midimsg('AllNotesOff',channel,timestamp) returns an AllNotesOff midimsg, with
specified Channel and Timestamp properties.

msg = midimsg('PolyKeyPressure',channel,note,pressure,timestamp) returns a
PolyKeyPressure midimsg, with specified Channel, Note, Pressure, and Timestamp properties.

msg = midimsg('ChannelPressure',channel,pressure,timestamp) returns a
ChannelPressure midimsg, with specified Channel, Pressure, and Timestamp properties.

 midimsg

4-223

msg = midimsg('PitchBend',channel,change,timestamp) returns a PitchBend midimsg,
with specified Channel, PitchChange, and Timestamp properties.

msg = midimsg returns a scalar midimsg with all zero bytes. All zero bytes indicates a MIDI
message with Type set to Data.

msg = midimsg(size) returns a midimsg array of size with all zero bytes.

msg = midimsg(0) returns an empty midimsg.

Note If timestamp is listed as an argument, it is optional and defaults to zero. The exception is the
'SystemExclusive',bytes,timestamp syntax, in which case the timestamp argument is
required.

Properties
Type — Type of MIDI message
NoteOn | NoteOff | ControlChange | ProgramChange | SystemExclusive | Data | EOX | ...

This property is read-only.

Type of MIDI message, returned as one of the following midimsgtype enumeration values:

NoteOn Data Stop SongPosition
Pointer

PolyOn PolyKeyPress
ure

NoteOff EOX ActiveSensin
g

SongSelect MonoOn ChannelPress
ure

ControlChang
e

TimingClock SystemReset AllSoundOff OmniOn PitchBendCha
nge

ProgramChang
e

Start TuneRequest ResetAllCont
rollers

OmniOff Undefined

SystemExclus
ive

Continue MIDITimeCode
QuarterFrame

LocalControl AllNotesOff

You can specify the type of MIDI message during creation as a character vector, string, or member of
the midimsgtype enumeration.

For example, the following create equivalent MIDI messages:

• midimsg('SongPositionPointer',1)
• midimsg("SongPositionPointer",1)
• midimsg(midimsgtype.SongPositionPointer,1)

NumMsgBytes — Number of bytes in MIDI message
scalar | vector | array

This property is read-only.

Number of bytes in the MIDI message, returned as a scalar, vector, or array the same size as msg.
Data Types: double

4 Classes

4-224

MsgBytes — Actual bytes of constructed MIDI message (decimal)
scalar | vector | array

This property is read-only.

Actual bytes of the constructed MIDI message in decimal, returned as a scalar, vector, or array the
same size as msg.
Data Types: uint8

Timestamp — Location in time for MIDI message
scalar | vector | array

Location in time for the MIDI message, specified as a scalar, vector, or array the same size as msg.

You can specify the timestamp as any numeric value. However, the timestamp is always stored and
returned as type double.

For more on how MIDI timestamps are implemented in Audio Toolbox, see “MIDI Message Timing”.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Channel — MIDI channel to which message is addressed
integer in the range [1,16]

MIDI channel to which message is addressed, specified as an integer in the range [1,16].

Dependencies

This property is valid only for NoteOn, NoteOff, PolyKeyPressure, AllSoundOff,
ResetAllControllers, LocalControl, AllNotesOff, OmniOn, OmniOff, MonoOn, PolyOn,
ControlChange, ProgramChange, ChannelPressure, and PitchBend midimsg objects.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Note — MIDI note number
integer in the range [0,127]

MIDI note number, specified as an integer in the range [0,127]. The MIDI specification defines note
number 60 as Middle C, and all other notes are relative. MIDI devices and software define the
mapping between a note and a MIDI note number. If Middle C is arbitrarily assumed to be C5 for the
target MIDI hardware or software, the following table maps between MIDI note numbers and notes:

 midimsg

4-225

Dependencies

This property is valid only for NoteOn, NoteOff, and PolyKeyPressure midimsg objects.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Velocity — Velocity of MIDI message
integer in the range [0,127]

Velocity of MIDI message, specified as a scalar integer in the range [0,127]. Velocity describes how
fast, or "hard," a note is played. A higher number corresponds to faster velocity.

Dependencies

This property is valid only for NoteOn and NoteOff midimsg objects.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

KeyPressure — Key pressure
integer in the range [0,127]

Key pressure, specified as a scalar integer in the range [0,127]. Key pressure applies aftertouch to an
individual note. For example, on a keyboard, key pressure describes the pressure applied to a key
after that key has been struck (after a NoteOn message is sent). You can use KeyPressure to add
expression to held notes.

Dependencies

This property is valid only for PolyKeyPressure midimsg objects.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

LocalControl — Enable local control
true | false

Enable local control, specified as true or false. When local control is set to false, all devices on a
given channel respond only to data received over MIDI.

4 Classes

4-226

Dependencies

This property is valid only for LocalControl midimsg objects.
Data Types: logical

MonoChannels — Channels for MonoOn messages
integer in the range [0,16]

Channels for MonoOn messages, specified as a scalar integer in the range [0,16].
Dependencies

This property is valid only for MonoOn midimsg objects.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

CCNumber — Control change number
integer in the range [0,119]

Control change number, specified as an integer in the range [0,119].
Dependencies

This property is valid only for ControlChange midimsg objects.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

CCValue — Control change value
integer in the range [0,127]

Control change value, specified as an integer in the range [0,127].
Dependencies

This property is valid only for ControlChange midimsg objects.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Program — Program number to switch to
integer in the range [0,127]

Program number to switch to, specified as an integer in the range [0,127].
Dependencies

This property is valid only for ProgramChange midimsg objects.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

ChannelPressure — Channel pressure
integer in the range [0,127]

Channel pressure, specified as an integer in the range [0,127]. Key pressure applies aftertouch to all
notes in a channel.
Dependencies

This property is valid only for ChannelPressure midimsg objects.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

 midimsg

4-227

PitchChange — Amount of pitch change to apply
integer in the range [0,16383]

Amount of pitch change to apply, specified as an integer in the range [0,16383]. The center position
(no effect) is 8192. Sensitivity is a function of the receiver.

Dependencies

This property is valid only for PitchBend midimsg objects.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

TimeCodeSequence — Sequence number
integer in the range [0,7]

Sequence number, specified as an integer in the range [0,7].

Dependencies

This property is valid only for MIDITimeCodeQuarterFrame midimsg objects.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

TimeCodeValue — Time code value
integer in the range [0,15]

Time code value, specified as an integer in the range [0,15].

Dependencies

This property is valid only for MIDITimeCodeQuarterFrame midimsg objects.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

SongPosition — Position in song to go to
integer in the range [0,16383]

Position in song to go to, specified as an integer in the range [0,16383].

Dependencies

This property is valid only for SongPositionPointer midimsg objects.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Song — Song number to switch to
integer in the range [0,127]

Song number to switch to, specified as an integer in the range [0,127].

Dependencies

This property is valid only for SongSelect midimsg objects.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Examples

4 Classes

4-228

Create Note Messages

You can create MIDI note messages using the NoteOn and NoteOff midimsg objects. A NoteOn
message indicates that a note should begin playing. A NoteOff message indicates that a note should
stop playing. Alternatively, you can send a second NoteOn message with velocity set to zero to
indicate that the note should stop playing. The Audio Toolbox® provides a convenience syntax to
create pairs of note on and note off messages.

Create a pair of MIDI messages to indicate a Note On and Note Off sequence using the Note
convenience syntax. Specify that the note starts after one second, and has a duration of two seconds.

channel = 1;
note = 60;
velocity = 64;
duration = 2;
timestamp = 1;
msgs = midimsg('Note',channel,note,velocity,duration,timestamp)

msgs =
 MIDI message:
 NoteOn Channel: 1 Note: 60 Velocity: 64 Timestamp: 1 [90 3C 40]
 NoteOn Channel: 1 Note: 60 Velocity: 0 Timestamp: 3 [90 3C 00]

Two midimsg objects are created and returned as an array. The Note syntax returns the note off
message as a NoteOn midimsg object with Velocity set to zero.

To create Note On and Note Off messages separately, create two NoteOn messages and concatenate
them.

msgs = [midimsg('NoteOn',channel,note,velocity,timestamp), ...
 midimsg('NoteOn',channel,note,0,3)]

msgs =
 MIDI message:
 NoteOn Channel: 1 Note: 60 Velocity: 64 Timestamp: 1 [90 3C 40]
 NoteOn Channel: 1 Note: 60 Velocity: 0 Timestamp: 3 [90 3C 00]

You can also specify the Note Off using a NoteOff midimsg object. Using the NoteOff syntax
enables you to specify a release velocity.

 msgs = [midimsg('NoteOn',channel,note,velocity,timestamp), ...
 midimsg('NoteOff',channel,note,velocity,3)]

msgs =
 MIDI message:
 NoteOn Channel: 1 Note: 60 Velocity: 64 Timestamp: 1 [90 3C 40]
 NoteOff Channel: 1 Note: 60 Velocity: 64 Timestamp: 3 [80 3C 40]

Control Change Messages for Control Surfaces

To create a control change message, specify the midimsg Type as ControlChange and set the
required parameters: Channel, CCNumber, and CCValue. To determine the channel and control
number assigned to your MIDI control surface, use midiid. Enter midiid at the Command Prompt
and then move the control you want to identify.

 midimsg

4-229

[ccInfo,deviceName] = midiid;

Move the control you wish to identify; type ^C to abort.
Waiting for control message... done

midiid returns the control change number and channel as a single number according to the
following formula: ccInfo = (Channel*1000 + CCNumber). Define a MIDI Control Change
message to move the identified controller. Your MIDI Control Surface must be bidirectional to receive
Control Change messages.

channel = floor(ccInfo/1000);
ccnumber = ccInfo - channel*1000;
ccvalue = 1;
msg = midimsg('ControlChange',channel,ccnumber,ccvalue)

msg =
 MIDI message:
 ControlChange Channel: 1 CCNumber: 16 CCValue: 1 Timestamp: 0 [B0 10 01]

Create a mididevice object using the deviceName identified using midiid. Send the MIDI
message to your device.

device = mididevice(deviceName);
midisend(device,msg);

Create a Program Change Message

Program Change messages, sometimes called "patch change" messages, specify how notes are
interpreted. For example, a Program Change message can specify the instrument being played. To
create a ProgramChange midimsg object, specify the midimsg type as ProgramChange, and the
required property values: Channel and Program.

channel = 4;
program = 7;
msg = midimsg('ProgramChange',channel,program)

msg =
 MIDI message:
 ProgramChange Channel: 4 Program: 7 Timestamp: 0 [C3 07]

Create a System Exclusive Message

System Exclusive messages are defined by a sequence of midimsg objects: SystemExclusive,
Data, and EOX. To create a System Exclusive sequence, specify the SystemExclusive midimsg
type during creation and then specify the bytes of the message. This syntax requires a timestamp.

bytes = [0 1 2];
timestamp = 0;
msg = midimsg('SystemExclusive',bytes,timestamp)

msg =
 MIDI message:
 SystemExclusive Timestamp: 0 [F0]

4 Classes

4-230

 Data Timestamp: 0 [00 01 02]
 EOX Timestamp: 0 [F7]

You can also create the SystemExclusive, Data, and EOX midimsg objects individually. For
example, the following midimsg array is the same as the preceding.

msg = [midimsg('SystemExclusive',timestamp), ...
 midimsg('Data',bytes,timestamp), ...
 midimsg('EOX',timestamp)]

msg =
 MIDI message:
 SystemExclusive Timestamp: 0 [F0]
 Data Timestamp: 0 [00 01 02]
 EOX Timestamp: 0 [F7]

Create a Scalar Default MIDI Message

The default MIDI message is a scalar with all zero bytes, and Type is Data.

msg = midimsg

msg =
 MIDI message:
 Data Timestamp: 0 [00 00 00 00 00 00 00 00]

Preallocate Array of MIDI Messages

You can create a MIDI message array by specifying the size by a scalar or row vector.

If you specify the size as a scalar M, midimsg returns an M-by-M array with all zero bytes.

msg = midimsg(2)

msg =
 MIDI message:
 Data Timestamp: 0 [00 00 00 00 00 00 00 00]
 Data Timestamp: 0 [00 00 00 00 00 00 00 00]
 Data Timestamp: 0 [00 00 00 00 00 00 00 00]
 Data Timestamp: 0 [00 00 00 00 00 00 00 00]

An array of MIDI messages is always displayed vertically in order of their linear indexing. You can
refer to individual elements of the array by specifying its position in each dimension, or by its linear
index. For example, change the Timestamp of the third element from 0 to 2 using linear
indexing, and then from 2 to 3 using first dimensional indexing.

msg(3).Timestamp = 2

msg =
 MIDI message:
 Data Timestamp: 0 [00 00 00 00 00 00 00 00]
 Data Timestamp: 0 [00 00 00 00 00 00 00 00]
 Data Timestamp: 2 [00 00 00 00 00 00 00 00]
 Data Timestamp: 0 [00 00 00 00 00 00 00 00]

 midimsg

4-231

msg(1,2).Timestamp = 3

msg =
 MIDI message:
 Data Timestamp: 0 [00 00 00 00 00 00 00 00]
 Data Timestamp: 0 [00 00 00 00 00 00 00 00]
 Data Timestamp: 3 [00 00 00 00 00 00 00 00]
 Data Timestamp: 0 [00 00 00 00 00 00 00 00]

You can also specify nonsymmetric arrays. If you specify the size as a row vector of two or more
elements, midimsg returns an M-by-N-by-...-X multidimensional array. For example, to specify a three
dimensional array with each dimension having a different number of elements, specify the size as a
row vector of three elements.

msg = midimsg([2,1,3])

msg =
 MIDI message:
 Data Timestamp: 0 [00 00 00 00 00 00 00 00]
 Data Timestamp: 0 [00 00 00 00 00 00 00 00]
 Data Timestamp: 0 [00 00 00 00 00 00 00 00]
 Data Timestamp: 0 [00 00 00 00 00 00 00 00]
 Data Timestamp: 0 [00 00 00 00 00 00 00 00]
 Data Timestamp: 0 [00 00 00 00 00 00 00 00]

size(msg)

ans = 1×3

 2 1 3

Create Empty MIDI Message
msg = midimsg(0)

msg =

 empty MIDI message array

Manipulate Array of MIDI Messages

In this example, you create an array of MIDI messages, and then index into the array in a loop to
define a melody.

Create a 22-by-1 array of MIDI messages with all zero data.

msgArray = midimsg([22,1]);

To create a melody, create MIDI NoteOn and NoteOff messages by indexing in a loop. Display the
result.

melody = [60,65,60,57,55,53,60,65,60,67,60];
for i = 1:numel(melody)

4 Classes

4-232

 idx = (2*i-1):(2*i);
 msgArray(idx) = midimsg('Note',1,melody(i),50,0.5,i);
end
msgArray

msgArray =
 MIDI message:
 NoteOn Channel: 1 Note: 60 Velocity: 50 Timestamp: 1 [90 3C 32]
 NoteOn Channel: 1 Note: 60 Velocity: 0 Timestamp: 1.5 [90 3C 00]
 NoteOn Channel: 1 Note: 65 Velocity: 50 Timestamp: 2 [90 41 32]
 NoteOn Channel: 1 Note: 65 Velocity: 0 Timestamp: 2.5 [90 41 00]
 NoteOn Channel: 1 Note: 60 Velocity: 50 Timestamp: 3 [90 3C 32]
 NoteOn Channel: 1 Note: 60 Velocity: 0 Timestamp: 3.5 [90 3C 00]
 NoteOn Channel: 1 Note: 57 Velocity: 50 Timestamp: 4 [90 39 32]
 NoteOn Channel: 1 Note: 57 Velocity: 0 Timestamp: 4.5 [90 39 00]
 NoteOn Channel: 1 Note: 55 Velocity: 50 Timestamp: 5 [90 37 32]
 NoteOn Channel: 1 Note: 55 Velocity: 0 Timestamp: 5.5 [90 37 00]
 NoteOn Channel: 1 Note: 53 Velocity: 50 Timestamp: 6 [90 35 32]
 NoteOn Channel: 1 Note: 53 Velocity: 0 Timestamp: 6.5 [90 35 00]
 NoteOn Channel: 1 Note: 60 Velocity: 50 Timestamp: 7 [90 3C 32]
 NoteOn Channel: 1 Note: 60 Velocity: 0 Timestamp: 7.5 [90 3C 00]
 NoteOn Channel: 1 Note: 65 Velocity: 50 Timestamp: 8 [90 41 32]
 NoteOn Channel: 1 Note: 65 Velocity: 0 Timestamp: 8.5 [90 41 00]
 NoteOn Channel: 1 Note: 60 Velocity: 50 Timestamp: 9 [90 3C 32]
 NoteOn Channel: 1 Note: 60 Velocity: 0 Timestamp: 9.5 [90 3C 00]
 NoteOn Channel: 1 Note: 67 Velocity: 50 Timestamp: 10 [90 43 32]
 NoteOn Channel: 1 Note: 67 Velocity: 0 Timestamp: 10.5 [90 43 00]
 NoteOn Channel: 1 Note: 60 Velocity: 50 Timestamp: 11 [90 3C 32]
 NoteOn Channel: 1 Note: 60 Velocity: 0 Timestamp: 11.5 [90 3C 00]

The order of the MIDI messages in the array is only important for readability. When you send MIDI
messages using a mididevice object, the mididevice object reorders your MIDI messages
according to their timestamps and sends them in chronological order. Create a PitchBend MIDI
message to bend the fourth note downward and add it to the MIDI message array. For readability, sort
the MIDI message array by Timestamp.

msg = midimsg('PitchBend',1,7192,4.01);
msgArray = [msgArray;msg]

msgArray =
 MIDI message:
 NoteOn Channel: 1 Note: 60 Velocity: 50 Timestamp: 1 [90 3C 32]
 NoteOn Channel: 1 Note: 60 Velocity: 0 Timestamp: 1.5 [90 3C 00]
 NoteOn Channel: 1 Note: 65 Velocity: 50 Timestamp: 2 [90 41 32]
 NoteOn Channel: 1 Note: 65 Velocity: 0 Timestamp: 2.5 [90 41 00]
 NoteOn Channel: 1 Note: 60 Velocity: 50 Timestamp: 3 [90 3C 32]
 NoteOn Channel: 1 Note: 60 Velocity: 0 Timestamp: 3.5 [90 3C 00]
 NoteOn Channel: 1 Note: 57 Velocity: 50 Timestamp: 4 [90 39 32]
 NoteOn Channel: 1 Note: 57 Velocity: 0 Timestamp: 4.5 [90 39 00]
 NoteOn Channel: 1 Note: 55 Velocity: 50 Timestamp: 5 [90 37 32]
 NoteOn Channel: 1 Note: 55 Velocity: 0 Timestamp: 5.5 [90 37 00]
 NoteOn Channel: 1 Note: 53 Velocity: 50 Timestamp: 6 [90 35 32]
 NoteOn Channel: 1 Note: 53 Velocity: 0 Timestamp: 6.5 [90 35 00]
 NoteOn Channel: 1 Note: 60 Velocity: 50 Timestamp: 7 [90 3C 32]
 NoteOn Channel: 1 Note: 60 Velocity: 0 Timestamp: 7.5 [90 3C 00]
 NoteOn Channel: 1 Note: 65 Velocity: 50 Timestamp: 8 [90 41 32]
 NoteOn Channel: 1 Note: 65 Velocity: 0 Timestamp: 8.5 [90 41 00]
 NoteOn Channel: 1 Note: 60 Velocity: 50 Timestamp: 9 [90 3C 32]

 midimsg

4-233

 NoteOn Channel: 1 Note: 60 Velocity: 0 Timestamp: 9.5 [90 3C 00]
 NoteOn Channel: 1 Note: 67 Velocity: 50 Timestamp: 10 [90 43 32]
 NoteOn Channel: 1 Note: 67 Velocity: 0 Timestamp: 10.5 [90 43 00]
 NoteOn Channel: 1 Note: 60 Velocity: 50 Timestamp: 11 [90 3C 32]
 NoteOn Channel: 1 Note: 60 Velocity: 0 Timestamp: 11.5 [90 3C 00]
 PitchBend Channel: 1 PitchChange: 7192 Timestamp: 4.01 [E0 18 38]

timeStamps = [msgArray.Timestamp];
[~,idx] = sort(timeStamps);

msgArray = msgArray(idx)

msgArray =
 MIDI message:
 NoteOn Channel: 1 Note: 60 Velocity: 50 Timestamp: 1 [90 3C 32]
 NoteOn Channel: 1 Note: 60 Velocity: 0 Timestamp: 1.5 [90 3C 00]
 NoteOn Channel: 1 Note: 65 Velocity: 50 Timestamp: 2 [90 41 32]
 NoteOn Channel: 1 Note: 65 Velocity: 0 Timestamp: 2.5 [90 41 00]
 NoteOn Channel: 1 Note: 60 Velocity: 50 Timestamp: 3 [90 3C 32]
 NoteOn Channel: 1 Note: 60 Velocity: 0 Timestamp: 3.5 [90 3C 00]
 NoteOn Channel: 1 Note: 57 Velocity: 50 Timestamp: 4 [90 39 32]
 PitchBend Channel: 1 PitchChange: 7192 Timestamp: 4.01 [E0 18 38]
 NoteOn Channel: 1 Note: 57 Velocity: 0 Timestamp: 4.5 [90 39 00]
 NoteOn Channel: 1 Note: 55 Velocity: 50 Timestamp: 5 [90 37 32]
 NoteOn Channel: 1 Note: 55 Velocity: 0 Timestamp: 5.5 [90 37 00]
 NoteOn Channel: 1 Note: 53 Velocity: 50 Timestamp: 6 [90 35 32]
 NoteOn Channel: 1 Note: 53 Velocity: 0 Timestamp: 6.5 [90 35 00]
 NoteOn Channel: 1 Note: 60 Velocity: 50 Timestamp: 7 [90 3C 32]
 NoteOn Channel: 1 Note: 60 Velocity: 0 Timestamp: 7.5 [90 3C 00]
 NoteOn Channel: 1 Note: 65 Velocity: 50 Timestamp: 8 [90 41 32]
 NoteOn Channel: 1 Note: 65 Velocity: 0 Timestamp: 8.5 [90 41 00]
 NoteOn Channel: 1 Note: 60 Velocity: 50 Timestamp: 9 [90 3C 32]
 NoteOn Channel: 1 Note: 60 Velocity: 0 Timestamp: 9.5 [90 3C 00]
 NoteOn Channel: 1 Note: 67 Velocity: 50 Timestamp: 10 [90 43 32]
 NoteOn Channel: 1 Note: 67 Velocity: 0 Timestamp: 10.5 [90 43 00]
 NoteOn Channel: 1 Note: 60 Velocity: 50 Timestamp: 11 [90 3C 32]
 NoteOn Channel: 1 Note: 60 Velocity: 0 Timestamp: 11.5 [90 3C 00]

Version History
Introduced in R2018a

See Also
parameterTuner | Audio Test Bench | midisend | midireceive | mididevice

Topics
“MIDI Device Interface”

External Websites
MIDI Manufacturers Association

4 Classes

4-234

https://www.midi.org/

mididevice
Send and receive MIDI messages

Description
Interface to a MIDI device in MATLAB using mididevice. Package MIDI messages using midimsg.
Send and receive messages using midisend and midireceive. Use mididevinfo to query your
system for available MIDI devices.

For a tutorial on interfacing with MIDI devices, see “MIDI Device Interface”.

Creation
Syntax
device = mididevice(deviceNameOrID)
device = mididevice('Input',inDeviceNameOrID)
device = mididevice('Output',outDeviceNameOrID)
device = mididevice('Input',inDeviceNameOrID,'Output',outDeviceNameOrID)

Description

device = mididevice(deviceNameOrID) returns an interface to the MIDI device specified by
deviceNameOrID. If the MIDI device supports MIDI in and MIDI out, then device also supports
MIDI in and MIDI out.

device = mididevice('Input',inDeviceNameOrID) returns an input interface to the MIDI
input device, inDeviceNameOrID.

device = mididevice('Output',outDeviceNameOrID) returns an output interface to the MIDI
output device, outDeviceNameOrID.

device = mididevice('Input',inDeviceNameOrID,'Output',outDeviceNameOrID)
returns a MIDI I/O interface, where input is received from inDeviceNameOrID and output is sent to
outDeviceNameOrID.

 mididevice

4-235

Properties
Input — Input device name associated with mididevice
empty char array (default)

This property is read-only.

Input device name attached to your mididevice object, returned as a character array.

Input is set during the creation of the mididevice object and cannot be modified later.
Data Types: char

Output — Output device name associated with mididevice
empty char array (default)

This property is read-only.

Output device name attached to your mididevice object, returned as a character array

Output is set during the creation of the mididevice object and cannot be modified later.
Data Types: char

InputID — Input device ID associated with mididevice
-1 (default)

This property is read-only.

Unique MIDI input device ID attached to your mididevice object, returned as a scalar double. If
your system includes different MIDI devices with the same name, using the device ID removes
ambiguity.

InputID is set during the creation of the mididevice object and cannot be modified later.
Data Types: double

OutputID — Output device name associated with mididevice
-1 (default)

This property is read-only.

Unique MIDI output device ID attached to your mididevice object, returned as a scalar double. If
your system includes different MIDI devices with the same name, using the device ID removes
ambiguity.

OutputID is set during the creation of the mididevice object and cannot be modified later.
Data Types: double

Object Functions
midisend Send MIDI message to MIDI device
midireceive Receive MIDI message from MIDI device
hasdata Determine if data is available to read from MIDI device

4 Classes

4-236

Examples

Connect Input and Output to Single MIDI Device

Query your system for available MIDI devices.

mididevinfo

 MIDI devices available:
 ID Direction Interface Name
 0 output MMSystem 'Microsoft MIDI Mapper'
 1 input MMSystem 'USB MIDI Interface '
 2 output MMSystem 'Microsoft GS Wavetable Synth'
 3 output MMSystem 'USB MIDI Interface '

Create a MIDI device object to interface with your selected device. If you specify a single MIDI device
object, and it is capable of both input and output, mididevice connects to both the input and output.

device = mididevice('USB MIDI Interface ')

device =
 mididevice connected to
 Input: 'USB MIDI Interface ' (1)
 Output: 'USB MIDI Interface ' (3)

Connect Input to MIDI Device

Query your system for MIDI devices.

mididevinfo

 MIDI devices available:
 ID Direction Interface Name
 0 output MMSystem 'Microsoft MIDI Mapper'
 1 input MMSystem 'USB MIDI Interface '
 2 output MMSystem 'Microsoft GS Wavetable Synth'
 3 output MMSystem 'USB MIDI Interface '

Create a MIDI device object to interface with your selected input device. As soon as you create the
MIDI device object, it begins listening for MIDI messages and storing them in a buffer.

device = mididevice('Input','USB MIDI Interface ');

Connect Output to MIDI Device

Query your system for available MIDI devices.

mididevinfo

 MIDI devices available:
 ID Direction Interface Name
 0 output MMSystem 'Microsoft MIDI Mapper'

 mididevice

4-237

 1 input MMSystem 'USB MIDI Interface '
 2 output MMSystem 'Microsoft GS Wavetable Synth'
 3 output MMSystem 'USB MIDI Interface '

Create a MIDI device object to interface with your selected output device.

device = mididevice('Output','USB MIDI Interface ')

device =
 mididevice connected to
 Output: 'USB MIDI Interface ' (3)

Connect Input and Output to Different MIDI Devices

Query your system for available MIDI devices.

mididevinfo

 MIDI devices available:
 ID Direction Interface Name
 0 output MMSystem 'Microsoft MIDI Mapper'
 1 input MMSystem 'USB MIDI Interface '
 2 output MMSystem 'Microsoft GS Wavetable Synth'
 3 output MMSystem 'USB MIDI Interface '

Create a MIDI device object that receives data from one device and sends data to another device. In
this example, the MIDI device object receives MIDI messages from the 'USB MIDI Interface '
device and sends data to the 'Microsoft GS Wavetable Synth' virtual output device. To avoid
ambiguity, the MIDI devices are specified by the device IDs.

device = mididevice('Input',1,'Output',2)

device =
 mididevice connected to
 Input: 'USB MIDI Interface ' (1)
 Output: 'Microsoft GS Wavetable Synth' (2)

Version History
Introduced in R2018a

See Also
parameterTuner | Audio Test Bench | midisend | midireceive | mididevinfo | midimsg

Topics
“MIDI Device Interface”

External Websites
MIDI Manufacturers Association

4 Classes

4-238

https://www.midi.org/

hasdata
Determine if data is available to read from MIDI device

Syntax
tf = hasdata(device)

Description
tf = hasdata(device) returns logical 1 (true) if there is data available to read from the
mididevice specified by device. Otherwise, it returns logical 0 (false).

Examples

Determine if Data Is Available to Receive

Create a mididevice object to interface with your MIDI device. Query your system for available
MIDI devices.

mididevinfo

 MIDI devices available:
 ID Direction Interface Name
 0 output MMSystem 'Microsoft MIDI Mapper'
 1 input MMSystem 'nanoKONTROL2'
 2 input MMSystem 'USB Uno MIDI Interface'
 3 output MMSystem 'Microsoft GS Wavetable Synth'
 4 output MMSystem 'nanoKONTROL2'
 5 output MMSystem 'USB Uno MIDI Interface'

device = mididevice('USB Uno MIDI Interface')

device =
 mididevice connected to
 Input: 'USB Uno MIDI Interface' (2)
 Output: 'USB Uno MIDI Interface' (5)

As soon as your mididevice object is created, it begins listening for MIDI messages and storing
them in a buffer. When you call midireceive, MIDI messages are retrieved from the buffer and
returned. You can use hasdata to query whether your mididevice object buffer contains unread
MIDI messages.

hasdata(device)

ans = logical
 0

 hasdata

4-239

Input Arguments
device — mididevice object
mididevice object

Specify device as an object created by mididevice.

Version History
Introduced in R2018a

See Also
midisend | mididevice | mididevinfo | midimsg

Topics
“MIDI Device Interface”

External Websites
MIDI Manufacturers Association

4 Classes

4-240

https://www.midi.org/

midireceive
Receive MIDI message from MIDI device

Syntax
msgs = midireceive(device)
msgs = midireceive(device,maxmsgs)

Description
msgs = midireceive(device) returns the MIDI messages, msgs, received from a MIDI device
using the MIDI device interface, device.

msgs = midireceive(device,maxmsgs) specifies the maximum number of MIDI messages to
return as maxmsgs.

Examples

Receive MIDI Messages

To determine what MIDI devices are attached to your MIDI input ports, call mididevinfo. Use the
availableDevices struct to specify a valid MIDI device to create a mididevice object.

availableDevices = mididevinfo;
device = mididevice(availableDevices.input(1).ID);

Once your MIDI device object is created, it begins listening to MIDI messages from your specified
device and storing them in a buffer. To get all MIDI messages in the buffer, call midireceive. In this
example, several keys on a MIDI keyboard are played.

msgs = midireceive(device)

msgs =

 MIDI message:
 NoteOn Channel: 1 Note: 52 Velocity: 64 Timestamp: 3.94 [90 34 40]
 NoteOn Channel: 1 Note: 52 Velocity: 0 Timestamp: 4.179 [90 34 00]
 NoteOn Channel: 1 Note: 48 Velocity: 64 Timestamp: 4.19 [90 30 40]
 NoteOn Channel: 1 Note: 47 Velocity: 64 Timestamp: 4.382 [90 2F 40]
 NoteOn Channel: 1 Note: 48 Velocity: 0 Timestamp: 4.459 [90 30 00]
 NoteOn Channel: 1 Note: 48 Velocity: 64 Timestamp: 4.59 [90 30 40]
 NoteOn Channel: 1 Note: 47 Velocity: 0 Timestamp: 4.776 [90 2F 00]
 NoteOn Channel: 1 Note: 50 Velocity: 64 Timestamp: 4.788 [90 32 40]
 NoteOn Channel: 1 Note: 47 Velocity: 64 Timestamp: 4.802 [90 2F 40]
 NoteOn Channel: 1 Note: 52 Velocity: 64 Timestamp: 4.831 [90 34 40]
 NoteOn Channel: 1 Note: 47 Velocity: 0 Timestamp: 4.84 [90 2F 00]
 NoteOn Channel: 1 Note: 48 Velocity: 0 Timestamp: 4.912 [90 30 00]
 NoteOn Channel: 1 Note: 52 Velocity: 0 Timestamp: 4.953 [90 34 00]
 NoteOn Channel: 1 Note: 50 Velocity: 0 Timestamp: 5.079 [90 32 00]

Reading from the buffer clears the data. For example, if no more MIDI messages are sent, and the
buffer is reread, midireceive returns an empty MIDI message.

msgs = midireceive(device)

 midireceive

4-241

msgs =

 empty MIDI message array

Receive Limited Number of MIDI Messages

Query your system for available output from MIDI devices. Specify that the output of a MIDI device is
connected to the input of your mididevice object.

mididevinfo

 MIDI devices available:
 ID Direction Interface Name
 0 output MMSystem 'Microsoft MIDI Mapper'
 1 input MMSystem 'USB MIDI Interface '
 2 output MMSystem 'Microsoft GS Wavetable Synth'
 3 output MMSystem 'USB MIDI Interface '

device = mididevice('Input','USB MIDI Interface ');

Once your MIDI device object is created, it begins listening to MIDI messages from your specified
device and storing them in a buffer. To get a limited number of MIDI messages from the buffer, call
midireceive and specify the maximum number of messages to return. In this example, five keys are
played on a MIDI device. A maximum of four MIDI messages are received at each call to
midireceive.

midireceive(device,4)

ans =

 MIDI message:
 NoteOn Channel: 1 Note: 36 Velocity: 64 Timestamp: 2929.71 [90 24 40]
 NoteOn Channel: 1 Note: 36 Velocity: 0 Timestamp: 2929.91 [90 24 00]
 NoteOn Channel: 1 Note: 37 Velocity: 64 Timestamp: 2930.43 [90 25 40]
 NoteOn Channel: 1 Note: 37 Velocity: 0 Timestamp: 2930.59 [90 25 00]

midireceive(device,4)

ans =

 MIDI message:
 NoteOn Channel: 1 Note: 38 Velocity: 64 Timestamp: 2931.16 [90 26 40]
 NoteOn Channel: 1 Note: 38 Velocity: 0 Timestamp: 2931.32 [90 26 00]
 NoteOn Channel: 1 Note: 39 Velocity: 64 Timestamp: 2931.87 [90 27 40]
 NoteOn Channel: 1 Note: 39 Velocity: 0 Timestamp: 2932.01 [90 27 00]

midireceive(device,4)

ans =

 MIDI message:
 NoteOn Channel: 1 Note: 40 Velocity: 64 Timestamp: 2932.52 [90 28 40]
 NoteOn Channel: 1 Note: 40 Velocity: 0 Timestamp: 2932.66 [90 28 00]

Input Arguments
device — Object of mididevice
object of mididevice

Specify device as an object created by mididevice.

4 Classes

4-242

maxmsgs — Maximum number of messages to return
positive integer scalar

Maximum number of messages to return, specified as a positive integer scalar.
Data Types: single | double

Output Arguments
msgs — Object of midimsg
scalar | column vector

Object of midimsg, returned as a scalar or column vector. The number of MIDI messages in the
mididevice buffer and maxmsgs determine the size of msgs.

Version History
Introduced in R2018a

See Also
midisend | mididevice | mididevinfo | midimsg

Topics
“MIDI Device Interface”

External Websites
MIDI Manufacturers Association

 midireceive

4-243

https://www.midi.org/

midisend
Send MIDI message to MIDI device

Syntax
midisend(device,msg)
midisend(device,varargin)

Description
midisend(device,msg) sends the MIDI message, msg, to a MIDI device using the MIDI device
interface, device.

midisend(device,varargin) creates MIDI messages using varargin and then sends the MIDI
messages. The varargin syntax is for convenience and includes a call to midimsg with the call to
midisend.

Examples

Send MIDI Messages to Device

Query your system for available MIDI device output ports. Use the availableDevices struct to
specify a valid MIDI device and create a mididevice object.

availableDevices = mididevinfo;
device = mididevice(availableDevices.output(2).ID);

Create a pair of NoteOn messages (to indicate Note On and Note Off) and send them to your selected
MIDI device.

msgs = midimsg('Note',1,48,64,0.25);
midisend(device,msgs)

Define and Send MIDI Messages to Device

midisend enables you to combine the definition and sending of a midimsg into a single function call.
Send middle C on channel 3 with velocity 64.

mididevinfo

 MIDI devices available:
 ID Direction Interface Name
 0 output MMSystem 'Microsoft MIDI Mapper'
 1 input MMSystem 'nanoKONTROL2'
 2 input MMSystem 'USB Uno MIDI Interface'
 3 output MMSystem 'Microsoft GS Wavetable Synth'
 4 output MMSystem 'nanoKONTROL2'
 5 output MMSystem 'USB Uno MIDI Interface'

4 Classes

4-244

device = mididevice('USB Uno MIDI Interface')

device =
 mididevice connected to
 Input: 'USB Uno MIDI Interface' (2)
 Output: 'USB Uno MIDI Interface' (5)

midisend(device,'NoteOn',3,60,64)

Compile and Play MIDI Messages

Get the name of an available output MIDI device on your system.

mInfo = mididevinfo;

Disregard cmd.exe warnings about UNC directory pathnames.
Disregard cmd.exe warnings about UNC directory pathnames.

midiDeviceName = mInfo.output(1).Name;

Create a mididevice object.

device = mididevice(midiDeviceName);

Create a MIDI message array.

msgs = [];
for ii = 1:8
 msgs = [msgs;midimsg('Note',1,20+8*ii,64,1,ii)];
end

To listen to the MIDI messages, send the MIDI messages to your device.

midisend(device,msgs)

To compile the previous steps, encapsulate the code in a function and then call mcc.

function playMusic1()
 mInfo = mididevinfo;
 midiDeviceName = mInfo.output(1).Name;
 device = mididevice(midiDeviceName);

 msgs = [];
 for ii = 1:8
 msgs = [msgs;midimsg('Note',1,20+8*ii,64,1,ii)];
 end

 midisend(device,msgs)
end

mcc playMusic1 -m -w disable

Execute the compiled code. You will not hear any sound. This is because the executable opened, sent
the MIDI messages to the queue, and then closed, aborting its commands before the MIDI messages
had a chance to play.

!playMusic1.exe

 midisend

4-245

To keep the executable open long enough for the MIDI messages to play, add a pause to the
executable. Set the duration of the pause to equal the duration of the MIDI messages.

function playMusic2()
 mInfo = mididevinfo;
 midiDeviceName = mInfo.output(1).Name;
 device = mididevice(midiDeviceName);

 msgs = [];
 for ii = 1:8
 msgs = [msgs;midimsg('Note',1,20+8*ii,64,1,ii)];
 end

 midisend(device,msgs)
 pause(msgs(end).Timestamp)
end

mcc playMusic2 -m -w disable

Play the compiled executable. The sound that plays through your MIDI device is the same as the
uncompiled version.

!playMusic2.exe

Input Arguments
device — Object of mididevice
scalar

Specify device as an object created by mididevice.

msg — Object of midimsg
scalar | vector | array

Specify msg as an object created by midimsg.

varargin — Variable number of arguments describing MIDI message
midimsg input arguments

Specify varargin as a valid combination of arguments that can construct a MIDI message. See
midimsg for a description of valid arguments.

Version History
Introduced in R2018a

See Also
midireceive | mididevice | mididevinfo | midimsg

Topics
“MIDI Device Interface”

4 Classes

4-246

External Websites
MIDI Manufacturers Association

 midisend

4-247

https://www.midi.org/

audioPlugin class

Base class for audio plugins

Description
audioPlugin is the base class for audio plugins. In your class definition file, you must subclass your
object from this base class or from the audioPluginSource class, which inherits from
audioPlugin. Subclassing enables you to inherit the attributes necessary to generate plugins and
access Audio Toolbox functionality.

To inherit from the audioPlugin base class directly, type this syntax as the first line of your class
definition file:

classdef myAudioPlugin < audioPlugin

myAudioPlugin is the name of your object.

For a tutorial on designing audio plugins, see “Audio Plugins in MATLAB”.

The audioPlugin class is a handle class.

Methods
Public Methods

setLatencyInSamples Set latency in samples reported to DAW
getSampleRate Get sample rate at which the plugin is run
setSampleRate Set sample rate at which the plugin is run

Examples

Design Valid Audio Plugin

Design a valid basic audio plugin class.

Terminology:

• A valid audio plugin is one that can be deployed in a digital audio workstation (DAW) environment.
To validate it, use the validateAudioPlugin function. To generate it, use the
generateAudioPlugin function.

• A basic audio plugin inherits from the audioPlugin class but not the matlab.System class.

Define a basic audio plugin class that inherits from audioPlugin.

classdef myAudioPlugin < audioPlugin
end

4 Classes

4-248

Add a processing function to your plugin class. All valid audio plugins include a processing function.
For basic audio plugins, the processing function is named process. The processing function is where
audio processing occurs. It always has an output.

classdef myAudioPlugin < audioPlugin
 methods
 function out = process(~,in)
 out = in;
 end
 end
end

Design Valid Audio Plugin That Uses getSampleRate

Design an audioPlugin class that uses the getSampleRate method to get the sample rate at which
the plugin is run. The plugin in this example, simpleStrobe, uses the sample rate to determine a
constant 50 ms strobe period.

classdef simpleStrobe < audioPlugin
 % simpleStrobe Add audio strobe effect
 % Add a strobe effect by gain switching between 0 and 1 in
 % 50 ms increments. Although the input sample rate can change,
 % the strobe period remains constant.
 %
 % simpleStrobe properties:
 % period - Number of samples between gain switches
 % gain - Gain multiplier, one or zero
 % count - Number of samples since last gain switch
 %
 %
 % simpleStrobe methods:
 % process - Multiply input frame by gain, element by element
 % reset - Reset count and gain to initial conditions
 % and get sample rate

 properties
 Period = 44100*0.05;
 Gain = 1;
 end
 properties (Access = private)
 Count = 1;
 end
 methods
 function out = process(plugin,in)
 for i = 1:size(in,1)
 if plugin.Count == plugin.Period
 plugin.Gain = 1 - plugin.Gain;
 plugin.Count = 1;
 end
 in(i,:) = in(i,:)*plugin.Gain;
 plugin.Count = plugin.Count + 1;
 end
 out = in;
 end
 function reset(plugin)

 audioPlugin class

4-249

 plugin.Period = floor(getSampleRate(plugin)*0.05);
 plugin.Count = 1;
 plugin.Gain = 1;
 end
 end
end

Design Valid Audio Plugin That Uses setLatencyInSamples

Design an audioPlugin class that uses the setLatencyInSamples method to report the latency of
the plugin. The plugin in this example, simpleDelay, delays the audio signal by a fixed integer and
reports the delay to the host application.

classdef simpleDelay < audioPlugin
 % simpleDelay Add delay to audio signal
 % This plugin adds a 100 sample delay to the audio input and reports
 % the latency to the host application.
 properties (Access = private)
 Delay
 end
 methods
 function plugin = simpleDelay
 plugin.Delay = dsp.Delay(100);
 end
 function out = process(plugin,in)
 out = plugin.Delay(in);
 end
 function reset(plugin)
 setLatencyInSamples(plugin,100)
 end
 end
end

This example is intended to show the pattern for using setLatencyInSamples. For a detailed use-
case, see audiopluginexample.FastConvolver in the “Audio Plugin Example Gallery”.

Version History
Introduced in R2016a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
audioPluginParameter | generateAudioPlugin | validateAudioPlugin |
audioPluginInterface | audioPluginSource | audioPluginConfig | parameterTuner |
Audio Test Bench

4 Classes

4-250

Topics
“Design an Audio Plugin”
“Audio Plugins in MATLAB”
“Audio Plugin Example Gallery”

 audioPlugin class

4-251

setLatencyInSamples
Class: audioPlugin

Set latency in samples reported to DAW

Syntax
setLatencyInSamples(myAudioPlugin,latency)

Description
setLatencyInSamples(myAudioPlugin,latency) sets the latency, in samples, that
myAudioPlugin reports to a digital audio workstation (DAW) or other host application. Specify
latency as a positive integer.

Note Latency is reported to a host application when the reset method is called. As a best practice,
call setLatencyInSamples in the reset method of your audioPlugin class.

Version History
Introduced in R2020b

See Also
audioPlugin

4 Classes

4-252

getSampleRate
Class: audioPlugin

Get sample rate at which the plugin is run

Syntax
sampleRate = getSampleRate(myAudioPlugin)

Description
sampleRate = getSampleRate(myAudioPlugin) returns the sample rate in Hz at which the
plugin is being run.

• In a digital audio workstation (DAW) environment, the DAW user sets the sample rate.
getSampleRate interacts with the DAW to determine the sample rate.

• In the MATLAB environment, getSampleRate returns the value set by a previous call to
setSampleRate. If setSampleRate has not been called, getSampleRate returns the default
value, 44100.

Version History
Introduced in R2016a

 getSampleRate

4-253

setSampleRate
Class: audioPlugin

Set sample rate at which the plugin is run

Syntax
setSampleRate(myAudioPlugin,sampleRate)

Description
setSampleRate(myAudioPlugin,sampleRate) sets the sample rate of the plugin,
myAudioPlugin, to the value specified by sampleRate. Specify sampleRate as a positive real
integer. setSampleRate enables the MATLAB environment to mimic behavior in a digital audio
workstation (DAW) environment.

Note A plugin must not call setSampleRate on itself. If the plugin attempts to call setSampleRate
on itself, generateAudioPlugin throws an error.

Version History
Introduced in R2016a

4 Classes

4-254

audioPluginConfig
Specify coder configuration of audio plugin

Description
The audioPluginConfig object enables you to validate and generate audio plugins that use deep
learning pretrained networks. This object also allows you to pass code replacement libraries to the
generateAudioPlugin function.

Creation

Syntax
obj = audioPluginConfig(Name,Value)

Description

obj = audioPluginConfig(Name,Value) creates an object that describes the coder
configuration for your audio plugin. Use name-value arguments to specify the properties of the
object.

This object generates a constant property called PluginConfig for audio plugin classes. Use the
audioPluginConfig object if your plugin uses deep learning networks or a code replacement
library.

Properties
DeepLearningConfig — Deep learning library configuration
[] (default) | coder.DeepLearningConfig("none") |
coder.DeepLearningConfig("mkldnn")

Deep learning library configuration, specified as an empty array ([]),
coder.DeepLearningConfig("none"), or coder.DeepLearningConfig("mkldnn").

You can also use the generateAudioPlugin user interface (UI) to specify the deep learning library
for plugin generation.

Value generateAudioPlugin UI
Setting

Description

[] Set Deep learning library
to None

Do not use a deep learning library.

coder.DeepLearn
ingConfig("none
")

Set Deep learning library
to Plain C

Generate code that does not use any third-party
library.

 audioPluginConfig

4-255

Value generateAudioPlugin UI
Setting

Description

coder.DeepLearn
ingConfig("mkld
nn")

Set Deep learning library
to Intel MKL-DNN

Generate code that uses the Intel Math Kernel
Library for Deep Neural Networks (Intel MKL-
DNN). This option does not work on Macintosh
platforms using ARM® processors. This option is
not supported with the -win32 option of the
generateAudioPlugin function.

• On Intel Macintosh platforms,
generateAudioPlugin packages the
required libraries (libdnnl.1.4.dylib,
libdnnl.1.dylib, libdnnl.dylib, and
libomp.dylib) within the generated plugin
bundle. The path to required the libraries is
set to the INTEL_MKLDNN environment
variable. You must install the libraries. To
distribute the generated plugin, you must
have licenses to distribute the Intel MKL-DNN
and OpenMP libraries.

• On Microsoft Windows platforms,
generateAudioPlugin creates upon
compilation a folder named
pluginName_juceproject_NetworkWeigh
ts in the build directory. The folder contains
the network weight files that are read by the
generated plugin. When you add the
generated plugin to a third-party DAW, you
must copy the generated folder along with the
plugin binary to your DAW's plugin location.
The generated plugin will work in a DAW only
if the required library MKL-DNN is visible to
the DAW. To make the MKL-DNN library
visible to a DAW, you must add the path to the
MKL-DNN library to the Windows
environment variable PATH.

• On Linux platforms, generateAudioPlugin
creates upon compilation a folder
named .MWPluginData/
pluginName_juceproject_NetworkWeigh
ts in your home directory. The folder contains
the network weight files that are read by the
generated plugin. The generated plugin will
work in a DAW only if the required library
MKL-DNN is visible to the DAW. To make the
MKL-DNN library visible to a DAW, you must
keep the MKL-DNN library in the /usr/lib
directory or in the /usr/local/lib
directory.

4 Classes

4-256

Value generateAudioPlugin UI
Setting

Description

For more information about installing the MKL-
DNN library and setting the related environment
variables, see “Prerequisites for Deep Learning
with MATLAB Coder” (MATLAB Coder).

This option is not supported in MATLAB Online.

You must have MATLAB Coder Interface for Deep Learning Libraries installed to use this property
unless you choose the [] option. For more information, see coder.DeepLearningConfig.

CodeReplacementLibrary — Code replacement library configuration
"" (default) | "none" | "Intel AVX (Windows)" | "DSP Intel AVX2-FMA (Windows)" | "DSP
Intel AVX2-FMA (Linux)" | "DSP Intel AVX2-FMA (Mac)"

Code replacement library configuration, specified as an empty string (""), "none", "Intel AVX
(Windows)", "DSP Intel AVX2-FMA (Windows)", "DSP Intel AVX2-FMA (Linux)", or "DSP
Intel AVX2-FMA (Mac)".

You can also use the generateAudioPlugin user interface (UI) to specify the code replacement
library for plugin generation.

Value generateAudioPlugin UI
Setting

Description

"" or "none" Set Code replacement
library to None

Do not use a code replacement library.

"Intel AVX
(Windows)"

Set Code replacement
library to Intel AVX
(Windows)

Generate code that uses the Intel AVX code
replacement library. This option works only on
Windows platforms. This option is not supported
with the -win32 option of the
generateAudioPlugin function.

"DSP Intel
AVX2-FMA
(Windows)"

Set Code replacement
library to DSP Intel
AVX2-FMA (Windows)

Generate code that uses the Intel DSP AVX2-FMA
code replacement library. This option works only
on Windows platforms. This option is not
supported with the -win32 option of the
generateAudioPlugin function.

"DSP Intel
AVX2-FMA
(Linux)"

Set Code replacement
library to DSP Intel
AVX2-FMA (Linux)

Generate a JUCE project that uses the Intel DSP
AVX2-FMA code replacement library for Linux
platforms. This option works only with the -
juceproject option of the
generateAudioPlugin function.

"DSP Intel
AVX2-FMA (Mac)"

Set Code replacement
library to DSP Intel
AVX2-FMA (Mac)

Generate code that uses the Intel DSP AVX2-FMA
code replacement library. This option works only
on Intel Mac platforms.

You must have Embedded Coder® installed to use this property. For more information about code
replacement libraries, see “What Is Code Replacement Customization?” (Embedded Coder). For more
information on using the DSP AVX2-FMA code replacement libraries with System objects, see
“System objects in DSP System Toolbox that Support SIMD Code Generation”.

 audioPluginConfig

4-257

Examples

Audio Configuration Information for Plugin Class Definition

Create the source file for a plugin class, MyAudioPlugin, that uses the Intel AVX code replacement
library for Windows. Add a processing function to the class.

classdef MyAudioPlugin < audioPlugin
 properties (Constant)
 PluginConfig = audioPluginConfig(...
 'DeepLearningConfig',coder.DeepLearningConfig('none'), ...
 'CodeReplacementLibrary','Intel AVX (Windows)');
 end
 methods
 function out = process(~,in)
 out = in;
 end
 end
end

To validate the plugin, use the validateAudioPlugin function. To generate the plugin, use the
generateAudioPlugin function.

Audio Configuration Information on the Command Line

Create a DeepLearningConfigBase configuration object that generates code that does not use any
third-party library. Use the audioPluginConfig object to specify a plugin that incorporates the
previous property and uses the Intel AVX code replacement library for Windows. Generate the audio
plugin.

dlcfg = coder.DeepLearningConfig('none');
cfg = audioPluginConfig(...
 'DeepLearningConfig',dlcfg, ...
 'CodeReplacementLibrary','Intel AVX (Windows)');
generateAudioPlugin -audioconfig cfg MyAudioPlugin

Version History
Introduced in R2021b

See Also
Functions
generateAudioPlugin | validateAudioPlugin

Objects
audioPlugin | audioPluginInterface | audioPluginParameter | audioPluginSource |
coder.DeepLearningConfig

Apps
Audio Test Bench

4 Classes

4-258

Topics
“Design an Audio Plugin”
“Audio Plugins in MATLAB”
“Audio Plugin Example Gallery”

 audioPluginConfig

4-259

audioPluginSource class
Base class for audio source plugins

Description
audioPluginSource is the base class for audio source plugins. Use audio source plugins to produce
audio signals.

To create a valid audio source plugin, in your class definition file, subclass your object from the
audioPluginSource class. Subclassing enables you to inherit the attributes necessary to generate
audio source plugins and access Audio Toolbox functionality. To inherit from the
audioPluginSource base class directly, type this syntax as the first line of your class definition file:

classdef myAudioSourcePlugin < audioPluginSource

myAudioSourcePlugin is the name of your object.

The audioPluginSource class is a handle class.

Methods
Public Methods

getSamplesPerFrame Get frame size returned by the plugin
setSamplesPerFrame Set frame size returned by the plugin (MATLAB environment only)

Inherited Methods

setLatencyInSamples Set latency in samples reported to DAW
getSampleRate Get sample rate at which the plugin is run
setSampleRate Set sample rate at which the plugin is run

Examples

Design Valid Audio Plugin

Design a valid basic audio source plugin class

Terminology:

• A valid audio source plugin is one that can be deployed in a digital audio workstation (DAW)
environment. To validate it, use the validateAudioPlugin function. To generate it, use the
generateAudioPlugin function.

• A basic audio source plugin inherits from the audioPluginSource class but not the
matlab.System class.

Define a basic audio source plugin class that inherits from audioPluginSource.

4 Classes

4-260

classdef myAudioSourcePlugin < audioPluginSource
end

Add a processing function to your audio source plugin class.

All valid audio source plugins include a processing function. For basic audio source plugins, the
processing function is named process. The processing function defines the audio signal that your
plugin outputs. Audio source plugins do not accept audio signals as input to the processing function.

The default audio plugin interface assumes a stereo output. Specify the processing output as a matrix
with two columns. These columns correspond to the left and right channels of a stereo signal. The
number of rows in the output matrix correspond to the frame size.

The output frame size must match the frame size of the environment in which the plugin is run. A
DAW environment has variable frame size. To determine the current environment frame size, call
getSamplesPerFrame in the process function.

classdef myAudioSourcePlugin < audioPluginSource
 methods
 function out = process(plugin)
 out = 0.5*randn(getSamplesPerFrame(plugin),2);
 end
 end
end

myAudioSourcePlugin generates a Gaussian white noise audio signal with 0.5 standard deviation.

Version History
Introduced in R2016a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
validateAudioPlugin | generateAudioPlugin | audioPluginParameter |
audioPluginInterface | audioPlugin | audioPluginConfig | parameterTuner | Audio Test
Bench

Topics
“Audio Plugins in MATLAB”
“Audio Plugin Example Gallery”
“Hierarchies of Classes — Concepts”

 audioPluginSource class

4-261

getSamplesPerFrame
Class: audioPluginSource

Get frame size returned by the plugin

Syntax
frameSize = getSamplesPerFrame(myAudioSourcePlugin)

Description
frameSize = getSamplesPerFrame(myAudioSourcePlugin) returns the frame size at which
the plugin is run. frameSize is the number of output samples (rows) that the current call to the
processing function of myAudioSourcePlugin must return.

• In a digital audio workstation (DAW) environment, getSamplesPerFrame interacts with the DAW
to determine the frame size. Frame size can vary from call to call, as determined by the DAW
environment.

• In the MATLAB environment, getSamplesPerFrame returns the value set by a previous call to
the setSamplesPerFrame method. If setSamplesPerFrame has not been called, then
getSamplesPerFrame returns the default value, 256.

Note When authoring source plugins in MATLAB, getSamplesPerFrame is valid only when called in
the processing function.

Version History
Introduced in R2016a

4 Classes

4-262

setSamplesPerFrame
Class: audioPluginSource

Set frame size returned by the plugin (MATLAB environment only)

Syntax
setSamplesPerFrame(myAudioSourcePlugin,frameSize)

Description
setSamplesPerFrame(myAudioSourcePlugin,frameSize) sets the frame size (rows) that the
source plugin, myAudioSourcePlugin, must return in subsequent calls to its processing function.
Specify frameSize as a real integer greater than or equal to 0. setSamplesPerFrame enables the
MATLAB environment to mimic behavior in a digital audio workstation (DAW) environment.

Note Do not use setSamplesPerFrame in a generated plugin. If you call setSamplesPerFrame in
your authored plugin, generateAudioPlugin throws an error.

Version History
Introduced in R2016a

 setSamplesPerFrame

4-263

externalAudioPlugin class
Base class for external audio plugins

Description
externalAudioPlugin is the base class for hosted audio plugins. When you load an external plugin
using loadAudioPlugin, an object of that plugin is created having externalAudioPlugin or
externalAudioPluginSource as a base class. The externalAudioPluginSource class is used
when the external audio plugin is a source plugin.

For a tutorial on hosting audio plugins, see “Host External Audio Plugins”.

The externalAudioPlugin class is a handle class.

Methods
Public Methods

dispParameter Display information of single or multiple parameters
getParameter Get normalized value and information about parameter
info Get information about hosted plugin
process Process audio stream
setParameter Set normalized parameter value of hosted plugin

Inherited Methods

setLatencyInSamples Set latency in samples reported to DAW
getSampleRate Get sample rate at which the plugin is run
setSampleRate Set sample rate at which the plugin is run

Examples

Specify Hosted Plugin Parameter Values

Load a VST audio plugin into MATLAB® by specifying its full path. If you are using a Mac, replace
the .dll file extension with .vst.

pluginPath = fullfile(matlabroot,'toolbox/audio/samples/ParametricEqualizer.dll');
hostedPlugin = loadAudioPlugin(pluginPath)

Use info to return information about the hosted plugin.

info(hostedPlugin)

Use setParameter to change the normalized value of the Medium Center Frequency parameter
to 0.75. Specify the parameter by its index.

4 Classes

4-264

setParameter(hostedPlugin,5,0.75)

When you set the normalized parameter value, the parameter display value is automatically updated.
The normalized parameter value generally corresponds to the position of a UI widget or MIDI
controller. The parameter display value typically reflects the value used internally for processing.

Use dispParameter to display the updated table of parameters.

dispParameter(hostedPlugin)

Alternatively, you can use getParameter to return the normalized value of a single parameter.

parameterIndex = 5;
parameterValue = getParameter(hostedPlugin,parameterIndex)

Run External Plugin in MATLAB

Load a VST audio plugin into MATLAB™ by specifying its full path. If you are using a Mac, replace
the .dll file extension with .vst.

pluginPath = fullfile(matlabroot,'toolbox','audio','samples','ParametricEqualizer.dll');
hostedPlugin = loadAudioPlugin(pluginPath);

Create input and output objects for an audio stream loop that reads from a file and writes to your
audio device. Set the sample rate of the hosted plugin to the sample rate of the input to the plugin.

fileReader = dsp.AudioFileReader('FunkyDrums-44p1-stereo-25secs.mp3');
deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);
setSampleRate(hostedPlugin,fileReader.SampleRate);

Set the MediumPeakGain property to -20 dB.

hostedPlugin.MediumPeakGain = -20;

Use the hosted plugin to process the audio file in an audio stream loop. Sweep the medium peak gain
upward in the loop to hear the effect.

while hostedPlugin.MediumPeakGain < 19
 hostedPlugin.MediumPeakGain = hostedPlugin.MediumPeakGain + 0.04;
 x = fileReader();
 y = process(hostedPlugin,x);
 deviceWriter(y);
end

release(fileReader)
release(deviceWriter)

Limitations
• Saving an external plugin as a MAT-file and then loading it preserves the external settings and

parameters of the plugin but does not preserve its internal state or memory. Do not save and load
your plugins when you are processing audio.

 externalAudioPlugin class

4-265

Version History
Introduced in R2016b

See Also
externalAudioPluginSource | audioPluginSource | audioPlugin | loadAudioPlugin |
parameterTuner | Audio Test Bench

Topics
“Host External Audio Plugins”
“Hierarchies of Classes — Concepts”

4 Classes

4-266

dispParameter
Class: externalAudioPlugin

Display information of single or multiple parameters

Syntax
dispParameter(hostedPlugin)
dispParameter(hostedPlugin,parameter)

Description
dispParameter(hostedPlugin) displays all parameters and associated indices, values, displayed
values, and display labels. For example:

dispParameter(hostedPlugin)

 Parameter Value Display

 1 Wet: 1.0000 +0.0 dB
 2 Dry: 1.0000 +0.0 dB
 3 1: Enabled: 1.0000 ON
 4 1: Length: 0.0000 0.0 ms
 5 1: Length: 0.0156 4.00 8N
 6 1: Feedback: 0.0000 -inf dB
 7 1: Lowpass: 1.0000 20000 Hz
 8 1: Hipass: 0.0000 0 Hz
 9 1: Resolution: 1.0000 24 bits
 10 1: Stereo width: 1.0000 1.00
 11 1: Volume: 1.0000 +0.0 dB
 12 1: Pan: 0.5000 0.0 %

The Value column corresponds to the normalized parameter value. Generally, the normalized
parameter value represents the position of a UI widget or MIDI controller. The Display column
corresponds to an internal parameter value used for processing. The Value and Display are related
by an unknown mapping that is internal to the hosted plugin.

dispParameter(hostedPlugin,parameter) displays a subset of parameters. You can specify a
parameter by its name as a character vector, string, or as a vector of one or more parameter indices.
For example:

• dispParameter(hostedPlugin,'Gain') displays information about the 'Gain' parameter of
hostedPlugin.

• dispParameter(hostedPlugin,[1,3]) displays information about parameters specified by
indices 1 and 3.

Version History
Introduced in R2016b

 dispParameter

4-267

getParameter
Class: externalAudioPlugin

Get normalized value and information about parameter

Syntax
value = getParameter(hostedPlugin,parameter)
[value, parameterInformation] = getParameter(hostedPlugin,parameter)

Description
value = getParameter(hostedPlugin,parameter) returns the normalized value of the
parameter of hostedPlugin. You can specify a parameter by its name as a character vector, string,
or by its index. For example:

• getParameter(hostedPlugin,'Gain') returns the normalized value of the hosted plugin
parameter named 'Gain'. If the parameter name is not unique, getParameter returns an error.

• getParameter(hostedPlugin,2) returns information about the parameter specified by index
2.

[value, parameterInformation] = getParameter(hostedPlugin,parameter) returns a
structure containing additional information about the specified parameter of the hosted plugin.

Field Description
DisplayName Display name or prompt of the plugin parameter, returned as a character vector.

The display name is intended for display on the plugin user interface (UI).
DisplayValue Display value of the plugin parameter, returned as a character vector. The

parameter DisplayValue corresponds to the normalized parameter value by
an unknown mapping internal to the hosted plugin. Generally, the display value
reflects the value used internally by the plugin for processing, while the
normalized parameter value corresponds to the position of a MIDI control or
widget on a UI.

Label Label intended for display with DisplayValue on the plugin UI, returned as a
character vector. Typical labels include dB and Hz.

Version History
Introduced in R2016b

4 Classes

4-268

info
Class: externalAudioPlugin

Get information about hosted plugin

Syntax
pluginInfo = info(hostedPlugin)

Description
pluginInfo = info(hostedPlugin) returns a structure containing information about the hosted
plugin.

Field Description
PluginName Display name of plugin.
Format Software interface. Supported formats include VST, VST 3, and AU.
InputChannels Number of channels passed to the processing function of the plugin.
OutputChannels Number of channels returned from the processing function of the plugin.
NumParams Total number of plugin parameters.
PluginPath Path specified when plugin is loaded using loadAudioPlugin.
VendorName Name of the plugin creator.
VendorVersion Version number. Typically used to track plugin releases.
UniqueID Unique identifier of plugin used for recognition in certain digital audio

workstation (DAW) environments.

Version History
Introduced in R2016b

 info

4-269

process
Class: externalAudioPlugin

Process audio stream

Syntax
audioOut = process(hostedPlugin,audioIn)

Description
audioOut = process(hostedPlugin,audioIn) returns an audio signal processed according to
the algorithm and parameters of hostedPlugin. For source plugins, call process without an audio
input. Use info(hostedPlugin) to determine the number of channels (columns) of the input and
output audio signal.

Use setSamplesPerFrame(hostedPlugin) to specify the frame size returned by hosted source
plugins.

Version History
Introduced in R2016b

4 Classes

4-270

setParameter
Class: externalAudioPlugin

Set normalized parameter value of hosted plugin

Syntax
setParameter(hostedPlugin,parameter,newValue)

Description
setParameter(hostedPlugin,parameter,newValue) sets the normalized value corresponding
to the parameter of hostedPlugin to newValue. Specify the parameter by its unique display name
or its index. Specify the new normalized parameter value as a scalar in the range 0–1.

For example, assume hostedPlugin has a parameter with index 3 and a unique display name,
'Gain'. These commands are identical:

• setParameter(hostedPlugin,'Gain',0.2)
• setParameter(hostedPlugin,3,0.2)

Note A hosted plugin might quantize its parameters. The result of setParameter for quantized
parameters depends on the type of quantization.

Version History
Introduced in R2016b

 setParameter

4-271

externalAudioPluginSource class
Base class for external audio source plugins

Description
externalAudioPluginSource is the base class for hosted audio source plugins. When you load an
external plugin using loadAudioPlugin, an object of that plugin is created having
externalAudioPlugin or externalAudioPluginSource as a base class. The
externalAudioPluginSource class is used when the external audio plugin is a source plugin.

For a tutorial on hosting audio plugins, see “Host External Audio Plugins”.

The externalAudioPluginSource class is a handle class.

Methods
Inherited Methods

dispParameter Display information of single or multiple parameters
getParameter Get normalized value and information about parameter
info Get information about hosted plugin
process Process audio stream
setParameter Set normalized parameter value of hosted plugin

setLatencyInSamples Set latency in samples reported to DAW
getSampleRate Get sample rate at which the plugin is run
setSampleRate Set sample rate at which the plugin is run

getSamplesPerFrame Get frame size returned by the plugin
setSamplesPerFrame Set frame size returned by the plugin (MATLAB environment only)

Examples

Specify Hosted Source Plugin Parameter Values

Load a VST audio source plugin into MATLAB® by specifying its full path. If you are using a Mac,
replace the .dll file extension with .vst.

pluginPath = fullfile(matlabroot,'toolbox/audio/samples/oscillator.dll');
hostedSourcePlugin = loadAudioPlugin(pluginPath)

Use info to return information about the hosted plugin.

info(hostedSourcePlugin)

4 Classes

4-272

Use setParameter to change the normalized value of the Frequency parameter to 0.8. Specify the
parameter by its index.

setParameter(hostedSourcePlugin,1,0.8)

When you set the normalized parameter value, the parameter display value is automatically updated.
Generally, the normalized parameter value corresponds to the position of a UI widget or MIDI
controller. The parameter display value typically reflects the value used internally by the plugin for
processing.

Use dispParameter to display the updated table of parameters.

dispParameter(hostedSourcePlugin)

Alternatively, you can use getParameter to return the normalized value of a single parameter.

getParameter(hostedSourcePlugin,1)

Run External Source Plugin in MATLAB

Load a VST audio source plugin into MATLAB™ by specifying its full path. If you are using a Mac,
replace the .dll file extension with .vst.

pluginPath = fullfile(matlabroot,'toolbox','audio','samples','oscillator.dll');
hostedSourcePlugin = loadAudioPlugin(pluginPath);

Set the Amplitude property to 0.5. Set the Frequency property to 16 kHz.

hostedSourcePlugin.Amplitude = 0.5;
hostedSourcePlugin.Frequency = 16000;

Set the sample rate at which to run the plugin. Create an output object to write to your audio device.

setSampleRate(hostedSourcePlugin,44100);
deviceWriter = audioDeviceWriter('SampleRate',44100);

Use the hosted source plugin to output an audio stream. The processing in the audio stream loop
ramps the frequency parameter down and then up.

k = 1;
for i = 1:1000
 hostedSourcePlugin.Frequency = hostedSourcePlugin.Frequency - 30*k;
 y = process(hostedSourcePlugin);
 deviceWriter(y);
 if (hostedSourcePlugin.Frequency - 30 <= 0.1) || (hostedSourcePlugin.Frequency + 30 >= 20e3)
 k = -1*k;
 end
end

release(deviceWriter)

 externalAudioPluginSource class

4-273

Limitations
• Saving an external plugin as a MAT-file and then loading it preserves the external settings and

parameters of the plugin but does not preserve its internal state or memory. Do not save and load
your plugins when you are processing audio.

Version History
Introduced in R2016b

See Also
parameterTuner | Audio Test Bench | loadAudioPlugin | audioPlugin | audioPluginSource
| externalAudioPlugin

Topics
“Host External Audio Plugins”
“Hierarchies of Classes — Concepts”

4 Classes

4-274

ivectorSystem
Create i-vector system

Description
i-vectors are compact statistical representations of identity extracted from audio signals.
ivectorSystem creates a trainable i-vector system to extract i-vectors and perform classification
tasks such as speaker recognition, speaker diarization, and sound classification. You can also
determine thresholds for open set tasks and enroll labels into the system for both open and closed set
classification.

Creation

Syntax
ivs = ivectorSystem
ivs = ivectorSystem(Name=Value)

Description

ivs = ivectorSystem creates a default i-vector system. You can train the i-vector system to
extract i-vectors and perform classification tasks.

ivs = ivectorSystem(Name=Value) specifies nondefault properties for ivs using one or more
name-value arguments.

Properties
InputType — Type of input
"audio" (default) | "features"

Input type, specified as "audio" or "features".

• "audio" –– The i-vector system accepts mono audio signals as input. The audio data is processed
to extract 20 mel frequency cepstral coefficients (MFCCs), delta MFCCs, and delta-delta MFCCs
for 60 coefficients per frame.

If InputType is set to "audio" when the i-vector system is created, the training data can be:

• A cell array of single-channel audio signals, each specified as a column vector with underlying
type single or double.

• An audioDatastore object or a signalDatastore object that points to a data set of mono
audio signals.

• A TransformedDatastore with an underlying audioDatastore or signalDatastore that
points to a data set of mono audio signals. The output from calls to read from the transform
datastore must be mono audio signals with underlying data type single or double.

 ivectorSystem

4-275

• "features" –– The i-vector accepts pre-extracted audio features as input.

If InputType is set to "features" when the i-vector system is created, the training data can be:

• A cell array of matrices with underlying type single or double. The matrices must consist of
audio features where the number of features (columns) is locked the first time
trainExtractor is called and the number of hops (rows) is variable-sized. The number of
features input in any subsequent calls to any of the object functions must be equal to the
number of features used when calling trainExtractor.

• A TransformedDatastore object with an underlying audioDatastore or
signalDatastore whose read function has output as described in the previous bullet.

• A signalDatastore object whose read function has output as described in the first bullet.

Example: ivs = ivectorSystem(InputType="audio")
Data Types: char | string

SampleRate — Sample rate of audio input in Hz
16000 (default) | positive scalar

Sample rate of the audio input in Hz, specified as a positive scalar.

Note The "SampleRate" property applies only when InputType is set to "audio".

Example: ivs = ivectorSystem(InputType="audio",SampleRate=48000)
Data Types: single | double

DetectSpeech — Apply speech detection
true (default) | false

Apply speech detection, specified as true or false. With DetectSpeech set to true, the i-vector
system extracts features only from regions where speech is detected.

Note The DetectSpeech property applies only when InputType is set to "audio".

ivectorSystem uses the detectSpeech function to detect regions of speech.
Example: ivs = ivectorSystem(InputType="audio",DetectSpeech=true)
Data Types: logical | single | double

Verbose — Display training progress
true (default) | false

Display training progress, specified as true or false. With Verbose set to true, the i-vector system
displays the training progress in the command window or the Live Editor.

Tip To toggle between verbose and non-verbose behavior, use dot notation to set the Verbose
property between object function calls.

4 Classes

4-276

Example: ivs = ivectorSystem(InputType="audio",Verbose=false)
Data Types: logical | single | double

EnrolledLabels — Table containing enrolled labels
0-by-2 table (default)

This property is read-only.

Table containing enrolled labels, specified as a table. Table row names correspond to labels and
column names correspond to the template i-vector and the number of individual i-vectors used to
generate the template i-vector. The number of i-vectors used to generate the template i-vector may be
viewed as a measure of confidence in the template.

• Use enroll to enroll new labels or update existing labels.
• Use unenroll to remove labels from the system.

Data Types: table

Object Functions
trainExtractor Train i-vector extractor
trainClassifier Train i-vector classifier
calibrate Train i-vector system calibrator
enroll Enroll labels
unenroll Unenroll labels
detectionErrorTradeoff Evaluate binary classification system
verify Verify label
identify Identify label
ivector Extract i-vector
info Return training configuration and data info
addInfoHeader Add custom information about i-vector system
release Allow property values and input characteristics to change

Examples

Train Speaker Verification System

Use the Pitch Tracking Database from Graz University of Technology (PTDB-TUG) [1] on page 4-287.
The data set consists of 20 English native speakers reading 2342 phonetically rich sentences from the
TIMIT corpus. Download and extract the data set. Depending on your system, downloading and
extracting the data set can take approximately 1.5 hours.

url = "https://www2.spsc.tugraz.at/databases/PTDB-TUG/SPEECH_DATA_ZIPPED.zip";
downloadFolder = tempdir;
datasetFolder = fullfile(downloadFolder,"PTDB-TUG");

if ~exist(datasetFolder,"dir")
 disp("Downloading PTDB-TUG (3.9 G) ...")
 unzip(url,datasetFolder)
end

 ivectorSystem

4-277

Create an audioDatastore object that points to the data set. The data set was originally intended
for use in pitch-tracking training and evaluation and includes laryngograph readings and baseline
pitch decisions. Use only the original audio recordings.

ads = audioDatastore([fullfile(datasetFolder,"SPEECH DATA","FEMALE","MIC"),fullfile(datasetFolder,"SPEECH DATA","MALE","MIC")], ...
 IncludeSubfolders=true, ...
 FileExtensions=".wav");

The file names contain the speaker IDs. Decode the file names to set the labels in the
audioDatastore object.

ads.Labels = extractBetween(ads.Files,"mic_","_");
countEachLabel(ads)

ans=20×2 table
 Label Count
 _____ _____

 F01 236
 F02 236
 F03 236
 F04 236
 F05 236
 F06 236
 F07 236
 F08 234
 F09 236
 F10 236
 M01 236
 M02 236
 M03 236
 M04 236
 M05 236
 M06 236
 ⋮

Read an audio file from the data set, listen to it, and plot it.

[audioIn,audioInfo] = read(ads);
fs = audioInfo.SampleRate;

t = (0:size(audioIn,1)-1)/fs;
sound(audioIn,fs)
plot(t,audioIn)
xlabel("Time (s)")
ylabel("Amplitude")
axis([0 t(end) -1 1])
title("Sample Utterance from Data Set")

4 Classes

4-278

Separate the audioDatastore object into four: one for training, one for enrollment, one to evaluate
the detection-error tradeoff, and one for testing. The training set contains 16 speakers. The
enrollment, detection-error tradeoff, and test sets contain the other four speakers.

speakersToTest = categorical(["M01","M05","F01","F05"]);

adsTrain = subset(ads,~ismember(ads.Labels,speakersToTest));

ads = subset(ads,ismember(ads.Labels,speakersToTest));
[adsEnroll,adsTest,adsDET] = splitEachLabel(ads,3,1);

Display the label distributions of the audioDatastore objects.

countEachLabel(adsTrain)

ans=16×2 table
 Label Count
 _____ _____

 F02 236
 F03 236
 F04 236
 F06 236
 F07 236
 F08 234
 F09 236
 F10 236
 M02 236

 ivectorSystem

4-279

 M03 236
 M04 236
 M06 236
 M07 236
 M08 236
 M09 236
 M10 236

countEachLabel(adsEnroll)

ans=4×2 table
 Label Count
 _____ _____

 F01 3
 F05 3
 M01 3
 M05 3

countEachLabel(adsTest)

ans=4×2 table
 Label Count
 _____ _____

 F01 1
 F05 1
 M01 1
 M05 1

countEachLabel(adsDET)

ans=4×2 table
 Label Count
 _____ _____

 F01 232
 F05 232
 M01 232
 M05 232

Create an i-vector system. By default, the i-vector system assumes the input to the system is mono
audio signals.

speakerVerification = ivectorSystem(SampleRate=fs)

speakerVerification =
 ivectorSystem with properties:

 InputType: 'audio'
 SampleRate: 48000
 DetectSpeech: 1
 Verbose: 1
 EnrolledLabels: [0×2 table]

4 Classes

4-280

To train the extractor of the i-vector system, call trainExtractor. Specify the number of universal
background model (UBM) components as 128 and the number of expectation maximization iterations
as 5. Specify the total variability space (TVS) rank as 64 and the number of iterations as 3.

trainExtractor(speakerVerification,adsTrain, ...
 UBMNumComponents=128,UBMNumIterations=5, ...
 TVSRank=64,TVSNumIterations=3)

Calculating standardization factorsdone.
Training universal background modeldone.
Training total variability spacedone.
i-vector extractor training complete.

To train the classifier of the i-vector system, use trainClassifier. To reduce dimensionality of the
i-vectors, specify the number of eigenvectors in the projection matrix as 16. Specify the number of
dimensions in the probabilistic linear discriminant analysis (PLDA) model as 16, and the number of
iterations as 3.

trainClassifier(speakerVerification,adsTrain,adsTrain.Labels, ...
 NumEigenvectors=16, ...
 PLDANumDimensions=16,PLDANumIterations=3)

Extracting i-vectors ...done.
Training projection matrixdone.
Training PLDA modeldone.
i-vector classifier training complete.

To calibrate the system so that scores can be interpreted as a measure of confidence in a positive
decision, use calibrate.

calibrate(speakerVerification,adsTrain,adsTrain.Labels)

Extracting i-vectors ...done.
Calibrating CSS scorer ...done.
Calibrating PLDA scorer ...done.
Calibration complete.

To inspect parameters used previously to train the i-vector system, use info.

info(speakerVerification)

i-vector system input
 Input feature vector length: 60
 Input data type: double

trainExtractor
 Train signals: 3774
 UBMNumComponents: 128
 UBMNumIterations: 5
 TVSRank: 64
 TVSNumIterations: 3

trainClassifier
 Train signals: 3774
 Train labels: F02 (236), F03 (236) ... and 14 more
 NumEigenvectors: 16
 PLDANumDimensions: 16
 PLDANumIterations: 3

 ivectorSystem

4-281

calibrate
 Calibration signals: 3774
 Calibration labels: F02 (236), F03 (236) ... and 14 more

Split the enrollment set.

[adsEnrollPart1,adsEnrollPart2] = splitEachLabel(adsEnroll,1,2);

To enroll speakers in the i-vector system, call enroll.

enroll(speakerVerification,adsEnrollPart1,adsEnrollPart1.Labels)

Extracting i-vectors ...done.
Enrolling i-vectorsdone.
Enrollment complete.

When you enroll speakers, the read-only EnrolledLabels property is updated with the enrolled
labels and corresponding template i-vectors. The table also keeps track of the number of signals used
to create the template i-vector. Generally, using more signals results in a better template.

speakerVerification.EnrolledLabels

ans=4×2 table
 ivector NumSamples
 _____________ __________

 F01 {16×1 double} 1
 F05 {16×1 double} 1
 M01 {16×1 double} 1
 M05 {16×1 double} 1

Enroll the second part of the enrollment set and then view the enrolled labels table again. The i-
vector templates and the number of samples are updated.

enroll(speakerVerification,adsEnrollPart2,adsEnrollPart2.Labels)

Extracting i-vectors ...done.
Enrolling i-vectorsdone.
Enrollment complete.

speakerVerification.EnrolledLabels

ans=4×2 table
 ivector NumSamples
 _____________ __________

 F01 {16×1 double} 3
 F05 {16×1 double} 3
 M01 {16×1 double} 3
 M05 {16×1 double} 3

To evaluate the i-vector system and determine a decision threshold for speaker verification, call
detectionErrorTradeoff.

[results, eerThreshold] = detectionErrorTradeoff(speakerVerification,adsDET,adsDET.Labels);

4 Classes

4-282

Extracting i-vectors ...done.
Scoring i-vector pairs ...done.
Detection error tradeoff evaluation complete.

The first output from detectionErrorTradeoff is a structure with two fields: CSS and PLDA. Each
field contains a table. Each row of the table contains a possible decision threshold for speaker
verification tasks, and the corresponding false alarm rate (FAR) and false rejection rate (FRR). The
FAR and FRR are determined using the enrolled speaker labels and the data input to the
detectionErrorTradeoff function.

results

results = struct with fields:
 PLDA: [1000×3 table]
 CSS: [1000×3 table]

results.CSS

ans=1000×3 table
 Threshold FAR FRR
 __________ _______ ___

 1.7736e-09 1 0
 1.8233e-09 0.99964 0
 1.8745e-09 0.99964 0
 1.927e-09 0.99964 0
 1.9811e-09 0.99964 0
 2.0366e-09 0.99964 0
 2.0937e-09 0.99964 0
 2.1524e-09 0.99964 0
 2.2128e-09 0.99964 0
 2.2748e-09 0.99964 0
 2.3386e-09 0.99964 0
 2.4042e-09 0.99964 0
 2.4716e-09 0.99964 0
 2.5409e-09 0.99964 0
 2.6122e-09 0.99964 0
 2.6854e-09 0.99964 0
 ⋮

results.PLDA

ans=1000×3 table
 Threshold FAR FRR
 __________ _______ ___

 4.7045e-34 1 0
 5.143e-34 0.99964 0
 5.6225e-34 0.99964 0
 6.1466e-34 0.99964 0
 6.7197e-34 0.99964 0
 7.3461e-34 0.99964 0
 8.0309e-34 0.99964 0
 8.7796e-34 0.99964 0
 9.5981e-34 0.99964 0
 1.0493e-33 0.99964 0
 1.1471e-33 0.99964 0

 ivectorSystem

4-283

 1.254e-33 0.99964 0
 1.371e-33 0.99964 0
 1.4988e-33 0.99964 0
 1.6385e-33 0.99964 0
 1.7912e-33 0.99964 0
 ⋮

The second output from detectionErrorTradeoff is a structure with two fields: CSS and PLDA.
The corresponding value is the decision threshold that results in the equal error rate (when FAR and
FRR are equal).

eerThreshold

eerThreshold = struct with fields:
 PLDA: 0.0021
 CSS: 0.9366

The first time you call detectionErrorTradeoff, you must provide data and corresponding labels
to evaluate. Subsequently, you can get the same information, or a different analysis using the same
underlying data, by calling detectionErrorTradeoff without data and labels.

Call detectionErrorTradeoff a second time with no data arguments or output arguments to
visualize the detection-error tradeoff.

detectionErrorTradeoff(speakerVerification)

4 Classes

4-284

Call detectionErrorTradeoff again. This time, visualize only the detection-error tradeoff for the
PLDA scorer.

detectionErrorTradeoff(speakerVerification,Scorer="plda")

Depending on your application, you may want to use a threshold that weights the error cost of a false
alarm higher or lower than the error cost of a false rejection. You may also be using data that is not
representative of the prior probability of the speaker being present. You can use the minDCF
parameter to specify custom costs and prior probability. Call detectionErrorTradeoff again, this
time specify the cost of a false rejection as 1, the cost of a false acceptance as 2, and the prior
probability that a speaker is present as 0.1.

costFR = 1;
costFA = 2;
priorProb = 0.1;
detectionErrorTradeoff(speakerVerification,Scorer="plda",minDCF=[costFR,costFA,priorProb])

 ivectorSystem

4-285

Call detectionErrorTradeoff again. This time, get the minDCF threshold for the PLDA scorer and
the parameters of the detection cost function.

[~,minDCFThreshold] = detectionErrorTradeoff(speakerVerification,Scorer="plda",minDCF=[costFR,costFA,priorProb])

minDCFThreshold = 0.0595

Test Speaker Verification System

Read a signal from the test set.

adsTest = shuffle(adsTest);
[audioIn,audioInfo] = read(adsTest);
knownSpeakerID = audioInfo.Label

knownSpeakerID = 1×1 cell array
 {'F05'}

To perform speaker verification, call verify with the audio signal and specify the speaker ID, a
scorer, and a threshold for the scorer. The verify function returns a logical value indicating whether
a speaker identity is accepted or rejected, and a score indicating the similarity of the input audio and
the template i-vector corresponding to the enrolled label.

[tf,score] = verify(speakerVerification,audioIn,knownSpeakerID,"plda",eerThreshold.PLDA);
if tf
 fprintf('Success!\nSpeaker accepted.\nSimilarity score = %0.2f\n\n',score)
else

4 Classes

4-286

 fprinf('Failure!\nSpeaker rejected.\nSimilarity score = %0.2f\n\n',score)
end

Success!
Speaker accepted.
Similarity score = 1.00

Call speaker verification again. This time, specify an incorrect speaker ID.

possibleSpeakers = speakerVerification.EnrolledLabels.Properties.RowNames;
imposterIdx = find(~ismember(possibleSpeakers,knownSpeakerID));
imposter = possibleSpeakers(imposterIdx(randperm(numel(imposterIdx),1)))

imposter = 1×1 cell array
 {'F01'}

[tf,score] = verify(speakerVerification,audioIn,imposter,"plda",eerThreshold.PLDA);
if tf
 fprintf('Failure!\nSpeaker accepted.\nSimilarity score = %0.2f\n\n',score)
else
 fprintf('Success!\nSpeaker rejected.\nSimilarity score = %0.2f\n\n',score)
end

Success!
Speaker rejected.
Similarity score = 0.00

References

[1] Signal Processing and Speech Communication Laboratory. https://www.spsc.tugraz.at/databases-
and-tools/ptdb-tug-pitch-tracking-database-from-graz-university-of-technology.html. Accessed 12 Dec.
2019.

Train Speaker Identification System

Use the Census Database (also known as AN4 Database) from the CMU Robust Speech Recognition
Group [1] on page 4-290. The data set contains recordings of male and female subjects speaking
words and numbers. The helper function in this example downloads the data set for you and converts
the raw files to FLAC, and returns two audioDatastore objects containing the training set and test
set. By default, the data set is reduced so that the example runs quickly. You can use the full data set
by setting ReduceDataset to false.

[adsTrain,adsTest] = HelperAN4Download(ReduceDataset=true);

Split the test data set into enroll and test sets. Use two utterances for enrollment and the remaining
for the test set. Generally, the more utterances you use for enrollment, the better the performance of
the system. However, most practical applications are limited to a small set of enrollment utterances.

[adsEnroll,adsTest] = splitEachLabel(adsTest,2);

Inspect the distribution of speakers in the training, test, and enroll sets. The speakers in the training
set do not overlap with the speakers in the test and enroll sets.

summary(adsTrain.Labels)

 ivectorSystem

4-287

https://www.spsc.tugraz.at/databases-and-tools/ptdb-tug-pitch-tracking-database-from-graz-university-of-technology.html.
https://www.spsc.tugraz.at/databases-and-tools/ptdb-tug-pitch-tracking-database-from-graz-university-of-technology.html.

 fejs 13
 fmjd 13
 fsrb 13
 ftmj 13
 fwxs 12
 mcen 13
 mrcb 13
 msjm 13
 msjr 13
 msmn 9

summary(adsEnroll.Labels)

 fvap 2
 marh 2

summary(adsTest.Labels)

 fvap 11
 marh 11

Create an i-vector system that accepts feature input.

fs = 16e3;
iv = ivectorSystem(SampleRate=fs,InputType="features");

Create an audioFeatureExtractor object to extract the gammatone cepstral coefficients (GTCC),
the delta GTCC, the delta-delta GTCC, and the pitch from 50 ms periodic Hann windows with 45 ms
overlap.

afe = audioFeatureExtractor(gtcc=true,gtccDelta=true,gtccDeltaDelta=true,pitch=true,SampleRate=fs);
afe.Window = hann(round(0.05*fs),"periodic");
afe.OverlapLength = round(0.045*fs);
afe

afe =
 audioFeatureExtractor with properties:

 Properties
 Window: [800×1 double]
 OverlapLength: 720
 SampleRate: 16000
 FFTLength: []
 SpectralDescriptorInput: 'linearSpectrum'
 FeatureVectorLength: 40

 Enabled Features
 gtcc, gtccDelta, gtccDeltaDelta, pitch

 Disabled Features
 linearSpectrum, melSpectrum, barkSpectrum, erbSpectrum, mfcc, mfccDelta
 mfccDeltaDelta, spectralCentroid, spectralCrest, spectralDecrease, spectralEntropy, spectralFlatness
 spectralFlux, spectralKurtosis, spectralRolloffPoint, spectralSkewness, spectralSlope, spectralSpread
 harmonicRatio, zerocrossrate, shortTimeEnergy

 To extract a feature, set the corresponding property to true.
 For example, obj.mfcc = true, adds mfcc to the list of enabled features.

4 Classes

4-288

Create transformed datastores by adding feature extraction to the read function of adsTrain and
adsEnroll.

trainLabels = adsTrain.Labels;
adsTrain = transform(adsTrain,@(x)extract(afe,x));
enrollLabels = adsEnroll.Labels;
adsEnroll = transform(adsEnroll,@(x)extract(afe,x));

Train both the extractor and classifier using the training set.

trainExtractor(iv,adsTrain, ...
 UBMNumComponents=64, ...
 UBMNumIterations=5, ...
 TVSRank=32, ...
 TVSNumIterations=3);

Calculating standardization factorsdone.
Training universal background modeldone.
Training total variability spacedone.
i-vector extractor training complete.

trainClassifier(iv,adsTrain,trainLabels, ...
 NumEigenvectors=16, ...
 ...
 PLDANumDimensions=16, ...
 PLDANumIterations=5);

Extracting i-vectors ...done.
Training projection matrixdone.
Training PLDA modeldone.
i-vector classifier training complete.

To calibrate the system so that scores can be interpreted as a measure of confidence in a positive
decision, use calibrate.

calibrate(iv,adsTrain,trainLabels)

Extracting i-vectors ...done.
Calibrating CSS scorer ...done.
Calibrating PLDA scorer ...done.
Calibration complete.

Enroll the speakers from the enrollment set.

enroll(iv,adsEnroll,enrollLabels)

Extracting i-vectors ...done.
Enrolling i-vectorsdone.
Enrollment complete.

Evaluate the file-level prediction accuracy on the test set.

numCorrect = 0;
reset(adsTest)
for index = 1:numel(adsTest.Files)
 features = extract(afe,read(adsTest));

 results = identify(iv,features);

 ivectorSystem

4-289

 trueLabel = adsTest.Labels(index);
 predictedLabel = results.Label(1);
 isPredictionCorrect = trueLabel==predictedLabel;

 numCorrect = numCorrect + isPredictionCorrect;
end
display("File Accuracy: " + round(100*numCorrect/numel(adsTest.Files),2) + " (%)")

 "File Accuracy: 100 (%)"

References

[1] "CMU Sphinx Group - Audio Databases." http://www.speech.cs.cmu.edu/databases/an4/. Accessed
19 Dec. 2019.

Train Environmental Sound Classification System

Download and unzip the environment sound classification data set. This data set consists of
recordings labeled as one of 10 different audio sound classes (ESC-10).

loc = matlab.internal.examples.downloadSupportFile("audio","ESC-10.zip");
unzip(loc,pwd)

Create an audioDatastore object to manage the data and split it into training and validation sets.
Call countEachLabel to display the distribution of sound classes and the number of unique labels.

ads = audioDatastore(pwd,IncludeSubfolders=true,LabelSource="foldernames");
countEachLabel(ads)

ans=10×2 table
 Label Count
 ______________ _____

 chainsaw 40
 clock_tick 40
 crackling_fire 40
 crying_baby 40
 dog 40
 helicopter 40
 rain 40
 rooster 38
 sea_waves 40
 sneezing 40

Listen to one of the files.

[audioIn,audioInfo] = read(ads);
fs = audioInfo.SampleRate;
sound(audioIn,fs)
audioInfo.Label

ans = categorical
 chainsaw

Split the datastore into training and test sets.

4 Classes

4-290

[adsTrain,adsTest] = splitEachLabel(ads,0.8);

Create an audioFeatureExtractor to extract all possible features from the audio.

afe = audioFeatureExtractor(SampleRate=fs, ...
 Window=hamming(round(0.03*fs),"periodic"), ...
 OverlapLength=round(0.02*fs));
params = info(afe,"all");
params = structfun(@(x)true,params,UniformOutput=false);
set(afe,params);
afe

afe =
 audioFeatureExtractor with properties:

 Properties
 Window: [1323×1 double]
 OverlapLength: 882
 SampleRate: 44100
 FFTLength: []
 SpectralDescriptorInput: 'linearSpectrum'
 FeatureVectorLength: 862

 Enabled Features
 linearSpectrum, melSpectrum, barkSpectrum, erbSpectrum, mfcc, mfccDelta
 mfccDeltaDelta, gtcc, gtccDelta, gtccDeltaDelta, spectralCentroid, spectralCrest
 spectralDecrease, spectralEntropy, spectralFlatness, spectralFlux, spectralKurtosis, spectralRolloffPoint
 spectralSkewness, spectralSlope, spectralSpread, pitch, harmonicRatio, zerocrossrate
 shortTimeEnergy

 Disabled Features
 none

 To extract a feature, set the corresponding property to true.
 For example, obj.mfcc = true, adds mfcc to the list of enabled features.

Create two directories in your current folder: train and test. Extract features from the training and
the test data sets and write the features as MAT files to the respective directories. Pre-extracting
features can save time when you want to evaluate different feature combinations or training
configurations.

if ~isdir("train")
 mkdir("train")
 mkdir("test")

 outputType = ".mat";
 writeall(adsTrain,"train",WriteFcn=@(x,y,z)writeFeatures(x,y,z,afe))
 writeall(adsTest,"test",WriteFcn=@(x,y,z)writeFeatures(x,y,z,afe))
end

Create signal datastores to point to the audio features.

sdsTrain = signalDatastore("train",IncludeSubfolders=true);
sdsTest = signalDatastore("test",IncludeSubfolders=true);

Create label arrays that are in the same order as the signalDatastore files.

 ivectorSystem

4-291

labelsTrain = categorical(extractBetween(sdsTrain.Files,"ESC-10"+filesep,filesep));
labelsTest = categorical(extractBetween(sdsTest.Files,"ESC-10"+filesep,filesep));

Create a transform datastore from the signal datastores to isolate and use only the desired features.
You can use the output from info on the audioFeatureExtractor to map your chosen features to
the index in the features matrix. You can experiment with the example by choosing different features.

featureIndices = info(afe)

featureIndices = struct with fields:
 linearSpectrum: [1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 …]
 melSpectrum: [663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694]
 barkSpectrum: [695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726]
 erbSpectrum: [727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769]
 mfcc: [770 771 772 773 774 775 776 777 778 779 780 781 782]
 mfccDelta: [783 784 785 786 787 788 789 790 791 792 793 794 795]
 mfccDeltaDelta: [796 797 798 799 800 801 802 803 804 805 806 807 808]
 gtcc: [809 810 811 812 813 814 815 816 817 818 819 820 821]
 gtccDelta: [822 823 824 825 826 827 828 829 830 831 832 833 834]
 gtccDeltaDelta: [835 836 837 838 839 840 841 842 843 844 845 846 847]
 spectralCentroid: 848
 spectralCrest: 849
 spectralDecrease: 850
 spectralEntropy: 851
 spectralFlatness: 852
 spectralFlux: 853
 spectralKurtosis: 854
 spectralRolloffPoint: 855
 spectralSkewness: 856
 spectralSlope: 857
 spectralSpread: 858
 pitch: 859
 harmonicRatio: 860
 zerocrossrate: 861
 shortTimeEnergy: 862

idxToUse = [...
 featureIndices.harmonicRatio ...
 ,featureIndices.spectralRolloffPoint ...
 ,featureIndices.spectralFlux ...
 ,featureIndices.spectralSlope ...
];
tdsTrain = transform(sdsTrain,@(x)x(:,idxToUse));
tdsTest = transform(sdsTest,@(x)x(:,idxToUse));

Create an i-vector system that accepts feature input.

soundClassifier = ivectorSystem(InputType="features");

Train the extractor and classifier using the training set.

trainExtractor(soundClassifier,tdsTrain,UBMNumComponents=128,TVSRank=64);

Calculating standardization factorsdone.
Training universal background modeldone.
Training total variability spacedone.
i-vector extractor training complete.

4 Classes

4-292

trainClassifier(soundClassifier,tdsTrain,labelsTrain,NumEigenvectors=32,PLDANumIterations=0)

Extracting i-vectors ...done.
Training projection matrixdone.
i-vector classifier training complete.

Enroll the labels from the training set to create i-vector templates for each of the environmental
sounds.

enroll(soundClassifier,tdsTrain,labelsTrain)

Extracting i-vectors ...done.
Enrolling i-vectorsdone.
Enrollment complete.

Calibrate the i-vector system.

calibrate(soundClassifier,tdsTrain,labelsTrain)

Extracting i-vectors ...done.
Calibrating CSS scorer ...done.
Calibration complete.

Use the identify function on the test set to return the system's inferred label.

inferredLabels = labelsTest;
inferredLabels(:) = inferredLabels(1);
for ii = 1:numel(labelsTest)
 features = read(tdsTest);
 tableOut = identify(soundClassifier,features,"css",NumCandidates=1);
 inferredLabels(ii) = tableOut.Label(1);
end

Create a confusion matrix to visualize performance on the test set.

uniqueLabels = unique(labelsTest);
cm = zeros(numel(uniqueLabels),numel(uniqueLabels));
for ii = 1:numel(uniqueLabels)
 for jj = 1:numel(uniqueLabels)
 cm(ii,jj) = sum((labelsTest==uniqueLabels(ii)) & (inferredLabels==uniqueLabels(jj)));
 end
end
labelStrings = replace(string(uniqueLabels),"_"," ");
heatmap(labelStrings,labelStrings,cm)
colorbar off
ylabel("True Labels")
xlabel("Predicted Labels")
accuracy = mean(inferredLabels==labelsTest);
title(sprintf("Accuracy = %0.2f %%",accuracy*100))

 ivectorSystem

4-293

Release the i-vector system.

release(soundClassifier)

Supporting Functions

function writeFeatures(audioIn,info,~,afe)
 % Convet to single-precision
 audioIn = single(audioIn);

 % Extract features
 features = extract(afe,audioIn);

 % Replace the file extension of the suggested output name with MAT.
 filename = strrep(info.SuggestedOutputName,".wav",".mat");

 % Save the MFCC coefficients to the MAT file.
 save(filename,"features")
end

Train Acoustic Fault Recognition System

Download and unzip the air compressor data set [1] on page 4-297. This data set consists of
recordings from air compressors in a healthy state or one of seven faulty states.

4 Classes

4-294

loc = matlab.internal.examples.downloadSupportFile("audio", ...
 "AirCompressorDataset/AirCompressorDataset.zip");
unzip(loc,pwd)

Create an audioDatastore object to manage the data and split it into training and validation sets.

ads = audioDatastore(pwd,IncludeSubfolders=true,LabelSource="foldernames");

[adsTrain,adsTest] = splitEachLabel(ads,0.8,0.2);

Read an audio file from the datastore and save the sample rate. Listen to the audio signal and plot the
signal in the time domain.

[x,fileInfo] = read(adsTrain);
fs = fileInfo.SampleRate;

sound(x,fs)

t = (0:size(x,1)-1)/fs;
plot(t,x)
xlabel("Time (s)")
title("State = " + string(fileInfo.Label))
axis tight

Create an i-vector system with DetectSpeech set to false. Turn off the verbose behavior.

faultRecognizer = ivectorSystem(SampleRate=fs,DetectSpeech=false, ...
 Verbose=false)

 ivectorSystem

4-295

faultRecognizer =
 ivectorSystem with properties:

 InputType: 'audio'
 SampleRate: 16000
 DetectSpeech: 0
 Verbose: 0
 EnrolledLabels: [0×2 table]

Train the i-vector extractor and the i-vector classifier using the training datastore.

trainExtractor(faultRecognizer,adsTrain, ...
 UBMNumComponents=80, ...
 UBMNumIterations=3, ...
 ...
 TVSRank=40, ...
 TVSNumIterations=3)

trainClassifier(faultRecognizer,adsTrain,adsTrain.Labels, ...
 NumEigenvectors=7, ...
 ...
 PLDANumDimensions=32, ...
 PLDANumIterations=5)

Calibrate the scores output by faultRecognizer so they can be interpreted as a measure of
confidence in a positive decision. Turn the verbose behavior back on. Enroll all of the labels from the
training set.

calibrate(faultRecognizer,adsTrain,adsTrain.Labels)

faultRecognizer.Verbose = true;

enroll(faultRecognizer,adsTrain,adsTrain.Labels)

Extracting i-vectors ...done.
Enrolling i-vectorsdone.
Enrollment complete.

Use the read-only property EnrolledLabels to view the enrolled labels and the corresponding i-
vector templates.

faultRecognizer.EnrolledLabels

ans=8×2 table
 ivector NumSamples
 ____________ __________

 Bearing {7×1 double} 180
 Flywheel {7×1 double} 180
 Healthy {7×1 double} 180
 LIV {7×1 double} 180
 LOV {7×1 double} 180
 NRV {7×1 double} 180
 Piston {7×1 double} 180
 Riderbelt {7×1 double} 180

4 Classes

4-296

Use the identify function with the PLDA scorer to predict the condition of machines in the test set.
The identify function returns a table of possible labels sorted in descending order of confidence.

[audioIn,audioInfo] = read(adsTest);
trueLabel = audioInfo.Label

trueLabel = categorical
 Bearing

predictedLabels = identify(faultRecognizer,audioIn,"plda")

predictedLabels=8×2 table
 Label Score
 _________ __________

 Bearing 0.99997
 Flywheel 2.265e-05
 Piston 8.6076e-08
 LIV 1.4237e-15
 NRV 4.5529e-16
 Riderbelt 3.7359e-16
 LOV 6.3025e-19
 Healthy 4.2094e-30

By default, the identify function returns all possible candidate labels and their corresponding
scores. Use NumCandidates to reduce the number of candidates returned.

results = identify(faultRecognizer,audioIn,"plda",NumCandidates=3)

results=3×2 table
 Label Score
 ________ __________

 Bearing 0.99997
 Flywheel 2.265e-05
 Piston 8.6076e-08

References

[1] Verma, Nishchal K., et al. “Intelligent Condition Based Monitoring Using Acoustic Signals for Air
Compressors.” IEEE Transactions on Reliability, vol. 65, no. 1, Mar. 2016, pp. 291–309. DOI.org
(Crossref), doi:10.1109/TR.2015.2459684.

Train Speech Emotion Recognition System

Download the Berlin Database of Emotional Speech [1] on page 4-305. The database contains 535
utterances spoken by 10 actors intended to convey one of the following emotions: anger, boredom,
disgust, anxiety/fear, happiness, sadness, or neutral. The emotions are text independent.

url = "http://emodb.bilderbar.info/download/download.zip";
downloadFolder = tempdir;

 ivectorSystem

4-297

datasetFolder = fullfile(downloadFolder,"Emo-DB");

if ~exist(datasetFolder,"dir")
 disp("Downloading Emo-DB (40.5 MB) ...")
 unzip(url,datasetFolder)
end

Create an audioDatastore that points to the audio files.

ads = audioDatastore(fullfile(datasetFolder,"wav"));

The file names are codes indicating the speaker id, text spoken, emotion, and version. The website
contains a key for interpreting the code and additional information about the speakers such as
gender and age. Create a table with the variables Speaker and Emotion. Decode the file names into
the table.

filepaths = ads.Files;
emotionCodes = cellfun(@(x)x(end-5),filepaths,"UniformOutput",false);
emotions = replace(emotionCodes,{'W','L','E','A','F','T','N'}, ...
 {'Anger','Boredom','Disgust','Anxiety','Happiness','Sadness','Neutral'});

speakerCodes = cellfun(@(x)x(end-10:end-9),filepaths,"UniformOutput",false);
labelTable = table(categorical(speakerCodes),categorical(emotions),VariableNames=["Speaker","Emotion"]);
summary(labelTable)

Variables:

 Speaker: 535×1 categorical

 Values:

 03 49
 08 58
 09 43
 10 38
 11 55
 12 35
 13 61
 14 69
 15 56
 16 71

 Emotion: 535×1 categorical

 Values:

 Anger 127
 Anxiety 69
 Boredom 81
 Disgust 46
 Happiness 71
 Neutral 79
 Sadness 62

labelTable is in the same order as the files in audioDatastore. Set the Labels property of the
audioDatastore to labelTable.

ads.Labels = labelTable;

4 Classes

4-298

Read a signal from the datastore and listen to it. Display the speaker ID and emotion of the audio
signal.

[audioIn,audioInfo] = read(ads);
fs = audioInfo.SampleRate;
sound(audioIn,fs)
audioInfo.Label

ans=1×2 table
 Speaker Emotion
 _______ _________

 03 Happiness

Split the datastore into a training set and a test set. Assign two speakers to the test set and the
remaining to the training set.

testSpeakerIdx = ads.Labels.Speaker=="12" | ads.Labels.Speaker=="13";
adsTrain = subset(ads,~testSpeakerIdx);
adsTest = subset(ads,testSpeakerIdx);

Read all the training and testing audio data into cell arrays. If your data can fit in memory, training is
usually faster to input cell arrays to an i-vector system rather than datastores.

trainSet = readall(adsTrain);
trainLabels = adsTrain.Labels.Emotion;
testSet = readall(adsTest);
testLabels = adsTest.Labels.Emotion;

Create an i-vector system that does not apply speech detection. When DetectSpeech is set to true
(the default), only regions of detected speech are used to train the i-vector system. When
DetectSpeech is set to false, the entire input audio is used to train the i-vector system. The
usefulness of applying speech detection depends on the data input to the system.

emotionRecognizer = ivectorSystem(SampleRate=fs,DetectSpeech=)

emotionRecognizer =
 ivectorSystem with properties:

 InputType: 'audio'
 SampleRate: 16000
 DetectSpeech: 0
 Verbose: 1
 EnrolledLabels: [0×2 table]

Call trainExtractor using the training set.

rng default
trainExtractor(emotionRecognizer,trainSet, ...

 UBMNumComponents = , ...

 UBMNumIterations = , ...
 ...

 ivectorSystem

4-299

 TVSRank = , ...

 TVSNumIterations =);

Calculating standardization factorsdone.
Training universal background modeldone.
Training total variability spacedone.
i-vector extractor training complete.

Copy the emotion recognition system for use later in the example.

sentimentRecognizer = copy(emotionRecognizer);

Call trainClassifier using the training set.

rng default
trainClassifier(emotionRecognizer,trainSet,trainLabels, ...

 NumEigenvectors = , ...
 ...

 PLDANumDimensions = , ...

 PLDANumIterations =);

Extracting i-vectors ...done.
Training projection matrixdone.
Training PLDA modeldone.
i-vector classifier training complete.

Call calibrate using the training set. In practice, the calibration set should be different than the
training set.

calibrate(emotionRecognizer,trainSet,trainLabels)

Extracting i-vectors ...done.
Calibrating CSS scorer ...done.
Calibrating PLDA scorer ...done.
Calibration complete.

Enroll the training labels into the i-vector system.

enroll(emotionRecognizer,trainSet,trainLabels)

Extracting i-vectors ...done.
Enrolling i-vectorsdone.
Enrollment complete.

You can use detectionErrorTradeoff as a quick sanity check on the performance of a multilabel
closed-set classification system. However, detectionErrorTradeoff provides information more
suitable to open-set binary classification problems, for example, speaker verification tasks.

detectionErrorTradeoff(emotionRecognizer,testSet,testLabels)

Extracting i-vectors ...done.
Scoring i-vector pairs ...done.
Detection error tradeoff evaluation complete.

4 Classes

4-300

For a more detailed view of the i-vector system's performance in a multilabel closed set application,
you can use the identify function and create a confusion matrix. The confusion matrix enables you
to identify which emotions are misidentified and what they are misidentified as. Use the supporting
function plotConfusion to display the results.

trueLabels = testLabels;
predictedLabels = trueLabels;

scorer = ;
for ii = 1:numel(testSet)
 tableOut = identify(emotionRecognizer,testSet{ii},scorer);
 predictedLabels(ii) = tableOut.Label(1);
end

plotConfusion(trueLabels,predictedLabels)

 ivectorSystem

4-301

Call info to inspect how emotionRecognizer was trained and evaluated.

info(emotionRecognizer)

i-vector system input
 Input feature vector length: 60
 Input data type: double

trainExtractor
 Train signals: 439
 UBMNumComponents: 256
 UBMNumIterations: 5
 TVSRank: 128
 TVSNumIterations: 5

trainClassifier
 Train signals: 439
 Train labels: Anger (103), Anxiety (56) ... and 5 more
 NumEigenvectors: 32
 PLDANumDimensions: 16
 PLDANumIterations: 10

calibrate
 Calibration signals: 439
 Calibration labels: Anger (103), Anxiety (56) ... and 5 more

detectionErrorTradeoff

4 Classes

4-302

 Evaluation signals: 96
 Evaluation labels: Anger (24), Anxiety (13) ... and 5 more

Next, modify the i-vector system to recognize emotions as positive, neutral, or negative. Update the
labels to only include the categories negative, positive, and categorical.

trainLabelsSentiment = trainLabels;
trainLabelsSentiment(ismember(trainLabels,categorical(["Anger","Anxiety","Boredom","Sadness","Disgust"]))) = categorical("Negative");
trainLabelsSentiment(ismember(trainLabels,categorical("Happiness"))) = categorical("Postive");
trainLabelsSentiment = removecats(trainLabelsSentiment);

testLabelsSentiment = testLabels;
testLabelsSentiment(ismember(testLabels,categorical(["Anger","Anxiety","Boredom","Sadness","Disgust"]))) = categorical("Negative");
testLabelsSentiment(ismember(testLabels,categorical("Happiness"))) = categorical("Postive");
testLabelsSentiment = removecats(testLabelsSentiment);

Train the i-vector system classifier using the updated labels. You do not need to retrain the extractor.
Recalibrate the system.

rng default
trainClassifier(sentimentRecognizer,trainSet,trainLabelsSentiment, ...

 NumEigenvectors = , ...
 ...

 PLDANumDimensions = , ...

 PLDANumIterations =);

Extracting i-vectors ...done.
Training projection matrixdone.
Training PLDA modeldone.
i-vector classifier training complete.

calibrate(sentimentRecognizer,trainSet,trainLabels)

Extracting i-vectors ...done.
Calibrating CSS scorer ...done.
Calibrating PLDA scorer ...done.
Calibration complete.

Enroll the training labels into the system and then plot the confusion matrix for the test set.

enroll(sentimentRecognizer,trainSet,trainLabelsSentiment)

Extracting i-vectors ...done.
Enrolling i-vectorsdone.
Enrollment complete.

trueLabels = testLabelsSentiment;
predictedLabels = trueLabels;

scorer = ;
for ii = 1:numel(testSet)
 tableOut = identify(sentimentRecognizer,testSet{ii},scorer);
 predictedLabels(ii) = tableOut.Label(1);
end

plotConfusion(trueLabels,predictedLabels)

 ivectorSystem

4-303

An i-vector system does not require the labels used to train the classifier to be equal to the enrolled
labels.

Unenroll the sentiment labels from the system and then enroll the original emotion categories in the
system. Analyze the system's classification performance.

unenroll(sentimentRecognizer)
enroll(sentimentRecognizer,trainSet,trainLabels)

Extracting i-vectors ...done.
Enrolling i-vectorsdone.
Enrollment complete.

trueLabels = testLabels;
predictedLabels = trueLabels;

scorer = ;
for ii = 1:numel(testSet)
 tableOut = identify(sentimentRecognizer,testSet{ii},scorer);
 predictedLabels(ii) = tableOut.Label(1);
end

plotConfusion(trueLabels,predictedLabels)

4 Classes

4-304

Supporting Functions
function plotConfusion(trueLabels,predictedLabels)
uniqueLabels = unique(trueLabels);
cm = zeros(numel(uniqueLabels),numel(uniqueLabels));
for ii = 1:numel(uniqueLabels)
 for jj = 1:numel(uniqueLabels)
 cm(ii,jj) = sum((trueLabels==uniqueLabels(ii)) & (predictedLabels==uniqueLabels(jj)));
 end
end

heatmap(uniqueLabels,uniqueLabels,cm)
colorbar off
ylabel('True Labels')
xlabel('Predicted Labels')
accuracy = mean(trueLabels==predictedLabels);
title(sprintf("Accuracy = %0.2f %%",accuracy*100))
end

References

[1] Burkhardt, F., A. Paeschke, M. Rolfes, W.F. Sendlmeier, and B. Weiss, "A Database of German
Emotional Speech." In Proceedings Interspeech 2005. Lisbon, Portugal: International Speech
Communication Association, 2005.

 ivectorSystem

4-305

Train Word Recognition System

An i-vector system consists of a trainable front end that learns how to extract i-vectors based on
unlabeled data, and a trainable backend that learns how to classify i-vectors based on labeled data. In
this example, you apply an i-vector system to the task of word recognition. First, evaluate the
accuracy of the i-vector system using the classifiers included in a traditional i-vector system:
probabilistic linear discriminant analysis (PLDA) and cosine similarity scoring (CSS). Next, evaluate
the accuracy of the system if you replace the classifier with bidirectional long short-term memory
(BiLSTM) network or a K-nearest neighbors classifier.

Create Training and Validation Sets

Download the Free Spoken Digit Dataset (FSDD) [1] on page 4-311. FSDD consists of short audio files
with spoken digits (0-9).

loc = matlab.internal.examples.downloadSupportFile("audio","FSDD.zip");
unzip(loc,pwd)

Create an audioDatastore to point to the recordings. Get the sample rate of the data set.

ads = audioDatastore(pwd,IncludeSubfolders=true);
[~,adsInfo] = read(ads);
fs = adsInfo.SampleRate;

The first element of the file names is the digit spoken in the file. Get the first element of the file
names, convert them to categorical, and then set the Labels property of the audioDatastore.

[~,filenames] = cellfun(@(x)fileparts(x),ads.Files,UniformOutput=false);
ads.Labels = categorical(string(cellfun(@(x)x(1),filenames)));

To split the datastore into a development set and a validation set, use splitEachLabel. Allocate
80% of the data for development and the remaining 20% for validation.

[adsTrain,adsValidation] = splitEachLabel(ads,0.8);

Evaluate Traditional i-vector Backend Performance

Create an i-vector system that expects audio input at a sample rate of 8 kHz and does not perform
speech detection.

wordRecognizer = ivectorSystem(DetectSpeech=false,SampleRate=fs)

wordRecognizer =
 ivectorSystem with properties:

 InputType: 'audio'
 SampleRate: 8000
 DetectSpeech: 0
 Verbose: 1
 EnrolledLabels: [0×2 table]

Train the i-vector extractor using the data in the training set.

trainExtractor(wordRecognizer,adsTrain, ...
 UBMNumComponents=64, ...
 UBMNumIterations=5, ...
 ...

4 Classes

4-306

 TVSRank=32, ...
 TVSNumIterations=5);

Calculating standardization factorsdone.
Training universal background modeldone.
Training total variability spacedone.
i-vector extractor training complete.

Train the i-vector classifier using the data in the training data set and the corresponding labels.

trainClassifier(wordRecognizer,adsTrain,adsTrain.Labels, ...
 NumEigenvectors=10, ...
 ...
 PLDANumDimensions=10, ...
 PLDANumIterations=5);

Extracting i-vectors ...done.
Training projection matrixdone.
Training PLDA modeldone.
i-vector classifier training complete.

Calibrate the scores output by wordRecognizer so they can be interpreted as a measure of
confidence in a positive decision. Enroll labels into the system using the entire training set.

calibrate(wordRecognizer,adsTrain,adsTrain.Labels)

Extracting i-vectors ...done.
Calibrating CSS scorer ...done.
Calibrating PLDA scorer ...done.
Calibration complete.

enroll(wordRecognizer,adsTrain,adsTrain.Labels)

Extracting i-vectors ...done.
Enrolling i-vectorsdone.
Enrollment complete.

In a loop, read audio from the validation datastore, identify the most-likely word present according to
the specified scorer, and save the prediction for analysis.

trueLabels = adsValidation.Labels;
predictedLabels = trueLabels;

reset(adsValidation)

scorer = ;
for ii = 1:numel(trueLabels)

 audioIn = read(adsValidation);

 to = identify(wordRecognizer,audioIn,scorer);

 predictedLabels(ii) = to.Label(1);

end

Display a confusion chart of the i-vector system's performance on the validation set.

 ivectorSystem

4-307

figure(Units="normalized",Position=[0.2 0.2 0.5 0.5])
confusionchart(trueLabels,predictedLabels, ...
 ColumnSummary="column-normalized", ...
 RowSummary="row-normalized", ...
 Title=sprintf('Accuracy = %0.2f (%%)',100*mean(predictedLabels==trueLabels)))

Evaluate Deep Learning Backend Performance

Next, train a fully-connected network using i-vectors as input.

ivectorsTrain = (ivector(wordRecognizer,adsTrain))';
ivectorsValidation = (ivector(wordRecognizer,adsValidation))';

Define a fully connected network.

layers = [...
 featureInputLayer(size(ivectorsTrain,2),Normalization="none")
 fullyConnectedLayer(128)
 dropoutLayer(0.4)
 fullyConnectedLayer(256)
 dropoutLayer(0.4)
 fullyConnectedLayer(256)
 dropoutLayer(0.4)
 fullyConnectedLayer(128)
 dropoutLayer(0.4)
 fullyConnectedLayer(numel(unique(adsTrain.Labels)))
 softmaxLayer
 classificationLayer];

Define training parameters.

4 Classes

4-308

miniBatchSize = 256;
validationFrequency = floor(numel(adsTrain.Labels)/miniBatchSize);
options = trainingOptions("adam", ...
 MaxEpochs=10, ...
 MiniBatchSize=miniBatchSize, ...
 Plots="training-progress", ...
 Verbose=false, ...
 Shuffle="every-epoch", ...
 ValidationData={ivectorsValidation,adsValidation.Labels}, ...
 ValidationFrequency=validationFrequency);

Train the network.

net = trainNetwork(ivectorsTrain,adsTrain.Labels,layers,options);

Evaluate the performance of the deep learning backend using a confusion chart.

predictedLabels = classify(net,ivectorsValidation);
trueLabels = adsValidation.Labels;

figure(Units="normalized",Position=[0.2 0.2 0.5 0.5])
confusionchart(trueLabels,predictedLabels, ...
 ColumnSummary="column-normalized", ...
 RowSummary="row-normalized", ...
 Title=sprintf('Accuracy = %0.2f (%%)',100*mean(predictedLabels==trueLabels)))

 ivectorSystem

4-309

Evaluate KNN Backend Performance

Train and evaluate i-vectors with a k-nearest neighbor (KNN) backend.

Use fitcknn to train a KNN model.

classificationKNN = fitcknn(...
 ivectorsTrain, ...
 adsTrain.Labels, ...
 Distance="Euclidean", ...
 Exponent=[], ...
 NumNeighbors=10, ...
 DistanceWeight="SquaredInverse", ...
 Standardize=true, ...
 ClassNames=unique(adsTrain.Labels));

Evaluate the KNN backend.

predictedLabels = predict(classificationKNN,ivectorsValidation);
trueLabels = adsValidation.Labels;

figure(Units="normalized",Position=[0.2 0.2 0.5 0.5])
confusionchart(trueLabels,predictedLabels, ...
 ColumnSummary="column-normalized", ...
 RowSummary="row-normalized", ...
 Title=sprintf('Accuracy = %0.2f (%%)',100*mean(predictedLabels==trueLabels)))

4 Classes

4-310

References

[1] Jakobovski. "Jakobovski/Free-Spoken-Digit-Dataset." GitHub, May 30, 2019. https://
github.com/Jakobovski/free-spoken-digit-dataset.

Version History
Introduced in R2021a

References
[1] Reynolds, Douglas A., et al. “Speaker Verification Using Adapted Gaussian Mixture Models.”

Digital Signal Processing, vol. 10, no. 1–3, Jan. 2000, pp. 19–41. DOI.org (Crossref),
doi:10.1006/dspr.1999.0361.

[2] Kenny, Patrick, et al. “Joint Factor Analysis Versus Eigenchannels in Speaker Recognition.” IEEE
Transactions on Audio, Speech and Language Processing, vol. 15, no. 4, May 2007, pp. 1435–
47. DOI.org (Crossref), doi:10.1109/TASL.2006.881693.

[3] Kenny, P., et al. “A Study of Interspeaker Variability in Speaker Verification.” IEEE Transactions on
Audio, Speech, and Language Processing, vol. 16, no. 5, July 2008, pp. 980–88. DOI.org
(Crossref), doi:10.1109/TASL.2008.925147.

 ivectorSystem

4-311

[4] Dehak, Najim, et al. “Front-End Factor Analysis for Speaker Verification.” IEEE Transactions on
Audio, Speech, and Language Processing, vol. 19, no. 4, May 2011, pp. 788–98. DOI.org
(Crossref), doi:10.1109/TASL.2010.2064307.

[5] Matejka, Pavel, Ondrej Glembek, Fabio Castaldo, M. J. Alam, Oldrich Plchot, Patrick Kenny, Lukas
Burget, and Jan Cernocky. “Full-Covariance UBM and Heavy-Tailed PLDA in i-Vector Speaker
Verification.” 2011 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2011. https://doi.org/10.1109/icassp.2011.5947436.

[6] Snyder, David, et al. “X-Vectors: Robust DNN Embeddings for Speaker Recognition.” 2018 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2018,
pp. 5329–33. DOI.org (Crossref), doi:10.1109/ICASSP.2018.8461375.

[7] Signal Processing and Speech Communication Laboratory. Accessed December 12, 2019. https://
www.spsc.tugraz.at/databases-and-tools/ptdb-tug-pitch-tracking-database-from-graz-
university-of-technology.html.

[8] Variani, Ehsan, et al. “Deep Neural Networks for Small Footprint Text-Dependent Speaker
Verification.” 2014 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), IEEE, 2014, pp. 4052–56. DOI.org (Crossref), doi:10.1109/
ICASSP.2014.6854363.

[9] Dehak, Najim, Réda Dehak, James R. Glass, Douglas A. Reynolds and Patrick Kenny. “Cosine
Similarity Scoring without Score Normalization Techniques.” Odyssey (2010).

[10] Verma, Pulkit, and Pradip K. Das. “I-Vectors in Speech Processing Applications: A Survey.”
International Journal of Speech Technology, vol. 18, no. 4, Dec. 2015, pp. 529–46. DOI.org
(Crossref), doi:10.1007/s10772-015-9295-3.

[11] D. García-Romero and C. Espy-Wilson, “Analysis of I-vector Length Normalization in Speaker
Recognition Systems.” Interspeech, 2011, pp. 249–252.

[12] Kenny, Patrick. "Bayesian Speaker Verification with Heavy-Tailed Priors". Odyssey 2010 - The
Speaker and Language Recognition Workshop, Brno, Czech Republic, 2010.

[13] Sizov, Aleksandr, Kong Aik Lee, and Tomi Kinnunen. “Unifying Probabilistic Linear Discriminant
Analysis Variants in Biometric Authentication.” Lecture Notes in Computer Science
Structural, Syntactic, and Statistical Pattern Recognition, 2014, 464–75. https://doi.org/
10.1007/978-3-662-44415-3_47.

[14] Rajan, Padmanabhan, Anton Afanasyev, Ville Hautamäki, and Tomi Kinnunen. “From Single to
Multiple Enrollment I-Vectors: Practical PLDA Scoring Variants for Speaker Verification.”
Digital Signal Processing 31 (August), 2014, pp. 93–101. https://doi.org/10.1016/
j.dsp.2014.05.001.

See Also
audioDatastore | audioFeatureExtractor | audioDataAugmenter | speakerRecognition

Topics
“i-vector Score Normalization”
“i-vector Score Calibration”

4 Classes

4-312

https://www.spsc.tugraz.at/databases-and-tools/ptdb-tug-pitch-tracking-database-from-graz-university-of-technology.html
https://www.spsc.tugraz.at/databases-and-tools/ptdb-tug-pitch-tracking-database-from-graz-university-of-technology.html
https://www.spsc.tugraz.at/databases-and-tools/ptdb-tug-pitch-tracking-database-from-graz-university-of-technology.html
https://doi.org/10.1007/978-3-662-44415-3_47
https://doi.org/10.1007/978-3-662-44415-3_47
https://doi.org/10.1016/j.dsp.2014.05.001
https://doi.org/10.1016/j.dsp.2014.05.001

trainExtractor
Train i-vector extractor

Syntax
trainExtractor(ivs,data)
trainExtractor(ivs,data,Name=Value)

Description
trainExtractor(ivs,data) trains the ivectorSystem object ivs to extract i-vectors using
training data.

trainExtractor(ivs,data,Name=Value) specifies options using one or more name-value
arguments. For example, trainExtractor(ivs,data,UBMNumComponents=A) specifies the
maximum number of Gaussian components used to train the universal background model (UBM).

Examples

Train Speaker Verification System

Use the Pitch Tracking Database from Graz University of Technology (PTDB-TUG) [1] on page 4-323.
The data set consists of 20 English native speakers reading 2342 phonetically rich sentences from the
TIMIT corpus. Download and extract the data set. Depending on your system, downloading and
extracting the data set can take approximately 1.5 hours.

url = "https://www2.spsc.tugraz.at/databases/PTDB-TUG/SPEECH_DATA_ZIPPED.zip";
downloadFolder = tempdir;
datasetFolder = fullfile(downloadFolder,"PTDB-TUG");

if ~exist(datasetFolder,"dir")
 disp("Downloading PTDB-TUG (3.9 G) ...")
 unzip(url,datasetFolder)
end

Create an audioDatastore object that points to the data set. The data set was originally intended
for use in pitch-tracking training and evaluation and includes laryngograph readings and baseline
pitch decisions. Use only the original audio recordings.

ads = audioDatastore([fullfile(datasetFolder,"SPEECH DATA","FEMALE","MIC"),fullfile(datasetFolder,"SPEECH DATA","MALE","MIC")], ...
 IncludeSubfolders=true, ...
 FileExtensions=".wav");

The file names contain the speaker IDs. Decode the file names to set the labels in the
audioDatastore object.

ads.Labels = extractBetween(ads.Files,"mic_","_");
countEachLabel(ads)

ans=20×2 table
 Label Count

 trainExtractor

4-313

 _____ _____

 F01 236
 F02 236
 F03 236
 F04 236
 F05 236
 F06 236
 F07 236
 F08 234
 F09 236
 F10 236
 M01 236
 M02 236
 M03 236
 M04 236
 M05 236
 M06 236
 ⋮

Read an audio file from the data set, listen to it, and plot it.

[audioIn,audioInfo] = read(ads);
fs = audioInfo.SampleRate;

t = (0:size(audioIn,1)-1)/fs;
sound(audioIn,fs)
plot(t,audioIn)
xlabel("Time (s)")
ylabel("Amplitude")
axis([0 t(end) -1 1])
title("Sample Utterance from Data Set")

4 Classes

4-314

Separate the audioDatastore object into four: one for training, one for enrollment, one to evaluate
the detection-error tradeoff, and one for testing. The training set contains 16 speakers. The
enrollment, detection-error tradeoff, and test sets contain the other four speakers.

speakersToTest = categorical(["M01","M05","F01","F05"]);

adsTrain = subset(ads,~ismember(ads.Labels,speakersToTest));

ads = subset(ads,ismember(ads.Labels,speakersToTest));
[adsEnroll,adsTest,adsDET] = splitEachLabel(ads,3,1);

Display the label distributions of the audioDatastore objects.

countEachLabel(adsTrain)

ans=16×2 table
 Label Count
 _____ _____

 F02 236
 F03 236
 F04 236
 F06 236
 F07 236
 F08 234
 F09 236
 F10 236
 M02 236

 trainExtractor

4-315

 M03 236
 M04 236
 M06 236
 M07 236
 M08 236
 M09 236
 M10 236

countEachLabel(adsEnroll)

ans=4×2 table
 Label Count
 _____ _____

 F01 3
 F05 3
 M01 3
 M05 3

countEachLabel(adsTest)

ans=4×2 table
 Label Count
 _____ _____

 F01 1
 F05 1
 M01 1
 M05 1

countEachLabel(adsDET)

ans=4×2 table
 Label Count
 _____ _____

 F01 232
 F05 232
 M01 232
 M05 232

Create an i-vector system. By default, the i-vector system assumes the input to the system is mono
audio signals.

speakerVerification = ivectorSystem(SampleRate=fs)

speakerVerification =
 ivectorSystem with properties:

 InputType: 'audio'
 SampleRate: 48000
 DetectSpeech: 1
 Verbose: 1
 EnrolledLabels: [0×2 table]

4 Classes

4-316

To train the extractor of the i-vector system, call trainExtractor. Specify the number of universal
background model (UBM) components as 128 and the number of expectation maximization iterations
as 5. Specify the total variability space (TVS) rank as 64 and the number of iterations as 3.

trainExtractor(speakerVerification,adsTrain, ...
 UBMNumComponents=128,UBMNumIterations=5, ...
 TVSRank=64,TVSNumIterations=3)

Calculating standardization factorsdone.
Training universal background modeldone.
Training total variability spacedone.
i-vector extractor training complete.

To train the classifier of the i-vector system, use trainClassifier. To reduce dimensionality of the
i-vectors, specify the number of eigenvectors in the projection matrix as 16. Specify the number of
dimensions in the probabilistic linear discriminant analysis (PLDA) model as 16, and the number of
iterations as 3.

trainClassifier(speakerVerification,adsTrain,adsTrain.Labels, ...
 NumEigenvectors=16, ...
 PLDANumDimensions=16,PLDANumIterations=3)

Extracting i-vectors ...done.
Training projection matrixdone.
Training PLDA modeldone.
i-vector classifier training complete.

To calibrate the system so that scores can be interpreted as a measure of confidence in a positive
decision, use calibrate.

calibrate(speakerVerification,adsTrain,adsTrain.Labels)

Extracting i-vectors ...done.
Calibrating CSS scorer ...done.
Calibrating PLDA scorer ...done.
Calibration complete.

To inspect parameters used previously to train the i-vector system, use info.

info(speakerVerification)

i-vector system input
 Input feature vector length: 60
 Input data type: double

trainExtractor
 Train signals: 3774
 UBMNumComponents: 128
 UBMNumIterations: 5
 TVSRank: 64
 TVSNumIterations: 3

trainClassifier
 Train signals: 3774
 Train labels: F02 (236), F03 (236) ... and 14 more
 NumEigenvectors: 16
 PLDANumDimensions: 16
 PLDANumIterations: 3

 trainExtractor

4-317

calibrate
 Calibration signals: 3774
 Calibration labels: F02 (236), F03 (236) ... and 14 more

Split the enrollment set.

[adsEnrollPart1,adsEnrollPart2] = splitEachLabel(adsEnroll,1,2);

To enroll speakers in the i-vector system, call enroll.

enroll(speakerVerification,adsEnrollPart1,adsEnrollPart1.Labels)

Extracting i-vectors ...done.
Enrolling i-vectorsdone.
Enrollment complete.

When you enroll speakers, the read-only EnrolledLabels property is updated with the enrolled
labels and corresponding template i-vectors. The table also keeps track of the number of signals used
to create the template i-vector. Generally, using more signals results in a better template.

speakerVerification.EnrolledLabels

ans=4×2 table
 ivector NumSamples
 _____________ __________

 F01 {16×1 double} 1
 F05 {16×1 double} 1
 M01 {16×1 double} 1
 M05 {16×1 double} 1

Enroll the second part of the enrollment set and then view the enrolled labels table again. The i-
vector templates and the number of samples are updated.

enroll(speakerVerification,adsEnrollPart2,adsEnrollPart2.Labels)

Extracting i-vectors ...done.
Enrolling i-vectorsdone.
Enrollment complete.

speakerVerification.EnrolledLabels

ans=4×2 table
 ivector NumSamples
 _____________ __________

 F01 {16×1 double} 3
 F05 {16×1 double} 3
 M01 {16×1 double} 3
 M05 {16×1 double} 3

To evaluate the i-vector system and determine a decision threshold for speaker verification, call
detectionErrorTradeoff.

[results, eerThreshold] = detectionErrorTradeoff(speakerVerification,adsDET,adsDET.Labels);

4 Classes

4-318

Extracting i-vectors ...done.
Scoring i-vector pairs ...done.
Detection error tradeoff evaluation complete.

The first output from detectionErrorTradeoff is a structure with two fields: CSS and PLDA. Each
field contains a table. Each row of the table contains a possible decision threshold for speaker
verification tasks, and the corresponding false alarm rate (FAR) and false rejection rate (FRR). The
FAR and FRR are determined using the enrolled speaker labels and the data input to the
detectionErrorTradeoff function.

results

results = struct with fields:
 PLDA: [1000×3 table]
 CSS: [1000×3 table]

results.CSS

ans=1000×3 table
 Threshold FAR FRR
 __________ _______ ___

 1.7736e-09 1 0
 1.8233e-09 0.99964 0
 1.8745e-09 0.99964 0
 1.927e-09 0.99964 0
 1.9811e-09 0.99964 0
 2.0366e-09 0.99964 0
 2.0937e-09 0.99964 0
 2.1524e-09 0.99964 0
 2.2128e-09 0.99964 0
 2.2748e-09 0.99964 0
 2.3386e-09 0.99964 0
 2.4042e-09 0.99964 0
 2.4716e-09 0.99964 0
 2.5409e-09 0.99964 0
 2.6122e-09 0.99964 0
 2.6854e-09 0.99964 0
 ⋮

results.PLDA

ans=1000×3 table
 Threshold FAR FRR
 __________ _______ ___

 4.7045e-34 1 0
 5.143e-34 0.99964 0
 5.6225e-34 0.99964 0
 6.1466e-34 0.99964 0
 6.7197e-34 0.99964 0
 7.3461e-34 0.99964 0
 8.0309e-34 0.99964 0
 8.7796e-34 0.99964 0
 9.5981e-34 0.99964 0
 1.0493e-33 0.99964 0
 1.1471e-33 0.99964 0

 trainExtractor

4-319

 1.254e-33 0.99964 0
 1.371e-33 0.99964 0
 1.4988e-33 0.99964 0
 1.6385e-33 0.99964 0
 1.7912e-33 0.99964 0
 ⋮

The second output from detectionErrorTradeoff is a structure with two fields: CSS and PLDA.
The corresponding value is the decision threshold that results in the equal error rate (when FAR and
FRR are equal).

eerThreshold

eerThreshold = struct with fields:
 PLDA: 0.0021
 CSS: 0.9366

The first time you call detectionErrorTradeoff, you must provide data and corresponding labels
to evaluate. Subsequently, you can get the same information, or a different analysis using the same
underlying data, by calling detectionErrorTradeoff without data and labels.

Call detectionErrorTradeoff a second time with no data arguments or output arguments to
visualize the detection-error tradeoff.

detectionErrorTradeoff(speakerVerification)

4 Classes

4-320

Call detectionErrorTradeoff again. This time, visualize only the detection-error tradeoff for the
PLDA scorer.

detectionErrorTradeoff(speakerVerification,Scorer="plda")

Depending on your application, you may want to use a threshold that weights the error cost of a false
alarm higher or lower than the error cost of a false rejection. You may also be using data that is not
representative of the prior probability of the speaker being present. You can use the minDCF
parameter to specify custom costs and prior probability. Call detectionErrorTradeoff again, this
time specify the cost of a false rejection as 1, the cost of a false acceptance as 2, and the prior
probability that a speaker is present as 0.1.

costFR = 1;
costFA = 2;
priorProb = 0.1;
detectionErrorTradeoff(speakerVerification,Scorer="plda",minDCF=[costFR,costFA,priorProb])

 trainExtractor

4-321

Call detectionErrorTradeoff again. This time, get the minDCF threshold for the PLDA scorer and
the parameters of the detection cost function.

[~,minDCFThreshold] = detectionErrorTradeoff(speakerVerification,Scorer="plda",minDCF=[costFR,costFA,priorProb])

minDCFThreshold = 0.0595

Test Speaker Verification System

Read a signal from the test set.

adsTest = shuffle(adsTest);
[audioIn,audioInfo] = read(adsTest);
knownSpeakerID = audioInfo.Label

knownSpeakerID = 1×1 cell array
 {'F05'}

To perform speaker verification, call verify with the audio signal and specify the speaker ID, a
scorer, and a threshold for the scorer. The verify function returns a logical value indicating whether
a speaker identity is accepted or rejected, and a score indicating the similarity of the input audio and
the template i-vector corresponding to the enrolled label.

[tf,score] = verify(speakerVerification,audioIn,knownSpeakerID,"plda",eerThreshold.PLDA);
if tf
 fprintf('Success!\nSpeaker accepted.\nSimilarity score = %0.2f\n\n',score)
else

4 Classes

4-322

 fprinf('Failure!\nSpeaker rejected.\nSimilarity score = %0.2f\n\n',score)
end

Success!
Speaker accepted.
Similarity score = 1.00

Call speaker verification again. This time, specify an incorrect speaker ID.

possibleSpeakers = speakerVerification.EnrolledLabels.Properties.RowNames;
imposterIdx = find(~ismember(possibleSpeakers,knownSpeakerID));
imposter = possibleSpeakers(imposterIdx(randperm(numel(imposterIdx),1)))

imposter = 1×1 cell array
 {'F01'}

[tf,score] = verify(speakerVerification,audioIn,imposter,"plda",eerThreshold.PLDA);
if tf
 fprintf('Failure!\nSpeaker accepted.\nSimilarity score = %0.2f\n\n',score)
else
 fprintf('Success!\nSpeaker rejected.\nSimilarity score = %0.2f\n\n',score)
end

Success!
Speaker rejected.
Similarity score = 0.00

References

[1] Signal Processing and Speech Communication Laboratory. https://www.spsc.tugraz.at/databases-
and-tools/ptdb-tug-pitch-tracking-database-from-graz-university-of-technology.html. Accessed 12 Dec.
2019.

Input Arguments
ivs — i-vector system
ivectorSystem object

i-vector system, specified as an object of type ivectorSystem.

data — Training data for i-vector system
cell array | audioDatastore | signalDatastore | TransformedDatastore

Training data for an i-vector system, specified as a cell array or as an audioDatastore,
signalDatastore, or TransformedDatastore object.

• If InputType is set to "audio" when the i-vector system is created, specify data as one of these:

• A cell array of single-channel audio signals, each specified as a column vector with underlying
type single or double.

• An audioDatastore object or a signalDatastore object that points to a data set of mono
audio signals.

• A TransformedDatastore with an underlying audioDatastore or signalDatastore that
points to a data set of mono audio signals. The output from calls to read from the transform
datastore must be mono audio signals with underlying data type single or double.

 trainExtractor

4-323

https://www.spsc.tugraz.at/databases-and-tools/ptdb-tug-pitch-tracking-database-from-graz-university-of-technology.html.
https://www.spsc.tugraz.at/databases-and-tools/ptdb-tug-pitch-tracking-database-from-graz-university-of-technology.html.

• If InputType is set to "features" when the i-vector system is created, specify data as one of
these:

• A cell array of matrices with underlying type single or double. The matrices must consist of
audio features where the number of features (columns) is locked the first time
trainExtractor is called and the number of hops (rows) is variable-sized. The number of
features input in any subsequent calls to any of the object functions must be equal to the
number of features used when calling trainExtractor.

• A TransformedDatastore object with an underlying audioDatastore or
signalDatastore whose read function has output as described in the previous bullet.

• A signalDatastore object whose read function has output as described in the first bullet.

Data Types: cell | audioDatastore | signalDatastore

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: trainExtractor(ivs,data,UBMNumIterations=B)

UBMNumComponents — Maximum number of Gaussian components
32 (default) | positive integer

Maximum number of Gaussian components used to train the UBM, specified as a positive integer. The
algorithm trims unused components determined during training to avoid numerical issues.
Example: trainExtractor(ivs,data,UBMNumComponents=40)
Data Types: single | double

UBMNumIterations — Number of expectation-maximization iterations
2 (default) | positive integer

Number of expectation-maximization iterations used to train the UBM, specified as a positive integer.
Example: trainExtractor(ivs,data,UBMNumIterations=5)
Data Types: single | double

TVSRank — Maximum rank of total variability space
16 (default) | positive integer

Maximum rank of the total variability space (TVS) trained to extract i-vectors, specified as a positive
integer.
Example: trainExtractor(ivs,data,TVSRank=24)
Data Types: single | double

TVSNumIterations — Number of expectation-maximization iterations
3 (default) | positive integer

Number of expectation-maximization iterations used to train the TVS, specified as a positive integer.

4 Classes

4-324

Example: trainExtractor(ivs,data,TVSNumIterations=5)
Data Types: single | double

ExecutionEnvironment — Hardware resource for execution
"auto" (default) | "cpu" | "gpu" | "multi-gpu" | "parallel"

Hardware resource for execution, specified as one of these:

• "auto" — Use the GPU if it is available. Otherwise, use the CPU.
• "cpu" — Use the CPU.
• "gpu" — Use the GPU. This option requires Parallel Computing Toolbox.
• "multi-gpu" — Use multiple GPUs on one machine, using a local parallel pool based on your

default cluster profile. If there is no current parallel pool, the software starts a parallel pool with
pool size equal to the number of available GPUs. This option requires Parallel Computing Toolbox.

• "parallel" — Use a local or remote parallel pool based on your default cluster profile. If there is
no current parallel pool, the software starts one using the default cluster profile. If the pool has
access to GPUs, then only workers with a unique GPU perform training computation. If the pool
does not have GPUs, then the training takes place on all available CPU workers. This option
requires Parallel Computing Toolbox.

Data Types: char | string

DispatchInBackground — Option to use prefetch queuing
false (default) | true

Option to use prefetch queuing when reading from a datastore, specified as a logical value. This
argument requires Parallel Computing Toolbox.
Data Types: logical

Version History
Introduced in R2021a

See Also
trainClassifier | calibrate | enroll | unenroll | detectionErrorTradeoff | verify |
identify | ivector | info | addInfoHeader | release | ivectorSystem |
speakerRecognition

 trainExtractor

4-325

trainClassifier
Train i-vector classifier

Syntax
trainClassifier(ivs,data,labels)
trainClassifier(ivs,data,labels,Name=Value)

Description
trainClassifier(ivs,data,labels) trains the ivectorSystem object ivs to classify i-vectors
as labels.

trainClassifier(ivs,data,labels,Name=Value) specifies options using one or more name-
value arguments. For example, trainClassifier(ivs,data,labels,NumEigenvectors=A)
specifies the number of eigenvectors used to perform dimensionality reduction.

Examples

Train Speaker Verification System

Use the Pitch Tracking Database from Graz University of Technology (PTDB-TUG) [1] on page 4-336.
The data set consists of 20 English native speakers reading 2342 phonetically rich sentences from the
TIMIT corpus. Download and extract the data set. Depending on your system, downloading and
extracting the data set can take approximately 1.5 hours.

url = "https://www2.spsc.tugraz.at/databases/PTDB-TUG/SPEECH_DATA_ZIPPED.zip";
downloadFolder = tempdir;
datasetFolder = fullfile(downloadFolder,"PTDB-TUG");

if ~exist(datasetFolder,"dir")
 disp("Downloading PTDB-TUG (3.9 G) ...")
 unzip(url,datasetFolder)
end

Create an audioDatastore object that points to the data set. The data set was originally intended
for use in pitch-tracking training and evaluation and includes laryngograph readings and baseline
pitch decisions. Use only the original audio recordings.

ads = audioDatastore([fullfile(datasetFolder,"SPEECH DATA","FEMALE","MIC"),fullfile(datasetFolder,"SPEECH DATA","MALE","MIC")], ...
 IncludeSubfolders=true, ...
 FileExtensions=".wav");

The file names contain the speaker IDs. Decode the file names to set the labels in the
audioDatastore object.

ads.Labels = extractBetween(ads.Files,"mic_","_");
countEachLabel(ads)

ans=20×2 table
 Label Count

4 Classes

4-326

 _____ _____

 F01 236
 F02 236
 F03 236
 F04 236
 F05 236
 F06 236
 F07 236
 F08 234
 F09 236
 F10 236
 M01 236
 M02 236
 M03 236
 M04 236
 M05 236
 M06 236
 ⋮

Read an audio file from the data set, listen to it, and plot it.

[audioIn,audioInfo] = read(ads);
fs = audioInfo.SampleRate;

t = (0:size(audioIn,1)-1)/fs;
sound(audioIn,fs)
plot(t,audioIn)
xlabel("Time (s)")
ylabel("Amplitude")
axis([0 t(end) -1 1])
title("Sample Utterance from Data Set")

 trainClassifier

4-327

Separate the audioDatastore object into four: one for training, one for enrollment, one to evaluate
the detection-error tradeoff, and one for testing. The training set contains 16 speakers. The
enrollment, detection-error tradeoff, and test sets contain the other four speakers.

speakersToTest = categorical(["M01","M05","F01","F05"]);

adsTrain = subset(ads,~ismember(ads.Labels,speakersToTest));

ads = subset(ads,ismember(ads.Labels,speakersToTest));
[adsEnroll,adsTest,adsDET] = splitEachLabel(ads,3,1);

Display the label distributions of the audioDatastore objects.

countEachLabel(adsTrain)

ans=16×2 table
 Label Count
 _____ _____

 F02 236
 F03 236
 F04 236
 F06 236
 F07 236
 F08 234
 F09 236
 F10 236
 M02 236

4 Classes

4-328

 M03 236
 M04 236
 M06 236
 M07 236
 M08 236
 M09 236
 M10 236

countEachLabel(adsEnroll)

ans=4×2 table
 Label Count
 _____ _____

 F01 3
 F05 3
 M01 3
 M05 3

countEachLabel(adsTest)

ans=4×2 table
 Label Count
 _____ _____

 F01 1
 F05 1
 M01 1
 M05 1

countEachLabel(adsDET)

ans=4×2 table
 Label Count
 _____ _____

 F01 232
 F05 232
 M01 232
 M05 232

Create an i-vector system. By default, the i-vector system assumes the input to the system is mono
audio signals.

speakerVerification = ivectorSystem(SampleRate=fs)

speakerVerification =
 ivectorSystem with properties:

 InputType: 'audio'
 SampleRate: 48000
 DetectSpeech: 1
 Verbose: 1
 EnrolledLabels: [0×2 table]

 trainClassifier

4-329

To train the extractor of the i-vector system, call trainExtractor. Specify the number of universal
background model (UBM) components as 128 and the number of expectation maximization iterations
as 5. Specify the total variability space (TVS) rank as 64 and the number of iterations as 3.

trainExtractor(speakerVerification,adsTrain, ...
 UBMNumComponents=128,UBMNumIterations=5, ...
 TVSRank=64,TVSNumIterations=3)

Calculating standardization factorsdone.
Training universal background modeldone.
Training total variability spacedone.
i-vector extractor training complete.

To train the classifier of the i-vector system, use trainClassifier. To reduce dimensionality of the
i-vectors, specify the number of eigenvectors in the projection matrix as 16. Specify the number of
dimensions in the probabilistic linear discriminant analysis (PLDA) model as 16, and the number of
iterations as 3.

trainClassifier(speakerVerification,adsTrain,adsTrain.Labels, ...
 NumEigenvectors=16, ...
 PLDANumDimensions=16,PLDANumIterations=3)

Extracting i-vectors ...done.
Training projection matrixdone.
Training PLDA modeldone.
i-vector classifier training complete.

To calibrate the system so that scores can be interpreted as a measure of confidence in a positive
decision, use calibrate.

calibrate(speakerVerification,adsTrain,adsTrain.Labels)

Extracting i-vectors ...done.
Calibrating CSS scorer ...done.
Calibrating PLDA scorer ...done.
Calibration complete.

To inspect parameters used previously to train the i-vector system, use info.

info(speakerVerification)

i-vector system input
 Input feature vector length: 60
 Input data type: double

trainExtractor
 Train signals: 3774
 UBMNumComponents: 128
 UBMNumIterations: 5
 TVSRank: 64
 TVSNumIterations: 3

trainClassifier
 Train signals: 3774
 Train labels: F02 (236), F03 (236) ... and 14 more
 NumEigenvectors: 16
 PLDANumDimensions: 16
 PLDANumIterations: 3

4 Classes

4-330

calibrate
 Calibration signals: 3774
 Calibration labels: F02 (236), F03 (236) ... and 14 more

Split the enrollment set.

[adsEnrollPart1,adsEnrollPart2] = splitEachLabel(adsEnroll,1,2);

To enroll speakers in the i-vector system, call enroll.

enroll(speakerVerification,adsEnrollPart1,adsEnrollPart1.Labels)

Extracting i-vectors ...done.
Enrolling i-vectorsdone.
Enrollment complete.

When you enroll speakers, the read-only EnrolledLabels property is updated with the enrolled
labels and corresponding template i-vectors. The table also keeps track of the number of signals used
to create the template i-vector. Generally, using more signals results in a better template.

speakerVerification.EnrolledLabels

ans=4×2 table
 ivector NumSamples
 _____________ __________

 F01 {16×1 double} 1
 F05 {16×1 double} 1
 M01 {16×1 double} 1
 M05 {16×1 double} 1

Enroll the second part of the enrollment set and then view the enrolled labels table again. The i-
vector templates and the number of samples are updated.

enroll(speakerVerification,adsEnrollPart2,adsEnrollPart2.Labels)

Extracting i-vectors ...done.
Enrolling i-vectorsdone.
Enrollment complete.

speakerVerification.EnrolledLabels

ans=4×2 table
 ivector NumSamples
 _____________ __________

 F01 {16×1 double} 3
 F05 {16×1 double} 3
 M01 {16×1 double} 3
 M05 {16×1 double} 3

To evaluate the i-vector system and determine a decision threshold for speaker verification, call
detectionErrorTradeoff.

[results, eerThreshold] = detectionErrorTradeoff(speakerVerification,adsDET,adsDET.Labels);

 trainClassifier

4-331

Extracting i-vectors ...done.
Scoring i-vector pairs ...done.
Detection error tradeoff evaluation complete.

The first output from detectionErrorTradeoff is a structure with two fields: CSS and PLDA. Each
field contains a table. Each row of the table contains a possible decision threshold for speaker
verification tasks, and the corresponding false alarm rate (FAR) and false rejection rate (FRR). The
FAR and FRR are determined using the enrolled speaker labels and the data input to the
detectionErrorTradeoff function.

results

results = struct with fields:
 PLDA: [1000×3 table]
 CSS: [1000×3 table]

results.CSS

ans=1000×3 table
 Threshold FAR FRR
 __________ _______ ___

 1.7736e-09 1 0
 1.8233e-09 0.99964 0
 1.8745e-09 0.99964 0
 1.927e-09 0.99964 0
 1.9811e-09 0.99964 0
 2.0366e-09 0.99964 0
 2.0937e-09 0.99964 0
 2.1524e-09 0.99964 0
 2.2128e-09 0.99964 0
 2.2748e-09 0.99964 0
 2.3386e-09 0.99964 0
 2.4042e-09 0.99964 0
 2.4716e-09 0.99964 0
 2.5409e-09 0.99964 0
 2.6122e-09 0.99964 0
 2.6854e-09 0.99964 0
 ⋮

results.PLDA

ans=1000×3 table
 Threshold FAR FRR
 __________ _______ ___

 4.7045e-34 1 0
 5.143e-34 0.99964 0
 5.6225e-34 0.99964 0
 6.1466e-34 0.99964 0
 6.7197e-34 0.99964 0
 7.3461e-34 0.99964 0
 8.0309e-34 0.99964 0
 8.7796e-34 0.99964 0
 9.5981e-34 0.99964 0
 1.0493e-33 0.99964 0
 1.1471e-33 0.99964 0

4 Classes

4-332

 1.254e-33 0.99964 0
 1.371e-33 0.99964 0
 1.4988e-33 0.99964 0
 1.6385e-33 0.99964 0
 1.7912e-33 0.99964 0
 ⋮

The second output from detectionErrorTradeoff is a structure with two fields: CSS and PLDA.
The corresponding value is the decision threshold that results in the equal error rate (when FAR and
FRR are equal).

eerThreshold

eerThreshold = struct with fields:
 PLDA: 0.0021
 CSS: 0.9366

The first time you call detectionErrorTradeoff, you must provide data and corresponding labels
to evaluate. Subsequently, you can get the same information, or a different analysis using the same
underlying data, by calling detectionErrorTradeoff without data and labels.

Call detectionErrorTradeoff a second time with no data arguments or output arguments to
visualize the detection-error tradeoff.

detectionErrorTradeoff(speakerVerification)

 trainClassifier

4-333

Call detectionErrorTradeoff again. This time, visualize only the detection-error tradeoff for the
PLDA scorer.

detectionErrorTradeoff(speakerVerification,Scorer="plda")

Depending on your application, you may want to use a threshold that weights the error cost of a false
alarm higher or lower than the error cost of a false rejection. You may also be using data that is not
representative of the prior probability of the speaker being present. You can use the minDCF
parameter to specify custom costs and prior probability. Call detectionErrorTradeoff again, this
time specify the cost of a false rejection as 1, the cost of a false acceptance as 2, and the prior
probability that a speaker is present as 0.1.

costFR = 1;
costFA = 2;
priorProb = 0.1;
detectionErrorTradeoff(speakerVerification,Scorer="plda",minDCF=[costFR,costFA,priorProb])

4 Classes

4-334

Call detectionErrorTradeoff again. This time, get the minDCF threshold for the PLDA scorer and
the parameters of the detection cost function.

[~,minDCFThreshold] = detectionErrorTradeoff(speakerVerification,Scorer="plda",minDCF=[costFR,costFA,priorProb])

minDCFThreshold = 0.0595

Test Speaker Verification System

Read a signal from the test set.

adsTest = shuffle(adsTest);
[audioIn,audioInfo] = read(adsTest);
knownSpeakerID = audioInfo.Label

knownSpeakerID = 1×1 cell array
 {'F05'}

To perform speaker verification, call verify with the audio signal and specify the speaker ID, a
scorer, and a threshold for the scorer. The verify function returns a logical value indicating whether
a speaker identity is accepted or rejected, and a score indicating the similarity of the input audio and
the template i-vector corresponding to the enrolled label.

[tf,score] = verify(speakerVerification,audioIn,knownSpeakerID,"plda",eerThreshold.PLDA);
if tf
 fprintf('Success!\nSpeaker accepted.\nSimilarity score = %0.2f\n\n',score)
else

 trainClassifier

4-335

 fprinf('Failure!\nSpeaker rejected.\nSimilarity score = %0.2f\n\n',score)
end

Success!
Speaker accepted.
Similarity score = 1.00

Call speaker verification again. This time, specify an incorrect speaker ID.

possibleSpeakers = speakerVerification.EnrolledLabels.Properties.RowNames;
imposterIdx = find(~ismember(possibleSpeakers,knownSpeakerID));
imposter = possibleSpeakers(imposterIdx(randperm(numel(imposterIdx),1)))

imposter = 1×1 cell array
 {'F01'}

[tf,score] = verify(speakerVerification,audioIn,imposter,"plda",eerThreshold.PLDA);
if tf
 fprintf('Failure!\nSpeaker accepted.\nSimilarity score = %0.2f\n\n',score)
else
 fprintf('Success!\nSpeaker rejected.\nSimilarity score = %0.2f\n\n',score)
end

Success!
Speaker rejected.
Similarity score = 0.00

References

[1] Signal Processing and Speech Communication Laboratory. https://www.spsc.tugraz.at/databases-
and-tools/ptdb-tug-pitch-tracking-database-from-graz-university-of-technology.html. Accessed 12 Dec.
2019.

Input Arguments
ivs — i-vector system
ivectorSystem object

i-vector system, specified as an object of type ivectorSystem.

data — Training data for i-vector system
cell array | audioDatastore | signalDatastore | TransformedDatastore

Training data for an i-vector system, specified as a cell array or as an audioDatastore,
signalDatastore, or TransformedDatastore object.

• If InputType is set to "audio" when the i-vector system is created, specify data as one of these:

• A cell array of single-channel audio signals, each specified as a column vector with underlying
type single or double.

• An audioDatastore object or a signalDatastore object that points to a data set of mono
audio signals.

• A TransformedDatastore with an underlying audioDatastore or signalDatastore that
points to a data set of mono audio signals. The output from calls to read from the transform
datastore must be mono audio signals with underlying data type single or double.

4 Classes

4-336

https://www.spsc.tugraz.at/databases-and-tools/ptdb-tug-pitch-tracking-database-from-graz-university-of-technology.html.
https://www.spsc.tugraz.at/databases-and-tools/ptdb-tug-pitch-tracking-database-from-graz-university-of-technology.html.

• If InputType is set to "features" when the i-vector system is created, specify data as one of
these:

• A cell array of matrices with underlying type single or double. The matrices must consist of
audio features where the number of features (columns) is locked the first time
trainExtractor is called and the number of hops (rows) is variable-sized. The number of
features input in any subsequent calls to any of the object functions must be equal to the
number of features used when calling trainExtractor.

• A TransformedDatastore object with an underlying audioDatastore or
signalDatastore whose read function has output as described in the previous bullet.

• A signalDatastore object whose read function has output as described in the first bullet.

Data Types: cell | audioDatastore | signalDatastore

labels — Classification labels
categorical array | cell array | string array

Classification labels used by the i-vector system, specified as one of the following:

• A categorical array
• A cell array of character vectors
• A string array

Note The number of audio signals in data must match the number of labels.

Data Types: categorical | cell | string

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: trainClassifier(ivs,data,labels,PLDANumIterations=D)

NumEignevectors — Number of eigenvectors
16 (default) | positive integer

The number of eigenvectors used to perform dimensionality reduction, specified as a positive integer.
Example: trainClassifier(ivs,data,labels,NumEigenvectors=18)
Data Types: single | double

PLDANumIterations — Number of expectation-maximization iterations
5 (default) | positive integer

The number of expectation-maximization iterations used to train the probabilistic linear discriminant
analysis (PLDA) model, specified as a positive integer.
Example: trainClassifier(ivs,data,labels,PLDANumIterations=3)

 trainClassifier

4-337

Data Types: single | double

PLDANumDimensions — Maximum number of PLDA dimensions
16 (default) | positive integer

The maximum number of dimensions for the PLDA model, specified as a positive integer.
Example: trainClassifier(ivs,data,labels,PLDANumDimensions=10)

Note PLDANumDimensions must be less than or equal to the rank of the total variability matrix.

Data Types: single | double

ExecutionEnvironment — Hardware resource for execution
"auto" (default) | "cpu" | "gpu" | "multi-gpu" | "parallel"

Hardware resource for execution, specified as one of these:

• "auto" — Use the GPU if it is available. Otherwise, use the CPU.
• "cpu" — Use the CPU.
• "gpu" — Use the GPU. This option requires Parallel Computing Toolbox.
• "multi-gpu" — Use multiple GPUs on one machine, using a local parallel pool based on your

default cluster profile. If there is no current parallel pool, the software starts a parallel pool with
pool size equal to the number of available GPUs. This option requires Parallel Computing Toolbox.

• "parallel" — Use a local or remote parallel pool based on your default cluster profile. If there is
no current parallel pool, the software starts one using the default cluster profile. If the pool has
access to GPUs, then only workers with a unique GPU perform training computation. If the pool
does not have GPUs, then the training takes place on all available CPU workers. This option
requires Parallel Computing Toolbox.

Data Types: char | string

DispatchInBackground — Option to use prefetch queuing
false (default) | true

Option to use prefetch queuing when reading from a datastore, specified as a logical value. This
argument requires Parallel Computing Toolbox.
Data Types: logical

Version History
Introduced in R2021a

See Also
trainExtractor | calibrate | enroll | unenroll | detectionErrorTradeoff | verify |
identify | ivector | info | addInfoHeader | release | ivectorSystem |
speakerRecognition

4 Classes

4-338

calibrate
Train i-vector system calibrator

Syntax
calibrate(ivs,data,labels)
calibrate(ivs,data,labels,Name=Value)

Description
calibrate(ivs,data,labels) calibrates scores output from by i-vector system ivs. The
calibration scheme is determined using the calibration data and associated labels. A properly
calibrated system outputs scores that can be interpreted as confidence in a positive decision.

calibrate(ivs,data,labels,Name=Value) specifies additional options using name-value
arguments. You can choose the hardware resource to extract i-vectors and whether to use prefetch
queuing when reading from a datastore.

Examples

Train Acoustic Fault Recognition System

Download and unzip the air compressor data set [1] on page 4-342. This data set consists of
recordings from air compressors in a healthy state or one of seven faulty states.

loc = matlab.internal.examples.downloadSupportFile("audio", ...
 "AirCompressorDataset/AirCompressorDataset.zip");
unzip(loc,pwd)

Create an audioDatastore object to manage the data and split it into training and validation sets.

ads = audioDatastore(pwd,IncludeSubfolders=true,LabelSource="foldernames");

[adsTrain,adsTest] = splitEachLabel(ads,0.8,0.2);

Read an audio file from the datastore and save the sample rate. Listen to the audio signal and plot the
signal in the time domain.

[x,fileInfo] = read(adsTrain);
fs = fileInfo.SampleRate;

sound(x,fs)

t = (0:size(x,1)-1)/fs;
plot(t,x)
xlabel("Time (s)")
title("State = " + string(fileInfo.Label))
axis tight

 calibrate

4-339

Create an i-vector system with DetectSpeech set to false. Turn off the verbose behavior.

faultRecognizer = ivectorSystem(SampleRate=fs,DetectSpeech=false, ...
 Verbose=false)

faultRecognizer =
 ivectorSystem with properties:

 InputType: 'audio'
 SampleRate: 16000
 DetectSpeech: 0
 Verbose: 0
 EnrolledLabels: [0×2 table]

Train the i-vector extractor and the i-vector classifier using the training datastore.

trainExtractor(faultRecognizer,adsTrain, ...
 UBMNumComponents=80, ...
 UBMNumIterations=3, ...
 ...
 TVSRank=40, ...
 TVSNumIterations=3)

trainClassifier(faultRecognizer,adsTrain,adsTrain.Labels, ...
 NumEigenvectors=7, ...
 ...

4 Classes

4-340

 PLDANumDimensions=32, ...
 PLDANumIterations=5)

Calibrate the scores output by faultRecognizer so they can be interpreted as a measure of
confidence in a positive decision. Turn the verbose behavior back on. Enroll all of the labels from the
training set.

calibrate(faultRecognizer,adsTrain,adsTrain.Labels)

faultRecognizer.Verbose = true;

enroll(faultRecognizer,adsTrain,adsTrain.Labels)

Extracting i-vectors ...done.
Enrolling i-vectorsdone.
Enrollment complete.

Use the read-only property EnrolledLabels to view the enrolled labels and the corresponding i-
vector templates.

faultRecognizer.EnrolledLabels

ans=8×2 table
 ivector NumSamples
 ____________ __________

 Bearing {7×1 double} 180
 Flywheel {7×1 double} 180
 Healthy {7×1 double} 180
 LIV {7×1 double} 180
 LOV {7×1 double} 180
 NRV {7×1 double} 180
 Piston {7×1 double} 180
 Riderbelt {7×1 double} 180

Use the identify function with the PLDA scorer to predict the condition of machines in the test set.
The identify function returns a table of possible labels sorted in descending order of confidence.

[audioIn,audioInfo] = read(adsTest);
trueLabel = audioInfo.Label

trueLabel = categorical
 Bearing

predictedLabels = identify(faultRecognizer,audioIn,"plda")

predictedLabels=8×2 table
 Label Score
 _________ __________

 Bearing 0.99997
 Flywheel 2.265e-05
 Piston 8.6076e-08
 LIV 1.4237e-15
 NRV 4.5529e-16
 Riderbelt 3.7359e-16
 LOV 6.3025e-19

 calibrate

4-341

 Healthy 4.2094e-30

By default, the identify function returns all possible candidate labels and their corresponding
scores. Use NumCandidates to reduce the number of candidates returned.

results = identify(faultRecognizer,audioIn,"plda",NumCandidates=3)

results=3×2 table
 Label Score
 ________ __________

 Bearing 0.99997
 Flywheel 2.265e-05
 Piston 8.6076e-08

References

[1] Verma, Nishchal K., et al. “Intelligent Condition Based Monitoring Using Acoustic Signals for Air
Compressors.” IEEE Transactions on Reliability, vol. 65, no. 1, Mar. 2016, pp. 291–309. DOI.org
(Crossref), doi:10.1109/TR.2015.2459684.

Input Arguments
ivs — i-vector system
ivectorSystem object

i-vector system, specified as an object of type ivectorSystem.

data — Training data for i-vector system
cell array | audioDatastore | signalDatastore | TransformedDatastore

Training data for an i-vector system, specified as a cell array or as an audioDatastore,
signalDatastore, or TransformedDatastore object.

• If InputType is set to "audio" when the i-vector system is created, specify data as one of these:

• A cell array of single-channel audio signals, each specified as a column vector with underlying
type single or double.

• An audioDatastore object or a signalDatastore object that points to a data set of mono
audio signals.

• A TransformedDatastore with an underlying audioDatastore or signalDatastore that
points to a data set of mono audio signals. The output from calls to read from the transform
datastore must be mono audio signals with underlying data type single or double.

• If InputType is set to "features" when the i-vector system is created, specify data as one of
these:

• A cell array of matrices with underlying type single or double. The matrices must consist of
audio features where the number of features (columns) is locked the first time
trainExtractor is called and the number of hops (rows) is variable-sized. The number of
features input in any subsequent calls to any of the object functions must be equal to the
number of features used when calling trainExtractor.

4 Classes

4-342

• A TransformedDatastore object with an underlying audioDatastore or
signalDatastore whose read function has output as described in the previous bullet.

• A signalDatastore object whose read function has output as described in the first bullet.

Data Types: cell | audioDatastore | signalDatastore

labels — Classification labels
character vector | string | cell array | string array | categorical array

Classification labels used by an i-vector system, specified as one of these:

• A categorical array
• A cell array of character vectors
• A string array

Data Types: categorical | cell | string

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: calibrate(ivs,data,labels,DispatchInBackground=true)

ExecutionEnvironment — Hardware resource for execution
"auto" (default) | "cpu" | "gpu" | "multi-gpu" | "parallel"

Hardware resource for execution, specified as one of these:

• "auto" — Use the GPU if it is available. Otherwise, use the CPU.
• "cpu" — Use the CPU.
• "gpu" — Use the GPU. This option requires Parallel Computing Toolbox.
• "multi-gpu" — Use multiple GPUs on one machine, using a local parallel pool based on your

default cluster profile. If there is no current parallel pool, the software starts a parallel pool with
pool size equal to the number of available GPUs. This option requires Parallel Computing Toolbox.

• "parallel" — Use a local or remote parallel pool based on your default cluster profile. If there is
no current parallel pool, the software starts one using the default cluster profile. If the pool has
access to GPUs, then only workers with a unique GPU perform training computation. If the pool
does not have GPUs, then the training takes place on all available CPU workers. This option
requires Parallel Computing Toolbox.

Data Types: char | string

DispatchInBackground — Option to use prefetch queuing
false (default) | true

Option to use prefetch queuing when reading from a datastore, specified as a logical value. This
argument requires Parallel Computing Toolbox.
Data Types: logical

 calibrate

4-343

Version History
Introduced in R2022a

See Also
trainExtractor | trainClassifier | enroll | unenroll | detectionErrorTradeoff |
verify | identify | ivector | info | addInfoHeader | release | ivectorSystem |
speakerRecognition

4 Classes

4-344

enroll
Enroll labels

Syntax
enroll(ivs,data,labels)
enroll(ivs,data,labels,Name,Value)

Description
enroll(ivs,data,labels) enrolls the data and corresponding labels into the i-vector system ivs.

enroll(ivs,data,labels,Name,Value) specifies additional options using name-value
arguments. You can choose the hardware resource to extract i-vectors and whether to use prefetch
queuing when reading from a datastore.

Examples

Train Speaker Verification System

Use the Pitch Tracking Database from Graz University of Technology (PTDB-TUG) [1] on page 4-355.
The data set consists of 20 English native speakers reading 2342 phonetically rich sentences from the
TIMIT corpus. Download and extract the data set. Depending on your system, downloading and
extracting the data set can take approximately 1.5 hours.

url = "https://www2.spsc.tugraz.at/databases/PTDB-TUG/SPEECH_DATA_ZIPPED.zip";
downloadFolder = tempdir;
datasetFolder = fullfile(downloadFolder,"PTDB-TUG");

if ~exist(datasetFolder,"dir")
 disp("Downloading PTDB-TUG (3.9 G) ...")
 unzip(url,datasetFolder)
end

Create an audioDatastore object that points to the data set. The data set was originally intended
for use in pitch-tracking training and evaluation and includes laryngograph readings and baseline
pitch decisions. Use only the original audio recordings.

ads = audioDatastore([fullfile(datasetFolder,"SPEECH DATA","FEMALE","MIC"),fullfile(datasetFolder,"SPEECH DATA","MALE","MIC")], ...
 IncludeSubfolders=true, ...
 FileExtensions=".wav");

The file names contain the speaker IDs. Decode the file names to set the labels in the
audioDatastore object.

ads.Labels = extractBetween(ads.Files,"mic_","_");
countEachLabel(ads)

ans=20×2 table
 Label Count

 enroll

4-345

 _____ _____

 F01 236
 F02 236
 F03 236
 F04 236
 F05 236
 F06 236
 F07 236
 F08 234
 F09 236
 F10 236
 M01 236
 M02 236
 M03 236
 M04 236
 M05 236
 M06 236
 ⋮

Read an audio file from the data set, listen to it, and plot it.

[audioIn,audioInfo] = read(ads);
fs = audioInfo.SampleRate;

t = (0:size(audioIn,1)-1)/fs;
sound(audioIn,fs)
plot(t,audioIn)
xlabel("Time (s)")
ylabel("Amplitude")
axis([0 t(end) -1 1])
title("Sample Utterance from Data Set")

4 Classes

4-346

Separate the audioDatastore object into four: one for training, one for enrollment, one to evaluate
the detection-error tradeoff, and one for testing. The training set contains 16 speakers. The
enrollment, detection-error tradeoff, and test sets contain the other four speakers.

speakersToTest = categorical(["M01","M05","F01","F05"]);

adsTrain = subset(ads,~ismember(ads.Labels,speakersToTest));

ads = subset(ads,ismember(ads.Labels,speakersToTest));
[adsEnroll,adsTest,adsDET] = splitEachLabel(ads,3,1);

Display the label distributions of the audioDatastore objects.

countEachLabel(adsTrain)

ans=16×2 table
 Label Count
 _____ _____

 F02 236
 F03 236
 F04 236
 F06 236
 F07 236
 F08 234
 F09 236
 F10 236
 M02 236

 enroll

4-347

 M03 236
 M04 236
 M06 236
 M07 236
 M08 236
 M09 236
 M10 236

countEachLabel(adsEnroll)

ans=4×2 table
 Label Count
 _____ _____

 F01 3
 F05 3
 M01 3
 M05 3

countEachLabel(adsTest)

ans=4×2 table
 Label Count
 _____ _____

 F01 1
 F05 1
 M01 1
 M05 1

countEachLabel(adsDET)

ans=4×2 table
 Label Count
 _____ _____

 F01 232
 F05 232
 M01 232
 M05 232

Create an i-vector system. By default, the i-vector system assumes the input to the system is mono
audio signals.

speakerVerification = ivectorSystem(SampleRate=fs)

speakerVerification =
 ivectorSystem with properties:

 InputType: 'audio'
 SampleRate: 48000
 DetectSpeech: 1
 Verbose: 1
 EnrolledLabels: [0×2 table]

4 Classes

4-348

To train the extractor of the i-vector system, call trainExtractor. Specify the number of universal
background model (UBM) components as 128 and the number of expectation maximization iterations
as 5. Specify the total variability space (TVS) rank as 64 and the number of iterations as 3.

trainExtractor(speakerVerification,adsTrain, ...
 UBMNumComponents=128,UBMNumIterations=5, ...
 TVSRank=64,TVSNumIterations=3)

Calculating standardization factorsdone.
Training universal background modeldone.
Training total variability spacedone.
i-vector extractor training complete.

To train the classifier of the i-vector system, use trainClassifier. To reduce dimensionality of the
i-vectors, specify the number of eigenvectors in the projection matrix as 16. Specify the number of
dimensions in the probabilistic linear discriminant analysis (PLDA) model as 16, and the number of
iterations as 3.

trainClassifier(speakerVerification,adsTrain,adsTrain.Labels, ...
 NumEigenvectors=16, ...
 PLDANumDimensions=16,PLDANumIterations=3)

Extracting i-vectors ...done.
Training projection matrixdone.
Training PLDA modeldone.
i-vector classifier training complete.

To calibrate the system so that scores can be interpreted as a measure of confidence in a positive
decision, use calibrate.

calibrate(speakerVerification,adsTrain,adsTrain.Labels)

Extracting i-vectors ...done.
Calibrating CSS scorer ...done.
Calibrating PLDA scorer ...done.
Calibration complete.

To inspect parameters used previously to train the i-vector system, use info.

info(speakerVerification)

i-vector system input
 Input feature vector length: 60
 Input data type: double

trainExtractor
 Train signals: 3774
 UBMNumComponents: 128
 UBMNumIterations: 5
 TVSRank: 64
 TVSNumIterations: 3

trainClassifier
 Train signals: 3774
 Train labels: F02 (236), F03 (236) ... and 14 more
 NumEigenvectors: 16
 PLDANumDimensions: 16
 PLDANumIterations: 3

 enroll

4-349

calibrate
 Calibration signals: 3774
 Calibration labels: F02 (236), F03 (236) ... and 14 more

Split the enrollment set.

[adsEnrollPart1,adsEnrollPart2] = splitEachLabel(adsEnroll,1,2);

To enroll speakers in the i-vector system, call enroll.

enroll(speakerVerification,adsEnrollPart1,adsEnrollPart1.Labels)

Extracting i-vectors ...done.
Enrolling i-vectorsdone.
Enrollment complete.

When you enroll speakers, the read-only EnrolledLabels property is updated with the enrolled
labels and corresponding template i-vectors. The table also keeps track of the number of signals used
to create the template i-vector. Generally, using more signals results in a better template.

speakerVerification.EnrolledLabels

ans=4×2 table
 ivector NumSamples
 _____________ __________

 F01 {16×1 double} 1
 F05 {16×1 double} 1
 M01 {16×1 double} 1
 M05 {16×1 double} 1

Enroll the second part of the enrollment set and then view the enrolled labels table again. The i-
vector templates and the number of samples are updated.

enroll(speakerVerification,adsEnrollPart2,adsEnrollPart2.Labels)

Extracting i-vectors ...done.
Enrolling i-vectorsdone.
Enrollment complete.

speakerVerification.EnrolledLabels

ans=4×2 table
 ivector NumSamples
 _____________ __________

 F01 {16×1 double} 3
 F05 {16×1 double} 3
 M01 {16×1 double} 3
 M05 {16×1 double} 3

To evaluate the i-vector system and determine a decision threshold for speaker verification, call
detectionErrorTradeoff.

[results, eerThreshold] = detectionErrorTradeoff(speakerVerification,adsDET,adsDET.Labels);

4 Classes

4-350

Extracting i-vectors ...done.
Scoring i-vector pairs ...done.
Detection error tradeoff evaluation complete.

The first output from detectionErrorTradeoff is a structure with two fields: CSS and PLDA. Each
field contains a table. Each row of the table contains a possible decision threshold for speaker
verification tasks, and the corresponding false alarm rate (FAR) and false rejection rate (FRR). The
FAR and FRR are determined using the enrolled speaker labels and the data input to the
detectionErrorTradeoff function.

results

results = struct with fields:
 PLDA: [1000×3 table]
 CSS: [1000×3 table]

results.CSS

ans=1000×3 table
 Threshold FAR FRR
 __________ _______ ___

 1.7736e-09 1 0
 1.8233e-09 0.99964 0
 1.8745e-09 0.99964 0
 1.927e-09 0.99964 0
 1.9811e-09 0.99964 0
 2.0366e-09 0.99964 0
 2.0937e-09 0.99964 0
 2.1524e-09 0.99964 0
 2.2128e-09 0.99964 0
 2.2748e-09 0.99964 0
 2.3386e-09 0.99964 0
 2.4042e-09 0.99964 0
 2.4716e-09 0.99964 0
 2.5409e-09 0.99964 0
 2.6122e-09 0.99964 0
 2.6854e-09 0.99964 0
 ⋮

results.PLDA

ans=1000×3 table
 Threshold FAR FRR
 __________ _______ ___

 4.7045e-34 1 0
 5.143e-34 0.99964 0
 5.6225e-34 0.99964 0
 6.1466e-34 0.99964 0
 6.7197e-34 0.99964 0
 7.3461e-34 0.99964 0
 8.0309e-34 0.99964 0
 8.7796e-34 0.99964 0
 9.5981e-34 0.99964 0
 1.0493e-33 0.99964 0
 1.1471e-33 0.99964 0

 enroll

4-351

 1.254e-33 0.99964 0
 1.371e-33 0.99964 0
 1.4988e-33 0.99964 0
 1.6385e-33 0.99964 0
 1.7912e-33 0.99964 0
 ⋮

The second output from detectionErrorTradeoff is a structure with two fields: CSS and PLDA.
The corresponding value is the decision threshold that results in the equal error rate (when FAR and
FRR are equal).

eerThreshold

eerThreshold = struct with fields:
 PLDA: 0.0021
 CSS: 0.9366

The first time you call detectionErrorTradeoff, you must provide data and corresponding labels
to evaluate. Subsequently, you can get the same information, or a different analysis using the same
underlying data, by calling detectionErrorTradeoff without data and labels.

Call detectionErrorTradeoff a second time with no data arguments or output arguments to
visualize the detection-error tradeoff.

detectionErrorTradeoff(speakerVerification)

4 Classes

4-352

Call detectionErrorTradeoff again. This time, visualize only the detection-error tradeoff for the
PLDA scorer.

detectionErrorTradeoff(speakerVerification,Scorer="plda")

Depending on your application, you may want to use a threshold that weights the error cost of a false
alarm higher or lower than the error cost of a false rejection. You may also be using data that is not
representative of the prior probability of the speaker being present. You can use the minDCF
parameter to specify custom costs and prior probability. Call detectionErrorTradeoff again, this
time specify the cost of a false rejection as 1, the cost of a false acceptance as 2, and the prior
probability that a speaker is present as 0.1.

costFR = 1;
costFA = 2;
priorProb = 0.1;
detectionErrorTradeoff(speakerVerification,Scorer="plda",minDCF=[costFR,costFA,priorProb])

 enroll

4-353

Call detectionErrorTradeoff again. This time, get the minDCF threshold for the PLDA scorer and
the parameters of the detection cost function.

[~,minDCFThreshold] = detectionErrorTradeoff(speakerVerification,Scorer="plda",minDCF=[costFR,costFA,priorProb])

minDCFThreshold = 0.0595

Test Speaker Verification System

Read a signal from the test set.

adsTest = shuffle(adsTest);
[audioIn,audioInfo] = read(adsTest);
knownSpeakerID = audioInfo.Label

knownSpeakerID = 1×1 cell array
 {'F05'}

To perform speaker verification, call verify with the audio signal and specify the speaker ID, a
scorer, and a threshold for the scorer. The verify function returns a logical value indicating whether
a speaker identity is accepted or rejected, and a score indicating the similarity of the input audio and
the template i-vector corresponding to the enrolled label.

[tf,score] = verify(speakerVerification,audioIn,knownSpeakerID,"plda",eerThreshold.PLDA);
if tf
 fprintf('Success!\nSpeaker accepted.\nSimilarity score = %0.2f\n\n',score)
else

4 Classes

4-354

 fprinf('Failure!\nSpeaker rejected.\nSimilarity score = %0.2f\n\n',score)
end

Success!
Speaker accepted.
Similarity score = 1.00

Call speaker verification again. This time, specify an incorrect speaker ID.

possibleSpeakers = speakerVerification.EnrolledLabels.Properties.RowNames;
imposterIdx = find(~ismember(possibleSpeakers,knownSpeakerID));
imposter = possibleSpeakers(imposterIdx(randperm(numel(imposterIdx),1)))

imposter = 1×1 cell array
 {'F01'}

[tf,score] = verify(speakerVerification,audioIn,imposter,"plda",eerThreshold.PLDA);
if tf
 fprintf('Failure!\nSpeaker accepted.\nSimilarity score = %0.2f\n\n',score)
else
 fprintf('Success!\nSpeaker rejected.\nSimilarity score = %0.2f\n\n',score)
end

Success!
Speaker rejected.
Similarity score = 0.00

References

[1] Signal Processing and Speech Communication Laboratory. https://www.spsc.tugraz.at/databases-
and-tools/ptdb-tug-pitch-tracking-database-from-graz-university-of-technology.html. Accessed 12 Dec.
2019.

Input Arguments
ivs — i-vector system
ivectorSystem object

i-vector system, specified as an object of type ivectorSystem.

data — Labeled enrollment data
column vector | cell array | audioDatastore | signalDatastore | TransformedDatastore

Labeled enrollment data, specified as a cell array or as an audioDatastore, signalDatastore, or
TransformedDatastore object.

• If InputType is set to "audio" when the i-vector system is created, specify data as one of these:

• A column vector with underlying type single or double.
• A cell array of single-channel audio signals, each specified as a column vector with underlying

type single or double.
• An audioDatastore object or a signalDatastore object that points to a data set of mono

audio signals.

 enroll

4-355

https://www.spsc.tugraz.at/databases-and-tools/ptdb-tug-pitch-tracking-database-from-graz-university-of-technology.html.
https://www.spsc.tugraz.at/databases-and-tools/ptdb-tug-pitch-tracking-database-from-graz-university-of-technology.html.

• A TransformedDatastore with an underlying audioDatastore or signalDatastore that
points to a data set of mono audio signals. The output from calls to read from the transform
datastore must be mono audio signals with underlying data type single or double.

• If InputType is set to "features" when the i-vector system is created, specify data as one of
these:

• A cell array of matrices with underlying type single or double. The matrices must consist of
audio features where the number of features (columns) is locked the first time
trainExtractor is called and the number of hops (rows) is variable-sized. The number of
features input in any subsequent calls to any of the object functions must be equal to the
number of features used when calling trainExtractor.

• A TransformedDatastore object with an underlying audioDatastore or
signalDatastore whose read function has output as described in the previous bullet.

• A signalDatastore object whose read function has output as described in the first bullet.

Data Types: cell | audioDatastore | signalDatastore

labels — Classification labels
character vector | string | cell array | string array | categorical array

Classification labels used by an i-vector system, specified as one of these:

• A categorical array
• A cell array of character vectors
• A string array

Data Types: categorical | cell | string

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: enroll(ivs,data,labels,DispatchInBackground=true)

ExecutionEnvironment — Hardware resource for execution
"auto" (default) | "cpu" | "gpu" | "multi-gpu" | "parallel"

Hardware resource for execution, specified as one of these:

• "auto" — Use the GPU if it is available. Otherwise, use the CPU.
• "cpu" — Use the CPU.
• "gpu" — Use the GPU. This option requires Parallel Computing Toolbox.
• "multi-gpu" — Use multiple GPUs on one machine, using a local parallel pool based on your

default cluster profile. If there is no current parallel pool, the software starts a parallel pool with
pool size equal to the number of available GPUs. This option requires Parallel Computing Toolbox.

• "parallel" — Use a local or remote parallel pool based on your default cluster profile. If there is
no current parallel pool, the software starts one using the default cluster profile. If the pool has
access to GPUs, then only workers with a unique GPU perform training computation. If the pool

4 Classes

4-356

does not have GPUs, then the training takes place on all available CPU workers. This option
requires Parallel Computing Toolbox.

Data Types: char | string

DispatchInBackground — Option to use prefetch queuing
false (default) | true

Option to use prefetch queuing when reading from a datastore, specified as a logical value. This
argument requires Parallel Computing Toolbox.
Data Types: logical

Version History
Introduced in R2021a

See Also
trainExtractor | trainClassifier | calibrate | unenroll | detectionErrorTradeoff |
verify | identify | ivector | info | addInfoHeader | release | ivectorSystem |
speakerRecognition

 enroll

4-357

unenroll
Unenroll labels

Syntax
unenroll(ivs)
unenroll(ivs,labels)

Description
unenroll(ivs) unenrolls all labels and corresponding i-vectors from the i-vector system ivs.

unenroll(ivs,labels) unenrolls the specified labels and corresponding i-vectors from the i-vector
system ivs.

Examples

Train Speech Emotion Recognition System

Download the Berlin Database of Emotional Speech [1] on page 4-366. The database contains 535
utterances spoken by 10 actors intended to convey one of the following emotions: anger, boredom,
disgust, anxiety/fear, happiness, sadness, or neutral. The emotions are text independent.

url = "http://emodb.bilderbar.info/download/download.zip";
downloadFolder = tempdir;
datasetFolder = fullfile(downloadFolder,"Emo-DB");

if ~exist(datasetFolder,"dir")
 disp("Downloading Emo-DB (40.5 MB) ...")
 unzip(url,datasetFolder)
end

Create an audioDatastore that points to the audio files.

ads = audioDatastore(fullfile(datasetFolder,"wav"));

The file names are codes indicating the speaker id, text spoken, emotion, and version. The website
contains a key for interpreting the code and additional information about the speakers such as
gender and age. Create a table with the variables Speaker and Emotion. Decode the file names into
the table.

filepaths = ads.Files;
emotionCodes = cellfun(@(x)x(end-5),filepaths,"UniformOutput",false);
emotions = replace(emotionCodes,{'W','L','E','A','F','T','N'}, ...
 {'Anger','Boredom','Disgust','Anxiety','Happiness','Sadness','Neutral'});

speakerCodes = cellfun(@(x)x(end-10:end-9),filepaths,"UniformOutput",false);
labelTable = table(categorical(speakerCodes),categorical(emotions),VariableNames=["Speaker","Emotion"]);
summary(labelTable)

Variables:

4 Classes

4-358

 Speaker: 535×1 categorical

 Values:

 03 49
 08 58
 09 43
 10 38
 11 55
 12 35
 13 61
 14 69
 15 56
 16 71

 Emotion: 535×1 categorical

 Values:

 Anger 127
 Anxiety 69
 Boredom 81
 Disgust 46
 Happiness 71
 Neutral 79
 Sadness 62

labelTable is in the same order as the files in audioDatastore. Set the Labels property of the
audioDatastore to labelTable.

ads.Labels = labelTable;

Read a signal from the datastore and listen to it. Display the speaker ID and emotion of the audio
signal.

[audioIn,audioInfo] = read(ads);
fs = audioInfo.SampleRate;
sound(audioIn,fs)
audioInfo.Label

ans=1×2 table
 Speaker Emotion
 _______ _________

 03 Happiness

Split the datastore into a training set and a test set. Assign two speakers to the test set and the
remaining to the training set.

testSpeakerIdx = ads.Labels.Speaker=="12" | ads.Labels.Speaker=="13";
adsTrain = subset(ads,~testSpeakerIdx);
adsTest = subset(ads,testSpeakerIdx);

Read all the training and testing audio data into cell arrays. If your data can fit in memory, training is
usually faster to input cell arrays to an i-vector system rather than datastores.

trainSet = readall(adsTrain);
trainLabels = adsTrain.Labels.Emotion;

 unenroll

4-359

testSet = readall(adsTest);
testLabels = adsTest.Labels.Emotion;

Create an i-vector system that does not apply speech detection. When DetectSpeech is set to true
(the default), only regions of detected speech are used to train the i-vector system. When
DetectSpeech is set to false, the entire input audio is used to train the i-vector system. The
usefulness of applying speech detection depends on the data input to the system.

emotionRecognizer = ivectorSystem(SampleRate=fs,DetectSpeech=)

emotionRecognizer =
 ivectorSystem with properties:

 InputType: 'audio'
 SampleRate: 16000
 DetectSpeech: 0
 Verbose: 1
 EnrolledLabels: [0×2 table]

Call trainExtractor using the training set.

rng default
trainExtractor(emotionRecognizer,trainSet, ...

 UBMNumComponents = , ...

 UBMNumIterations = , ...
 ...

 TVSRank = , ...

 TVSNumIterations =);

Calculating standardization factorsdone.
Training universal background modeldone.
Training total variability spacedone.
i-vector extractor training complete.

Copy the emotion recognition system for use later in the example.

sentimentRecognizer = copy(emotionRecognizer);

Call trainClassifier using the training set.

rng default
trainClassifier(emotionRecognizer,trainSet,trainLabels, ...

 NumEigenvectors = , ...
 ...

 PLDANumDimensions = , ...

 PLDANumIterations =);

Extracting i-vectors ...done.
Training projection matrixdone.
Training PLDA modeldone.
i-vector classifier training complete.

4 Classes

4-360

Call calibrate using the training set. In practice, the calibration set should be different than the
training set.

calibrate(emotionRecognizer,trainSet,trainLabels)

Extracting i-vectors ...done.
Calibrating CSS scorer ...done.
Calibrating PLDA scorer ...done.
Calibration complete.

Enroll the training labels into the i-vector system.

enroll(emotionRecognizer,trainSet,trainLabels)

Extracting i-vectors ...done.
Enrolling i-vectorsdone.
Enrollment complete.

You can use detectionErrorTradeoff as a quick sanity check on the performance of a multilabel
closed-set classification system. However, detectionErrorTradeoff provides information more
suitable to open-set binary classification problems, for example, speaker verification tasks.

detectionErrorTradeoff(emotionRecognizer,testSet,testLabels)

Extracting i-vectors ...done.
Scoring i-vector pairs ...done.
Detection error tradeoff evaluation complete.

 unenroll

4-361

For a more detailed view of the i-vector system's performance in a multilabel closed set application,
you can use the identify function and create a confusion matrix. The confusion matrix enables you
to identify which emotions are misidentified and what they are misidentified as. Use the supporting
function plotConfusion to display the results.

trueLabels = testLabels;
predictedLabels = trueLabels;

scorer = ;
for ii = 1:numel(testSet)
 tableOut = identify(emotionRecognizer,testSet{ii},scorer);
 predictedLabels(ii) = tableOut.Label(1);
end

plotConfusion(trueLabels,predictedLabels)

Call info to inspect how emotionRecognizer was trained and evaluated.

info(emotionRecognizer)

i-vector system input
 Input feature vector length: 60
 Input data type: double

trainExtractor
 Train signals: 439
 UBMNumComponents: 256
 UBMNumIterations: 5

4 Classes

4-362

 TVSRank: 128
 TVSNumIterations: 5

trainClassifier
 Train signals: 439
 Train labels: Anger (103), Anxiety (56) ... and 5 more
 NumEigenvectors: 32
 PLDANumDimensions: 16
 PLDANumIterations: 10

calibrate
 Calibration signals: 439
 Calibration labels: Anger (103), Anxiety (56) ... and 5 more

detectionErrorTradeoff
 Evaluation signals: 96
 Evaluation labels: Anger (24), Anxiety (13) ... and 5 more

Next, modify the i-vector system to recognize emotions as positive, neutral, or negative. Update the
labels to only include the categories negative, positive, and categorical.

trainLabelsSentiment = trainLabels;
trainLabelsSentiment(ismember(trainLabels,categorical(["Anger","Anxiety","Boredom","Sadness","Disgust"]))) = categorical("Negative");
trainLabelsSentiment(ismember(trainLabels,categorical("Happiness"))) = categorical("Postive");
trainLabelsSentiment = removecats(trainLabelsSentiment);

testLabelsSentiment = testLabels;
testLabelsSentiment(ismember(testLabels,categorical(["Anger","Anxiety","Boredom","Sadness","Disgust"]))) = categorical("Negative");
testLabelsSentiment(ismember(testLabels,categorical("Happiness"))) = categorical("Postive");
testLabelsSentiment = removecats(testLabelsSentiment);

Train the i-vector system classifier using the updated labels. You do not need to retrain the extractor.
Recalibrate the system.

rng default
trainClassifier(sentimentRecognizer,trainSet,trainLabelsSentiment, ...

 NumEigenvectors = , ...
 ...

 PLDANumDimensions = , ...

 PLDANumIterations =);

Extracting i-vectors ...done.
Training projection matrixdone.
Training PLDA modeldone.
i-vector classifier training complete.

calibrate(sentimentRecognizer,trainSet,trainLabels)

Extracting i-vectors ...done.
Calibrating CSS scorer ...done.
Calibrating PLDA scorer ...done.
Calibration complete.

Enroll the training labels into the system and then plot the confusion matrix for the test set.

enroll(sentimentRecognizer,trainSet,trainLabelsSentiment)

 unenroll

4-363

Extracting i-vectors ...done.
Enrolling i-vectorsdone.
Enrollment complete.

trueLabels = testLabelsSentiment;
predictedLabels = trueLabels;

scorer = ;
for ii = 1:numel(testSet)
 tableOut = identify(sentimentRecognizer,testSet{ii},scorer);
 predictedLabels(ii) = tableOut.Label(1);
end

plotConfusion(trueLabels,predictedLabels)

An i-vector system does not require the labels used to train the classifier to be equal to the enrolled
labels.

Unenroll the sentiment labels from the system and then enroll the original emotion categories in the
system. Analyze the system's classification performance.

unenroll(sentimentRecognizer)
enroll(sentimentRecognizer,trainSet,trainLabels)

Extracting i-vectors ...done.
Enrolling i-vectorsdone.
Enrollment complete.

4 Classes

4-364

trueLabels = testLabels;
predictedLabels = trueLabels;

scorer = ;
for ii = 1:numel(testSet)
 tableOut = identify(sentimentRecognizer,testSet{ii},scorer);
 predictedLabels(ii) = tableOut.Label(1);
end

plotConfusion(trueLabels,predictedLabels)

Supporting Functions

function plotConfusion(trueLabels,predictedLabels)
uniqueLabels = unique(trueLabels);
cm = zeros(numel(uniqueLabels),numel(uniqueLabels));
for ii = 1:numel(uniqueLabels)
 for jj = 1:numel(uniqueLabels)
 cm(ii,jj) = sum((trueLabels==uniqueLabels(ii)) & (predictedLabels==uniqueLabels(jj)));
 end
end

heatmap(uniqueLabels,uniqueLabels,cm)
colorbar off
ylabel('True Labels')
xlabel('Predicted Labels')
accuracy = mean(trueLabels==predictedLabels);

 unenroll

4-365

title(sprintf("Accuracy = %0.2f %%",accuracy*100))
end

References

[1] Burkhardt, F., A. Paeschke, M. Rolfes, W.F. Sendlmeier, and B. Weiss, "A Database of German
Emotional Speech." In Proceedings Interspeech 2005. Lisbon, Portugal: International Speech
Communication Association, 2005.

Input Arguments
ivs — i-vector system
ivectorSystem object

i-vector system, specified as an object of type ivectorSystem.

labels — Classification labels
character vector | string | cell array | string array | categorical array

Classification labels used by an i-vector system, specified as one of these:

• A categorical array
• A cell array of character vectors
• A string array

Data Types: categorical | cell | string

Version History
Introduced in R2021a

See Also
trainExtractor | trainClassifier | calibrate | enroll | detectionErrorTradeoff |
verify | identify | ivector | info | addInfoHeader | release | ivectorSystem |
speakerRecognition

4 Classes

4-366

detectionErrorTradeoff
Evaluate binary classification system

Syntax
results = detectionErrorTradeoff(ivs,data,labels)
results = detectionErrorTradeoff(ivs)

[results,threshold] = detectionErrorTradeoff(___)

[___] = detectionErrorTradeoff(___ ,Name,Value)

detectionErrorTradeoff(___)

Description
results = detectionErrorTradeoff(ivs,data,labels) computes detection error tradeoff of
the i-vector system ivs for the enrolled labels and the specified data.

results = detectionErrorTradeoff(ivs) returns a structure containing previously calculated
results of threshold sweeping for probabilistic linear discriminant analysis (PLDA) and cosine
similarity scoring (CSS).

[results,threshold] = detectionErrorTradeoff(___) also returns the threshold
corresponding to the equal error rate.

[___] = detectionErrorTradeoff(___ ,Name,Value) specifies additional options using
name-value arguments. For example, you can choose the scorer results and the hardware resource
for extracting i-vectors.

detectionErrorTradeoff(___) with no output arguments plots the equal error rate and the
detection error tradeoff.

Examples

Train Speaker Verification System

Use the Pitch Tracking Database from Graz University of Technology (PTDB-TUG) [1] on page 4-377.
The data set consists of 20 English native speakers reading 2342 phonetically rich sentences from the
TIMIT corpus. Download and extract the data set. Depending on your system, downloading and
extracting the data set can take approximately 1.5 hours.

url = "https://www2.spsc.tugraz.at/databases/PTDB-TUG/SPEECH_DATA_ZIPPED.zip";
downloadFolder = tempdir;
datasetFolder = fullfile(downloadFolder,"PTDB-TUG");

if ~exist(datasetFolder,"dir")
 disp("Downloading PTDB-TUG (3.9 G) ...")
 unzip(url,datasetFolder)
end

 detectionErrorTradeoff

4-367

Create an audioDatastore object that points to the data set. The data set was originally intended
for use in pitch-tracking training and evaluation and includes laryngograph readings and baseline
pitch decisions. Use only the original audio recordings.

ads = audioDatastore([fullfile(datasetFolder,"SPEECH DATA","FEMALE","MIC"),fullfile(datasetFolder,"SPEECH DATA","MALE","MIC")], ...
 IncludeSubfolders=true, ...
 FileExtensions=".wav");

The file names contain the speaker IDs. Decode the file names to set the labels in the
audioDatastore object.

ads.Labels = extractBetween(ads.Files,"mic_","_");
countEachLabel(ads)

ans=20×2 table
 Label Count
 _____ _____

 F01 236
 F02 236
 F03 236
 F04 236
 F05 236
 F06 236
 F07 236
 F08 234
 F09 236
 F10 236
 M01 236
 M02 236
 M03 236
 M04 236
 M05 236
 M06 236
 ⋮

Read an audio file from the data set, listen to it, and plot it.

[audioIn,audioInfo] = read(ads);
fs = audioInfo.SampleRate;

t = (0:size(audioIn,1)-1)/fs;
sound(audioIn,fs)
plot(t,audioIn)
xlabel("Time (s)")
ylabel("Amplitude")
axis([0 t(end) -1 1])
title("Sample Utterance from Data Set")

4 Classes

4-368

Separate the audioDatastore object into four: one for training, one for enrollment, one to evaluate
the detection-error tradeoff, and one for testing. The training set contains 16 speakers. The
enrollment, detection-error tradeoff, and test sets contain the other four speakers.

speakersToTest = categorical(["M01","M05","F01","F05"]);

adsTrain = subset(ads,~ismember(ads.Labels,speakersToTest));

ads = subset(ads,ismember(ads.Labels,speakersToTest));
[adsEnroll,adsTest,adsDET] = splitEachLabel(ads,3,1);

Display the label distributions of the audioDatastore objects.

countEachLabel(adsTrain)

ans=16×2 table
 Label Count
 _____ _____

 F02 236
 F03 236
 F04 236
 F06 236
 F07 236
 F08 234
 F09 236
 F10 236
 M02 236

 detectionErrorTradeoff

4-369

 M03 236
 M04 236
 M06 236
 M07 236
 M08 236
 M09 236
 M10 236

countEachLabel(adsEnroll)

ans=4×2 table
 Label Count
 _____ _____

 F01 3
 F05 3
 M01 3
 M05 3

countEachLabel(adsTest)

ans=4×2 table
 Label Count
 _____ _____

 F01 1
 F05 1
 M01 1
 M05 1

countEachLabel(adsDET)

ans=4×2 table
 Label Count
 _____ _____

 F01 232
 F05 232
 M01 232
 M05 232

Create an i-vector system. By default, the i-vector system assumes the input to the system is mono
audio signals.

speakerVerification = ivectorSystem(SampleRate=fs)

speakerVerification =
 ivectorSystem with properties:

 InputType: 'audio'
 SampleRate: 48000
 DetectSpeech: 1
 Verbose: 1
 EnrolledLabels: [0×2 table]

4 Classes

4-370

To train the extractor of the i-vector system, call trainExtractor. Specify the number of universal
background model (UBM) components as 128 and the number of expectation maximization iterations
as 5. Specify the total variability space (TVS) rank as 64 and the number of iterations as 3.

trainExtractor(speakerVerification,adsTrain, ...
 UBMNumComponents=128,UBMNumIterations=5, ...
 TVSRank=64,TVSNumIterations=3)

Calculating standardization factorsdone.
Training universal background modeldone.
Training total variability spacedone.
i-vector extractor training complete.

To train the classifier of the i-vector system, use trainClassifier. To reduce dimensionality of the
i-vectors, specify the number of eigenvectors in the projection matrix as 16. Specify the number of
dimensions in the probabilistic linear discriminant analysis (PLDA) model as 16, and the number of
iterations as 3.

trainClassifier(speakerVerification,adsTrain,adsTrain.Labels, ...
 NumEigenvectors=16, ...
 PLDANumDimensions=16,PLDANumIterations=3)

Extracting i-vectors ...done.
Training projection matrixdone.
Training PLDA modeldone.
i-vector classifier training complete.

To calibrate the system so that scores can be interpreted as a measure of confidence in a positive
decision, use calibrate.

calibrate(speakerVerification,adsTrain,adsTrain.Labels)

Extracting i-vectors ...done.
Calibrating CSS scorer ...done.
Calibrating PLDA scorer ...done.
Calibration complete.

To inspect parameters used previously to train the i-vector system, use info.

info(speakerVerification)

i-vector system input
 Input feature vector length: 60
 Input data type: double

trainExtractor
 Train signals: 3774
 UBMNumComponents: 128
 UBMNumIterations: 5
 TVSRank: 64
 TVSNumIterations: 3

trainClassifier
 Train signals: 3774
 Train labels: F02 (236), F03 (236) ... and 14 more
 NumEigenvectors: 16
 PLDANumDimensions: 16
 PLDANumIterations: 3

 detectionErrorTradeoff

4-371

calibrate
 Calibration signals: 3774
 Calibration labels: F02 (236), F03 (236) ... and 14 more

Split the enrollment set.

[adsEnrollPart1,adsEnrollPart2] = splitEachLabel(adsEnroll,1,2);

To enroll speakers in the i-vector system, call enroll.

enroll(speakerVerification,adsEnrollPart1,adsEnrollPart1.Labels)

Extracting i-vectors ...done.
Enrolling i-vectorsdone.
Enrollment complete.

When you enroll speakers, the read-only EnrolledLabels property is updated with the enrolled
labels and corresponding template i-vectors. The table also keeps track of the number of signals used
to create the template i-vector. Generally, using more signals results in a better template.

speakerVerification.EnrolledLabels

ans=4×2 table
 ivector NumSamples
 _____________ __________

 F01 {16×1 double} 1
 F05 {16×1 double} 1
 M01 {16×1 double} 1
 M05 {16×1 double} 1

Enroll the second part of the enrollment set and then view the enrolled labels table again. The i-
vector templates and the number of samples are updated.

enroll(speakerVerification,adsEnrollPart2,adsEnrollPart2.Labels)

Extracting i-vectors ...done.
Enrolling i-vectorsdone.
Enrollment complete.

speakerVerification.EnrolledLabels

ans=4×2 table
 ivector NumSamples
 _____________ __________

 F01 {16×1 double} 3
 F05 {16×1 double} 3
 M01 {16×1 double} 3
 M05 {16×1 double} 3

To evaluate the i-vector system and determine a decision threshold for speaker verification, call
detectionErrorTradeoff.

[results, eerThreshold] = detectionErrorTradeoff(speakerVerification,adsDET,adsDET.Labels);

4 Classes

4-372

Extracting i-vectors ...done.
Scoring i-vector pairs ...done.
Detection error tradeoff evaluation complete.

The first output from detectionErrorTradeoff is a structure with two fields: CSS and PLDA. Each
field contains a table. Each row of the table contains a possible decision threshold for speaker
verification tasks, and the corresponding false alarm rate (FAR) and false rejection rate (FRR). The
FAR and FRR are determined using the enrolled speaker labels and the data input to the
detectionErrorTradeoff function.

results

results = struct with fields:
 PLDA: [1000×3 table]
 CSS: [1000×3 table]

results.CSS

ans=1000×3 table
 Threshold FAR FRR
 __________ _______ ___

 1.7736e-09 1 0
 1.8233e-09 0.99964 0
 1.8745e-09 0.99964 0
 1.927e-09 0.99964 0
 1.9811e-09 0.99964 0
 2.0366e-09 0.99964 0
 2.0937e-09 0.99964 0
 2.1524e-09 0.99964 0
 2.2128e-09 0.99964 0
 2.2748e-09 0.99964 0
 2.3386e-09 0.99964 0
 2.4042e-09 0.99964 0
 2.4716e-09 0.99964 0
 2.5409e-09 0.99964 0
 2.6122e-09 0.99964 0
 2.6854e-09 0.99964 0
 ⋮

results.PLDA

ans=1000×3 table
 Threshold FAR FRR
 __________ _______ ___

 4.7045e-34 1 0
 5.143e-34 0.99964 0
 5.6225e-34 0.99964 0
 6.1466e-34 0.99964 0
 6.7197e-34 0.99964 0
 7.3461e-34 0.99964 0
 8.0309e-34 0.99964 0
 8.7796e-34 0.99964 0
 9.5981e-34 0.99964 0
 1.0493e-33 0.99964 0
 1.1471e-33 0.99964 0

 detectionErrorTradeoff

4-373

 1.254e-33 0.99964 0
 1.371e-33 0.99964 0
 1.4988e-33 0.99964 0
 1.6385e-33 0.99964 0
 1.7912e-33 0.99964 0
 ⋮

The second output from detectionErrorTradeoff is a structure with two fields: CSS and PLDA.
The corresponding value is the decision threshold that results in the equal error rate (when FAR and
FRR are equal).

eerThreshold

eerThreshold = struct with fields:
 PLDA: 0.0021
 CSS: 0.9366

The first time you call detectionErrorTradeoff, you must provide data and corresponding labels
to evaluate. Subsequently, you can get the same information, or a different analysis using the same
underlying data, by calling detectionErrorTradeoff without data and labels.

Call detectionErrorTradeoff a second time with no data arguments or output arguments to
visualize the detection-error tradeoff.

detectionErrorTradeoff(speakerVerification)

4 Classes

4-374

Call detectionErrorTradeoff again. This time, visualize only the detection-error tradeoff for the
PLDA scorer.

detectionErrorTradeoff(speakerVerification,Scorer="plda")

Depending on your application, you may want to use a threshold that weights the error cost of a false
alarm higher or lower than the error cost of a false rejection. You may also be using data that is not
representative of the prior probability of the speaker being present. You can use the minDCF
parameter to specify custom costs and prior probability. Call detectionErrorTradeoff again, this
time specify the cost of a false rejection as 1, the cost of a false acceptance as 2, and the prior
probability that a speaker is present as 0.1.

costFR = 1;
costFA = 2;
priorProb = 0.1;
detectionErrorTradeoff(speakerVerification,Scorer="plda",minDCF=[costFR,costFA,priorProb])

 detectionErrorTradeoff

4-375

Call detectionErrorTradeoff again. This time, get the minDCF threshold for the PLDA scorer and
the parameters of the detection cost function.

[~,minDCFThreshold] = detectionErrorTradeoff(speakerVerification,Scorer="plda",minDCF=[costFR,costFA,priorProb])

minDCFThreshold = 0.0595

Test Speaker Verification System

Read a signal from the test set.

adsTest = shuffle(adsTest);
[audioIn,audioInfo] = read(adsTest);
knownSpeakerID = audioInfo.Label

knownSpeakerID = 1×1 cell array
 {'F05'}

To perform speaker verification, call verify with the audio signal and specify the speaker ID, a
scorer, and a threshold for the scorer. The verify function returns a logical value indicating whether
a speaker identity is accepted or rejected, and a score indicating the similarity of the input audio and
the template i-vector corresponding to the enrolled label.

[tf,score] = verify(speakerVerification,audioIn,knownSpeakerID,"plda",eerThreshold.PLDA);
if tf
 fprintf('Success!\nSpeaker accepted.\nSimilarity score = %0.2f\n\n',score)
else

4 Classes

4-376

 fprinf('Failure!\nSpeaker rejected.\nSimilarity score = %0.2f\n\n',score)
end

Success!
Speaker accepted.
Similarity score = 1.00

Call speaker verification again. This time, specify an incorrect speaker ID.

possibleSpeakers = speakerVerification.EnrolledLabels.Properties.RowNames;
imposterIdx = find(~ismember(possibleSpeakers,knownSpeakerID));
imposter = possibleSpeakers(imposterIdx(randperm(numel(imposterIdx),1)))

imposter = 1×1 cell array
 {'F01'}

[tf,score] = verify(speakerVerification,audioIn,imposter,"plda",eerThreshold.PLDA);
if tf
 fprintf('Failure!\nSpeaker accepted.\nSimilarity score = %0.2f\n\n',score)
else
 fprintf('Success!\nSpeaker rejected.\nSimilarity score = %0.2f\n\n',score)
end

Success!
Speaker rejected.
Similarity score = 0.00

References

[1] Signal Processing and Speech Communication Laboratory. https://www.spsc.tugraz.at/databases-
and-tools/ptdb-tug-pitch-tracking-database-from-graz-university-of-technology.html. Accessed 12 Dec.
2019.

Input Arguments
ivs — i-vector system
ivectorSystem object

i-vector system, specified as an object of type ivectorSystem.

data — Labeled evaluation data
cell array | audioDatastore | signalDatastore | TransformedDatastore

Labeled evaluation data, specified as a cell array or as an audioDatastore, signalDatastore, or
TransformedDatastore object.

• If InputType is set to "audio" when the i-vector system is created, specify data as one of these:

• A cell array of single-channel audio signals, each specified as a column vector with underlying
type single or double.

• An audioDatastore object or a signalDatastore object that points to a data set of mono
audio signals.

• A TransformedDatastore with an underlying audioDatastore or signalDatastore that
points to a data set of mono audio signals. The output from calls to read from the transform
datastore must be mono audio signals with underlying data type single or double.

 detectionErrorTradeoff

4-377

https://www.spsc.tugraz.at/databases-and-tools/ptdb-tug-pitch-tracking-database-from-graz-university-of-technology.html.
https://www.spsc.tugraz.at/databases-and-tools/ptdb-tug-pitch-tracking-database-from-graz-university-of-technology.html.

• If InputType is set to "features" when the i-vector system is created, specify data as one of
these:

• A cell array of matrices with underlying type single or double. The matrices must consist of
audio features where the number of features (columns) is locked the first time
trainExtractor is called and the number of hops (rows) is variable-sized. The number of
features input in any subsequent calls to any of the object functions must be equal to the
number of features used when calling trainExtractor.

• A TransformedDatastore object with an underlying audioDatastore or
signalDatastore whose read function has output as described in the previous bullet.

• A signalDatastore object whose read function has output as described in the first bullet.

Data Types: cell | audioDatastore | signalDatastore

labels — Classification labels
categorical array | cell array | string array

Classification labels used by an i-vector system, specified as one of the following:

• A categorical array
• A cell array of character vectors
• A string array

Note The number of audio signals in data must match the number of labels.

Data Types: categorical | cell | string

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: detectionErrorTradeoff(ivs,Scorer="css")

Scorer — Scorer results
"all" (default) | "plda" | "css"

Scorer results returned from an i-vector system, specified as "plda", which corresponds to
probabilistic linear discriminant analysis (PLDA), "css", which corresponds to cosine similarity score
(CSS), or "all".
Data Types: char | string

minDCF — Parameters of detection cost function
three-element vector

Parameters of the detection cost function, specified as a three-element vector consisting of the cost of
a false rejection, the cost of a false acceptance, and the prior probability of an enrolled label being
present, in that order.

4 Classes

4-378

When you specify parameters of a detection cost function, detectionErrorTradeoff returns the
threshold corresponding to the minimum of the detection cost function [1]. The detection cost
function is defined as

Cdet(PFR,PFA) = CFR × PFR × Ppresent + CFA × PFA × (1 – Ppresent),
where

• Cdet — Detection cost function
• CFR — Cost of a false rejection
• CFA — Cost of a false acceptance
• Ppresent — Prior probability of an enrolled label being present
• PFR — Observed probability of a false rejection given the data input to

detectionErrorTradeoff
• PFA — Observed probability of a false acceptance given the data input to

detectionErrorTradeoff

Data Types: single | double

ExecutionEnvironment — Hardware resource for execution
"auto" (default) | "cpu" | "gpu" | "multi-gpu" | "parallel"

Hardware resource for execution, specified as one of these:

• "auto" — Use the GPU if it is available. Otherwise, use the CPU.
• "cpu" — Use the CPU.
• "gpu" — Use the GPU. This option requires Parallel Computing Toolbox.
• "multi-gpu" — Use multiple GPUs on one machine, using a local parallel pool based on your

default cluster profile. If there is no current parallel pool, the software starts a parallel pool with
pool size equal to the number of available GPUs. This option requires Parallel Computing Toolbox.

• "parallel" — Use a local or remote parallel pool based on your default cluster profile. If there is
no current parallel pool, the software starts one using the default cluster profile. If the pool has
access to GPUs, then only workers with a unique GPU perform training computation. If the pool
does not have GPUs, then the training takes place on all available CPU workers. This option
requires Parallel Computing Toolbox.

Data Types: char | string

DispatchInBackground — Option to use prefetch queuing
false (default) | true

Option to use prefetch queuing when reading from a datastore, specified as a logical value. This
argument requires Parallel Computing Toolbox.
Data Types: logical

Output Arguments
results — FAR and FRR per threshold tested
structure | table

FAR and FRR per threshold tested, returned as a structure or a table.

 detectionErrorTradeoff

4-379

• If Scorer is specified as "all", then results is returned as a structure with fields PLDA and
CSS and values containing tables. Each table has three variables: Threshold, FAR, and FRR.

• If Scorer is specified as "plda" or "css", then results is returned as a table corresponding to
the specified scorer.

Data Types: struct | table

threshold — Threshold corresponding to equal error rate
scalar | structure

Threshold corresponding to the equal error rate (EER) or minimum of the detection cost function
(minDCF), returned as a scalar or a structure. If the minDCF is specified, then threshold
corresponds to minDCF. Otherwise, threshold corresponds to the EER.

• If Scorer is specified as "all", then threshold is returned as a structure with fields PLDA and
CSS and values equal to the respective thresholds.

• If Scorer is specified as "plda" or "css", then threshold is returned as a scalar
corresponding to the specified scorer.

Data Types: single | double | struct

Version History
Introduced in R2021a

References
[1] Leeuwen, David A. van, and Niko Brümmer. “An Introduction to Application-Independent

Evaluation of Speaker Recognition Systems.” In Speaker Classification I, edited by Christian
Müller, 4343:330–53. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. https://doi.org/
10.1007/978-3-540-74200-5_19.

See Also
trainExtractor | trainClassifier | calibrate | unenroll | enroll | verify | identify |
ivector | info | addInfoHeader | release | ivectorSystem | speakerRecognition

4 Classes

4-380

https://doi.org/10.1007/978-3-540-74200-5_19
https://doi.org/10.1007/978-3-540-74200-5_19

verify
Verify label

Syntax
tf = verify(ivs,data,label)
tf = verify(ivs,data,label,scorer)
tf = verify(ivs,data,label,scorer,threshold)

[tf,score] = verify(___)

Description
tf = verify(ivs,data,label) returns true if i-vector system ivs finds that data corresponds
to label and false otherwise.

tf = verify(ivs,data,label,scorer) specifies the scorer used for verification.

tf = verify(ivs,data,label,scorer,threshold) specifies the decision threshold used for
the score.

[tf,score] = verify(___) also returns a score indicating the similarity between the i-vector
derived from the data and the i-vector template corresponding to the label.

Examples

Train Speaker Verification System

Use the Pitch Tracking Database from Graz University of Technology (PTDB-TUG) [1] on page 4-391.
The data set consists of 20 English native speakers reading 2342 phonetically rich sentences from the
TIMIT corpus. Download and extract the data set. Depending on your system, downloading and
extracting the data set can take approximately 1.5 hours.

url = "https://www2.spsc.tugraz.at/databases/PTDB-TUG/SPEECH_DATA_ZIPPED.zip";
downloadFolder = tempdir;
datasetFolder = fullfile(downloadFolder,"PTDB-TUG");

if ~exist(datasetFolder,"dir")
 disp("Downloading PTDB-TUG (3.9 G) ...")
 unzip(url,datasetFolder)
end

Create an audioDatastore object that points to the data set. The data set was originally intended
for use in pitch-tracking training and evaluation and includes laryngograph readings and baseline
pitch decisions. Use only the original audio recordings.

ads = audioDatastore([fullfile(datasetFolder,"SPEECH DATA","FEMALE","MIC"),fullfile(datasetFolder,"SPEECH DATA","MALE","MIC")], ...
 IncludeSubfolders=true, ...
 FileExtensions=".wav");

 verify

4-381

The file names contain the speaker IDs. Decode the file names to set the labels in the
audioDatastore object.

ads.Labels = extractBetween(ads.Files,"mic_","_");
countEachLabel(ads)

ans=20×2 table
 Label Count
 _____ _____

 F01 236
 F02 236
 F03 236
 F04 236
 F05 236
 F06 236
 F07 236
 F08 234
 F09 236
 F10 236
 M01 236
 M02 236
 M03 236
 M04 236
 M05 236
 M06 236
 ⋮

Read an audio file from the data set, listen to it, and plot it.

[audioIn,audioInfo] = read(ads);
fs = audioInfo.SampleRate;

t = (0:size(audioIn,1)-1)/fs;
sound(audioIn,fs)
plot(t,audioIn)
xlabel("Time (s)")
ylabel("Amplitude")
axis([0 t(end) -1 1])
title("Sample Utterance from Data Set")

4 Classes

4-382

Separate the audioDatastore object into four: one for training, one for enrollment, one to evaluate
the detection-error tradeoff, and one for testing. The training set contains 16 speakers. The
enrollment, detection-error tradeoff, and test sets contain the other four speakers.

speakersToTest = categorical(["M01","M05","F01","F05"]);

adsTrain = subset(ads,~ismember(ads.Labels,speakersToTest));

ads = subset(ads,ismember(ads.Labels,speakersToTest));
[adsEnroll,adsTest,adsDET] = splitEachLabel(ads,3,1);

Display the label distributions of the audioDatastore objects.

countEachLabel(adsTrain)

ans=16×2 table
 Label Count
 _____ _____

 F02 236
 F03 236
 F04 236
 F06 236
 F07 236
 F08 234
 F09 236
 F10 236
 M02 236

 verify

4-383

 M03 236
 M04 236
 M06 236
 M07 236
 M08 236
 M09 236
 M10 236

countEachLabel(adsEnroll)

ans=4×2 table
 Label Count
 _____ _____

 F01 3
 F05 3
 M01 3
 M05 3

countEachLabel(adsTest)

ans=4×2 table
 Label Count
 _____ _____

 F01 1
 F05 1
 M01 1
 M05 1

countEachLabel(adsDET)

ans=4×2 table
 Label Count
 _____ _____

 F01 232
 F05 232
 M01 232
 M05 232

Create an i-vector system. By default, the i-vector system assumes the input to the system is mono
audio signals.

speakerVerification = ivectorSystem(SampleRate=fs)

speakerVerification =
 ivectorSystem with properties:

 InputType: 'audio'
 SampleRate: 48000
 DetectSpeech: 1
 Verbose: 1
 EnrolledLabels: [0×2 table]

4 Classes

4-384

To train the extractor of the i-vector system, call trainExtractor. Specify the number of universal
background model (UBM) components as 128 and the number of expectation maximization iterations
as 5. Specify the total variability space (TVS) rank as 64 and the number of iterations as 3.

trainExtractor(speakerVerification,adsTrain, ...
 UBMNumComponents=128,UBMNumIterations=5, ...
 TVSRank=64,TVSNumIterations=3)

Calculating standardization factorsdone.
Training universal background modeldone.
Training total variability spacedone.
i-vector extractor training complete.

To train the classifier of the i-vector system, use trainClassifier. To reduce dimensionality of the
i-vectors, specify the number of eigenvectors in the projection matrix as 16. Specify the number of
dimensions in the probabilistic linear discriminant analysis (PLDA) model as 16, and the number of
iterations as 3.

trainClassifier(speakerVerification,adsTrain,adsTrain.Labels, ...
 NumEigenvectors=16, ...
 PLDANumDimensions=16,PLDANumIterations=3)

Extracting i-vectors ...done.
Training projection matrixdone.
Training PLDA modeldone.
i-vector classifier training complete.

To calibrate the system so that scores can be interpreted as a measure of confidence in a positive
decision, use calibrate.

calibrate(speakerVerification,adsTrain,adsTrain.Labels)

Extracting i-vectors ...done.
Calibrating CSS scorer ...done.
Calibrating PLDA scorer ...done.
Calibration complete.

To inspect parameters used previously to train the i-vector system, use info.

info(speakerVerification)

i-vector system input
 Input feature vector length: 60
 Input data type: double

trainExtractor
 Train signals: 3774
 UBMNumComponents: 128
 UBMNumIterations: 5
 TVSRank: 64
 TVSNumIterations: 3

trainClassifier
 Train signals: 3774
 Train labels: F02 (236), F03 (236) ... and 14 more
 NumEigenvectors: 16
 PLDANumDimensions: 16
 PLDANumIterations: 3

 verify

4-385

calibrate
 Calibration signals: 3774
 Calibration labels: F02 (236), F03 (236) ... and 14 more

Split the enrollment set.

[adsEnrollPart1,adsEnrollPart2] = splitEachLabel(adsEnroll,1,2);

To enroll speakers in the i-vector system, call enroll.

enroll(speakerVerification,adsEnrollPart1,adsEnrollPart1.Labels)

Extracting i-vectors ...done.
Enrolling i-vectorsdone.
Enrollment complete.

When you enroll speakers, the read-only EnrolledLabels property is updated with the enrolled
labels and corresponding template i-vectors. The table also keeps track of the number of signals used
to create the template i-vector. Generally, using more signals results in a better template.

speakerVerification.EnrolledLabels

ans=4×2 table
 ivector NumSamples
 _____________ __________

 F01 {16×1 double} 1
 F05 {16×1 double} 1
 M01 {16×1 double} 1
 M05 {16×1 double} 1

Enroll the second part of the enrollment set and then view the enrolled labels table again. The i-
vector templates and the number of samples are updated.

enroll(speakerVerification,adsEnrollPart2,adsEnrollPart2.Labels)

Extracting i-vectors ...done.
Enrolling i-vectorsdone.
Enrollment complete.

speakerVerification.EnrolledLabels

ans=4×2 table
 ivector NumSamples
 _____________ __________

 F01 {16×1 double} 3
 F05 {16×1 double} 3
 M01 {16×1 double} 3
 M05 {16×1 double} 3

To evaluate the i-vector system and determine a decision threshold for speaker verification, call
detectionErrorTradeoff.

[results, eerThreshold] = detectionErrorTradeoff(speakerVerification,adsDET,adsDET.Labels);

4 Classes

4-386

Extracting i-vectors ...done.
Scoring i-vector pairs ...done.
Detection error tradeoff evaluation complete.

The first output from detectionErrorTradeoff is a structure with two fields: CSS and PLDA. Each
field contains a table. Each row of the table contains a possible decision threshold for speaker
verification tasks, and the corresponding false alarm rate (FAR) and false rejection rate (FRR). The
FAR and FRR are determined using the enrolled speaker labels and the data input to the
detectionErrorTradeoff function.

results

results = struct with fields:
 PLDA: [1000×3 table]
 CSS: [1000×3 table]

results.CSS

ans=1000×3 table
 Threshold FAR FRR
 __________ _______ ___

 1.7736e-09 1 0
 1.8233e-09 0.99964 0
 1.8745e-09 0.99964 0
 1.927e-09 0.99964 0
 1.9811e-09 0.99964 0
 2.0366e-09 0.99964 0
 2.0937e-09 0.99964 0
 2.1524e-09 0.99964 0
 2.2128e-09 0.99964 0
 2.2748e-09 0.99964 0
 2.3386e-09 0.99964 0
 2.4042e-09 0.99964 0
 2.4716e-09 0.99964 0
 2.5409e-09 0.99964 0
 2.6122e-09 0.99964 0
 2.6854e-09 0.99964 0
 ⋮

results.PLDA

ans=1000×3 table
 Threshold FAR FRR
 __________ _______ ___

 4.7045e-34 1 0
 5.143e-34 0.99964 0
 5.6225e-34 0.99964 0
 6.1466e-34 0.99964 0
 6.7197e-34 0.99964 0
 7.3461e-34 0.99964 0
 8.0309e-34 0.99964 0
 8.7796e-34 0.99964 0
 9.5981e-34 0.99964 0
 1.0493e-33 0.99964 0
 1.1471e-33 0.99964 0

 verify

4-387

 1.254e-33 0.99964 0
 1.371e-33 0.99964 0
 1.4988e-33 0.99964 0
 1.6385e-33 0.99964 0
 1.7912e-33 0.99964 0
 ⋮

The second output from detectionErrorTradeoff is a structure with two fields: CSS and PLDA.
The corresponding value is the decision threshold that results in the equal error rate (when FAR and
FRR are equal).

eerThreshold

eerThreshold = struct with fields:
 PLDA: 0.0021
 CSS: 0.9366

The first time you call detectionErrorTradeoff, you must provide data and corresponding labels
to evaluate. Subsequently, you can get the same information, or a different analysis using the same
underlying data, by calling detectionErrorTradeoff without data and labels.

Call detectionErrorTradeoff a second time with no data arguments or output arguments to
visualize the detection-error tradeoff.

detectionErrorTradeoff(speakerVerification)

4 Classes

4-388

Call detectionErrorTradeoff again. This time, visualize only the detection-error tradeoff for the
PLDA scorer.

detectionErrorTradeoff(speakerVerification,Scorer="plda")

Depending on your application, you may want to use a threshold that weights the error cost of a false
alarm higher or lower than the error cost of a false rejection. You may also be using data that is not
representative of the prior probability of the speaker being present. You can use the minDCF
parameter to specify custom costs and prior probability. Call detectionErrorTradeoff again, this
time specify the cost of a false rejection as 1, the cost of a false acceptance as 2, and the prior
probability that a speaker is present as 0.1.

costFR = 1;
costFA = 2;
priorProb = 0.1;
detectionErrorTradeoff(speakerVerification,Scorer="plda",minDCF=[costFR,costFA,priorProb])

 verify

4-389

Call detectionErrorTradeoff again. This time, get the minDCF threshold for the PLDA scorer and
the parameters of the detection cost function.

[~,minDCFThreshold] = detectionErrorTradeoff(speakerVerification,Scorer="plda",minDCF=[costFR,costFA,priorProb])

minDCFThreshold = 0.0595

Test Speaker Verification System

Read a signal from the test set.

adsTest = shuffle(adsTest);
[audioIn,audioInfo] = read(adsTest);
knownSpeakerID = audioInfo.Label

knownSpeakerID = 1×1 cell array
 {'F05'}

To perform speaker verification, call verify with the audio signal and specify the speaker ID, a
scorer, and a threshold for the scorer. The verify function returns a logical value indicating whether
a speaker identity is accepted or rejected, and a score indicating the similarity of the input audio and
the template i-vector corresponding to the enrolled label.

[tf,score] = verify(speakerVerification,audioIn,knownSpeakerID,"plda",eerThreshold.PLDA);
if tf
 fprintf('Success!\nSpeaker accepted.\nSimilarity score = %0.2f\n\n',score)
else

4 Classes

4-390

 fprinf('Failure!\nSpeaker rejected.\nSimilarity score = %0.2f\n\n',score)
end

Success!
Speaker accepted.
Similarity score = 1.00

Call speaker verification again. This time, specify an incorrect speaker ID.

possibleSpeakers = speakerVerification.EnrolledLabels.Properties.RowNames;
imposterIdx = find(~ismember(possibleSpeakers,knownSpeakerID));
imposter = possibleSpeakers(imposterIdx(randperm(numel(imposterIdx),1)))

imposter = 1×1 cell array
 {'F01'}

[tf,score] = verify(speakerVerification,audioIn,imposter,"plda",eerThreshold.PLDA);
if tf
 fprintf('Failure!\nSpeaker accepted.\nSimilarity score = %0.2f\n\n',score)
else
 fprintf('Success!\nSpeaker rejected.\nSimilarity score = %0.2f\n\n',score)
end

Success!
Speaker rejected.
Similarity score = 0.00

References

[1] Signal Processing and Speech Communication Laboratory. https://www.spsc.tugraz.at/databases-
and-tools/ptdb-tug-pitch-tracking-database-from-graz-university-of-technology.html. Accessed 12 Dec.
2019.

Input Arguments
ivs — i-vector system
ivectorSystem object

i-vector system, specified as an object of type ivectorSystem.

data — Data to verify
column vector | matrix

Data to verify, specified as a column vector representing a single-channel (mono) audio signal or a
matrix of audio features.

• If InputType is set to "audio" when the i-vector system is created, data must be a column
vector with underlying type single or double.

• If InputType is set to "features" when the i-vector system is created, data must be a matrix
with underlying type single or double. The matrix must consist of audio features where the
number of features (columns) is locked the first time trainExtractor is called and the number
of hops (rows) is variable-sized.

Data Types: single | double

 verify

4-391

https://www.spsc.tugraz.at/databases-and-tools/ptdb-tug-pitch-tracking-database-from-graz-university-of-technology.html.
https://www.spsc.tugraz.at/databases-and-tools/ptdb-tug-pitch-tracking-database-from-graz-university-of-technology.html.

label — Label to verify
categorical scalar | character vector | string

Label to verify, specified as a categorical scalar, a character vector, or a string.
Data Types: categorical | char | string

scorer — Scoring algorithm
"plda" | "css"

Scoring algorithm used by the i-vector system, specified as "plda", which corresponds to
probabilistic linear discriminant analysis (PLDA), or "css", which corresponds to cosine similarity
score (CSS). If the PLDA model was trained by trainClassifier, the default scorer is "plda".
Otherwise, the default scorer is "css".
Data Types: char | string

threshold — Decision threshold
scalar

Decision threshold applied to the similarity score, specified as a scalar. The default decision threshold
is the equal error rate of the scorer determined by calling detectionErrorTradeoff. If
detectionErrorTradeoff is not called, then you must define the threshold.
Data Types: single | double

Output Arguments
tf — Correspondence indicator
true | false

Correspondence indicator, returned as a logical.

• If the i-vector system finds that data corresponds to label, tf is returned as true.
• If the i-vector system finds that data does not correspond to label, tf is returned as false.

Data Types: logical

score — Similarity score
scalar

Score indicating the similarity between the i-vector derived from data and the i-vector corresponding
to label, returned as a scalar.
Data Types: double

Version History
Introduced in R2021a

verify throws warning if scores are not calibrated
Behavior changed in R2022a

Starting in R2022a, the verify function throws a warning if it is called with two output arguments
and the scores from the i-vector system are not calibrated. Use calibrate to calibrate the scores.

4 Classes

4-392

See Also
trainExtractor | trainClassifier | calibrate | unenroll | enroll |
detectionErrorTradeoff | identify | ivector | info | addInfoHeader | release |
ivectorSystem | speakerRecognition

 verify

4-393

identify
Identify label

Syntax
tableOut = identify(ivs,data)
tableOut = identify(ivs,data,scorer)

tableOut = identify(___ ,NumCandidates=N)

Description
tableOut = identify(ivs,data) identifies the label corresponding to the data.

tableOut = identify(ivs,data,scorer) specifies the scorer used to perform identification.

tableOut = identify(___ ,NumCandidates=N) specifies the number of candidates to return in
tableOut.

Examples

Train Speaker Identification System

Use the Census Database (also known as AN4 Database) from the CMU Robust Speech Recognition
Group [1] on page 4-397. The data set contains recordings of male and female subjects speaking
words and numbers. The helper function in this example downloads the data set for you and converts
the raw files to FLAC, and returns two audioDatastore objects containing the training set and test
set. By default, the data set is reduced so that the example runs quickly. You can use the full data set
by setting ReduceDataset to false.

[adsTrain,adsTest] = HelperAN4Download(ReduceDataset=true);

Split the test data set into enroll and test sets. Use two utterances for enrollment and the remaining
for the test set. Generally, the more utterances you use for enrollment, the better the performance of
the system. However, most practical applications are limited to a small set of enrollment utterances.

[adsEnroll,adsTest] = splitEachLabel(adsTest,2);

Inspect the distribution of speakers in the training, test, and enroll sets. The speakers in the training
set do not overlap with the speakers in the test and enroll sets.

summary(adsTrain.Labels)

 fejs 13
 fmjd 13
 fsrb 13
 ftmj 13
 fwxs 12
 mcen 13
 mrcb 13

4 Classes

4-394

 msjm 13
 msjr 13
 msmn 9

summary(adsEnroll.Labels)

 fvap 2
 marh 2

summary(adsTest.Labels)

 fvap 11
 marh 11

Create an i-vector system that accepts feature input.

fs = 16e3;
iv = ivectorSystem(SampleRate=fs,InputType="features");

Create an audioFeatureExtractor object to extract the gammatone cepstral coefficients (GTCC),
the delta GTCC, the delta-delta GTCC, and the pitch from 50 ms periodic Hann windows with 45 ms
overlap.

afe = audioFeatureExtractor(gtcc=true,gtccDelta=true,gtccDeltaDelta=true,pitch=true,SampleRate=fs);
afe.Window = hann(round(0.05*fs),"periodic");
afe.OverlapLength = round(0.045*fs);
afe

afe =
 audioFeatureExtractor with properties:

 Properties
 Window: [800×1 double]
 OverlapLength: 720
 SampleRate: 16000
 FFTLength: []
 SpectralDescriptorInput: 'linearSpectrum'
 FeatureVectorLength: 40

 Enabled Features
 gtcc, gtccDelta, gtccDeltaDelta, pitch

 Disabled Features
 linearSpectrum, melSpectrum, barkSpectrum, erbSpectrum, mfcc, mfccDelta
 mfccDeltaDelta, spectralCentroid, spectralCrest, spectralDecrease, spectralEntropy, spectralFlatness
 spectralFlux, spectralKurtosis, spectralRolloffPoint, spectralSkewness, spectralSlope, spectralSpread
 harmonicRatio, zerocrossrate, shortTimeEnergy

 To extract a feature, set the corresponding property to true.
 For example, obj.mfcc = true, adds mfcc to the list of enabled features.

Create transformed datastores by adding feature extraction to the read function of adsTrain and
adsEnroll.

trainLabels = adsTrain.Labels;
adsTrain = transform(adsTrain,@(x)extract(afe,x));

 identify

4-395

enrollLabels = adsEnroll.Labels;
adsEnroll = transform(adsEnroll,@(x)extract(afe,x));

Train both the extractor and classifier using the training set.

trainExtractor(iv,adsTrain, ...
 UBMNumComponents=64, ...
 UBMNumIterations=5, ...
 TVSRank=32, ...
 TVSNumIterations=3);

Calculating standardization factorsdone.
Training universal background modeldone.
Training total variability spacedone.
i-vector extractor training complete.

trainClassifier(iv,adsTrain,trainLabels, ...
 NumEigenvectors=16, ...
 ...
 PLDANumDimensions=16, ...
 PLDANumIterations=5);

Extracting i-vectors ...done.
Training projection matrixdone.
Training PLDA modeldone.
i-vector classifier training complete.

To calibrate the system so that scores can be interpreted as a measure of confidence in a positive
decision, use calibrate.

calibrate(iv,adsTrain,trainLabels)

Extracting i-vectors ...done.
Calibrating CSS scorer ...done.
Calibrating PLDA scorer ...done.
Calibration complete.

Enroll the speakers from the enrollment set.

enroll(iv,adsEnroll,enrollLabels)

Extracting i-vectors ...done.
Enrolling i-vectorsdone.
Enrollment complete.

Evaluate the file-level prediction accuracy on the test set.

numCorrect = 0;
reset(adsTest)
for index = 1:numel(adsTest.Files)
 features = extract(afe,read(adsTest));

 results = identify(iv,features);

 trueLabel = adsTest.Labels(index);
 predictedLabel = results.Label(1);
 isPredictionCorrect = trueLabel==predictedLabel;

 numCorrect = numCorrect + isPredictionCorrect;

4 Classes

4-396

end
display("File Accuracy: " + round(100*numCorrect/numel(adsTest.Files),2) + " (%)")

 "File Accuracy: 100 (%)"

References

[1] "CMU Sphinx Group - Audio Databases." http://www.speech.cs.cmu.edu/databases/an4/. Accessed
19 Dec. 2019.

Input Arguments
ivs — i-vector system
ivectorSystem object

i-vector system, specified as an object of type ivectorSystem.

data — Data to identify
column vector | matrix

Data to identify, specified as a column vector representing a single-channel (mono) audio signal or a
matrix of audio features.

• If InputType is set to "audio" when the i-vector system is created, data must be a column
vector with underlying type single or double.

• If InputType is set to "features" when the i-vector system is created, data must be a matrix
with underlying type single or double. The matrix must consist of audio features where the
number of features (columns) is locked the first time trainExtractor is called and the number
of hops (rows) is variable-sized.

Data Types: single | double

scorer — Scoring algorithm
"plda" | "css"

Scoring algorithm used by the i-vector system, specified as "plda", which corresponds to
probabilistic linear discriminant analysis (PLDA), or "css", which corresponds to cosine similarity
score (CSS).

To use "plda", you must train the PLDA model using trainClassifier. If the PLDA model has
been trained, then scorer defaults to "plda". Otherwise, the scorer defaults to "css".
Data Types: char | string

N — Number of candidates
positive scalar

Number of candidates to return in tableOut, specified as a positive scalar.

Note If you request a number of candidates greater than the number of labels enrolled in the i-
vector system, then all candidates are returned. If unspecified, the number of candidates defaults to
the number of enrolled labels.

Data Types: single | double

 identify

4-397

Output Arguments
tableOut — Score table
table

Candidate labels and corresponding scores, returned as a table. The number of rows of tableOut is
equal to N, the number of candidates. The candidates are sorted in order of confidence.
Data Types: table

Version History
Introduced in R2021a

identify throws warning if scores are not calibrated
Behavior changed in R2022a

Starting in R2022a, the identify function throws a warning if the scores from the i-vector system
are not calibrated. Use calibrate to calibrate the scores.

See Also
trainExtractor | trainClassifier | calibrate | unenroll | enroll |
detectionErrorTradeoff | verify | ivector | info | addInfoHeader | release |
ivectorSystem | speakerRecognition

4 Classes

4-398

ivector
Extract i-vector

Syntax
w = ivector(ivs,data)

w = ivector(ivs,data,Name,Value)

Description
w = ivector(ivs,data) extracts i-vectors from the input data.

w = ivector(ivs,data,Name,Value) specifies additional options using name-value arguments.
You can choose the hardware resource for extracting i-vectors and whether to apply the projection
matrix from trainClassifier.

Examples

Train Word Recognition System

An i-vector system consists of a trainable front end that learns how to extract i-vectors based on
unlabeled data, and a trainable backend that learns how to classify i-vectors based on labeled data. In
this example, you apply an i-vector system to the task of word recognition. First, evaluate the
accuracy of the i-vector system using the classifiers included in a traditional i-vector system:
probabilistic linear discriminant analysis (PLDA) and cosine similarity scoring (CSS). Next, evaluate
the accuracy of the system if you replace the classifier with bidirectional long short-term memory
(BiLSTM) network or a K-nearest neighbors classifier.

Create Training and Validation Sets

Download the Free Spoken Digit Dataset (FSDD) [1] on page 4-405. FSDD consists of short audio files
with spoken digits (0-9).

loc = matlab.internal.examples.downloadSupportFile("audio","FSDD.zip");
unzip(loc,pwd)

Create an audioDatastore to point to the recordings. Get the sample rate of the data set.

ads = audioDatastore(pwd,IncludeSubfolders=true);
[~,adsInfo] = read(ads);
fs = adsInfo.SampleRate;

The first element of the file names is the digit spoken in the file. Get the first element of the file
names, convert them to categorical, and then set the Labels property of the audioDatastore.

[~,filenames] = cellfun(@(x)fileparts(x),ads.Files,UniformOutput=false);
ads.Labels = categorical(string(cellfun(@(x)x(1),filenames)));

To split the datastore into a development set and a validation set, use splitEachLabel. Allocate
80% of the data for development and the remaining 20% for validation.

 ivector

4-399

[adsTrain,adsValidation] = splitEachLabel(ads,0.8);

Evaluate Traditional i-vector Backend Performance

Create an i-vector system that expects audio input at a sample rate of 8 kHz and does not perform
speech detection.

wordRecognizer = ivectorSystem(DetectSpeech=false,SampleRate=fs)

wordRecognizer =
 ivectorSystem with properties:

 InputType: 'audio'
 SampleRate: 8000
 DetectSpeech: 0
 Verbose: 1
 EnrolledLabels: [0×2 table]

Train the i-vector extractor using the data in the training set.

trainExtractor(wordRecognizer,adsTrain, ...
 UBMNumComponents=64, ...
 UBMNumIterations=5, ...
 ...
 TVSRank=32, ...
 TVSNumIterations=5);

Calculating standardization factorsdone.
Training universal background modeldone.
Training total variability spacedone.
i-vector extractor training complete.

Train the i-vector classifier using the data in the training data set and the corresponding labels.

trainClassifier(wordRecognizer,adsTrain,adsTrain.Labels, ...
 NumEigenvectors=10, ...
 ...
 PLDANumDimensions=10, ...
 PLDANumIterations=5);

Extracting i-vectors ...done.
Training projection matrixdone.
Training PLDA modeldone.
i-vector classifier training complete.

Calibrate the scores output by wordRecognizer so they can be interpreted as a measure of
confidence in a positive decision. Enroll labels into the system using the entire training set.

calibrate(wordRecognizer,adsTrain,adsTrain.Labels)

Extracting i-vectors ...done.
Calibrating CSS scorer ...done.
Calibrating PLDA scorer ...done.
Calibration complete.

enroll(wordRecognizer,adsTrain,adsTrain.Labels)

4 Classes

4-400

Extracting i-vectors ...done.
Enrolling i-vectorsdone.
Enrollment complete.

In a loop, read audio from the validation datastore, identify the most-likely word present according to
the specified scorer, and save the prediction for analysis.

trueLabels = adsValidation.Labels;
predictedLabels = trueLabels;

reset(adsValidation)

scorer = ;
for ii = 1:numel(trueLabels)

 audioIn = read(adsValidation);

 to = identify(wordRecognizer,audioIn,scorer);

 predictedLabels(ii) = to.Label(1);

end

Display a confusion chart of the i-vector system's performance on the validation set.

figure(Units="normalized",Position=[0.2 0.2 0.5 0.5])
confusionchart(trueLabels,predictedLabels, ...
 ColumnSummary="column-normalized", ...
 RowSummary="row-normalized", ...
 Title=sprintf('Accuracy = %0.2f (%%)',100*mean(predictedLabels==trueLabels)))

 ivector

4-401

Evaluate Deep Learning Backend Performance

Next, train a fully-connected network using i-vectors as input.

ivectorsTrain = (ivector(wordRecognizer,adsTrain))';
ivectorsValidation = (ivector(wordRecognizer,adsValidation))';

Define a fully connected network.

layers = [...
 featureInputLayer(size(ivectorsTrain,2),Normalization="none")
 fullyConnectedLayer(128)
 dropoutLayer(0.4)
 fullyConnectedLayer(256)
 dropoutLayer(0.4)
 fullyConnectedLayer(256)
 dropoutLayer(0.4)
 fullyConnectedLayer(128)
 dropoutLayer(0.4)
 fullyConnectedLayer(numel(unique(adsTrain.Labels)))
 softmaxLayer
 classificationLayer];

Define training parameters.

miniBatchSize = 256;
validationFrequency = floor(numel(adsTrain.Labels)/miniBatchSize);
options = trainingOptions("adam", ...
 MaxEpochs=10, ...
 MiniBatchSize=miniBatchSize, ...

4 Classes

4-402

 Plots="training-progress", ...
 Verbose=false, ...
 Shuffle="every-epoch", ...
 ValidationData={ivectorsValidation,adsValidation.Labels}, ...
 ValidationFrequency=validationFrequency);

Train the network.

net = trainNetwork(ivectorsTrain,adsTrain.Labels,layers,options);

Evaluate the performance of the deep learning backend using a confusion chart.

predictedLabels = classify(net,ivectorsValidation);
trueLabels = adsValidation.Labels;

figure(Units="normalized",Position=[0.2 0.2 0.5 0.5])
confusionchart(trueLabels,predictedLabels, ...
 ColumnSummary="column-normalized", ...
 RowSummary="row-normalized", ...
 Title=sprintf('Accuracy = %0.2f (%%)',100*mean(predictedLabels==trueLabels)))

 ivector

4-403

Evaluate KNN Backend Performance

Train and evaluate i-vectors with a k-nearest neighbor (KNN) backend.

Use fitcknn to train a KNN model.

classificationKNN = fitcknn(...
 ivectorsTrain, ...
 adsTrain.Labels, ...
 Distance="Euclidean", ...
 Exponent=[], ...
 NumNeighbors=10, ...
 DistanceWeight="SquaredInverse", ...
 Standardize=true, ...
 ClassNames=unique(adsTrain.Labels));

Evaluate the KNN backend.

predictedLabels = predict(classificationKNN,ivectorsValidation);
trueLabels = adsValidation.Labels;

figure(Units="normalized",Position=[0.2 0.2 0.5 0.5])
confusionchart(trueLabels,predictedLabels, ...
 ColumnSummary="column-normalized", ...
 RowSummary="row-normalized", ...
 Title=sprintf('Accuracy = %0.2f (%%)',100*mean(predictedLabels==trueLabels)))

4 Classes

4-404

References

[1] Jakobovski. "Jakobovski/Free-Spoken-Digit-Dataset." GitHub, May 30, 2019. https://
github.com/Jakobovski/free-spoken-digit-dataset.

Input Arguments
ivs — i-vector system
ivectorSystem object

i-vector system, specified as an object of type ivectorSystem.

data — Data to transform
column vector | cell array | audioDatastore | signalDatastore | TransformedDatastore

Data to transform, specified as a cell array or as an audioDatastore, signalDatastore, or
TransformedDatastore object.

• If InputType is set to "audio" when the i-vector system is created, specify data as one of these:

• A column vector with underlying type single or double.
• A cell array of single-channel audio signals, each specified as a column vector with underlying

type single or double.
• An audioDatastore object or a signalDatastore object that points to a data set of mono

audio signals.

 ivector

4-405

• A TransformedDatastore with an underlying audioDatastore or signalDatastore that
points to a data set of mono audio signals. The output from calls to read from the transform
datastore must be mono audio signals with underlying data type single or double.

• If InputType is set to "features" when the i-vector system is created, specify data as one of
these:

• A matrix with underlying type single or double. The matrix must consist of audio features
where the number of features (columns) is locked the first time trainExtractor is called and
the number of hops (rows) is variable-sized. The number of features input in any subsequent
calls to any of the object functions must be equal to the number of features used when calling
trainExtractor.

• A cell array of matrices with underlying type single or double. The matrices must consist of
audio features where the number of features (columns) is locked the first time
trainExtractor is called and the number of hops (rows) is variable-sized. The number of
features input in any subsequent calls to any of the object functions must be equal to the
number of features used when calling trainExtractor.

• A TransformedDatastore object with an underlying audioDatastore or
signalDatastore whose read function has output as described in the previous bullet.

• A signalDatastore object whose read function has output as described in the first bullet.

Data Types: cell | audioDatastore | signalDatastore

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example:
ivector(ivs,data,ApplyProjectionMatrix=false,ExecutionEnvironment="parallel")

ApplyProjectionMatrix — Option to apply projection matrix
true | false

Option to apply projection matrix, specified as a logical value. This argument specifies whether to
apply the linear discriminant analysis (LDA) and within-class covariance normalization (WCCN)
projection matrix determined using trainClassifier.

• If the projection matrix was trained, then ApplyProjectionMatrix defaults to true.
• If the projection matrix was not trained, then ApplyProjectionMatrix defaults to false and

cannot be set to true.

Data Types: logical

ExecutionEnvironment — Hardware resource for execution
"auto" (default) | "cpu" | "gpu" | "multi-gpu" | "parallel"

Hardware resource for execution, specified as one of these:

• "auto" — Use the GPU if it is available. Otherwise, use the CPU.
• "cpu" — Use the CPU.

4 Classes

4-406

• "gpu" — Use the GPU. This option requires Parallel Computing Toolbox.
• "multi-gpu" — Use multiple GPUs on one machine, using a local parallel pool based on your

default cluster profile. If there is no current parallel pool, the software starts a parallel pool with
pool size equal to the number of available GPUs. This option requires Parallel Computing Toolbox.

• "parallel" — Use a local or remote parallel pool based on your default cluster profile. If there is
no current parallel pool, the software starts one using the default cluster profile. If the pool has
access to GPUs, then only workers with a unique GPU perform training computation. If the pool
does not have GPUs, then the training takes place on all available CPU workers. This option
requires Parallel Computing Toolbox.

Data Types: char | string

DispatchInBackground — Option to use prefetch queuing
false (default) | true

Option to use prefetch queuing when reading from a datastore, specified as a logical value. This
argument requires Parallel Computing Toolbox.
Data Types: logical

Output Arguments
w — i-vectors
column vector | matrix

Extracted i-vectors, returned as a column vector or a matrix. The number of columns of w is equal to
the number of input signals. The number of rows of w is the dimension of the i-vector.

Version History
Introduced in R2021a

See Also
trainExtractor | trainClassifier | calibrate | enroll | unenroll |
detectionErrorTradeoff | verify | identify | info | addInfoHeader | release |
ivectorSystem | speakerRecognition

 ivector

4-407

info
Return training configuration and data info

Syntax
ivInfo = info(ivs)

info(ivs)

Description
ivInfo = info(ivs) returns a structure containing information about the ivs object.

info(ivs), with no output arguments, displays information about the ivs object.

Examples

Train Speaker Verification System

Use the Pitch Tracking Database from Graz University of Technology (PTDB-TUG) [1] on page 4-418.
The data set consists of 20 English native speakers reading 2342 phonetically rich sentences from the
TIMIT corpus. Download and extract the data set. Depending on your system, downloading and
extracting the data set can take approximately 1.5 hours.

url = "https://www2.spsc.tugraz.at/databases/PTDB-TUG/SPEECH_DATA_ZIPPED.zip";
downloadFolder = tempdir;
datasetFolder = fullfile(downloadFolder,"PTDB-TUG");

if ~exist(datasetFolder,"dir")
 disp("Downloading PTDB-TUG (3.9 G) ...")
 unzip(url,datasetFolder)
end

Create an audioDatastore object that points to the data set. The data set was originally intended
for use in pitch-tracking training and evaluation and includes laryngograph readings and baseline
pitch decisions. Use only the original audio recordings.

ads = audioDatastore([fullfile(datasetFolder,"SPEECH DATA","FEMALE","MIC"),fullfile(datasetFolder,"SPEECH DATA","MALE","MIC")], ...
 IncludeSubfolders=true, ...
 FileExtensions=".wav");

The file names contain the speaker IDs. Decode the file names to set the labels in the
audioDatastore object.

ads.Labels = extractBetween(ads.Files,"mic_","_");
countEachLabel(ads)

ans=20×2 table
 Label Count
 _____ _____

4 Classes

4-408

 F01 236
 F02 236
 F03 236
 F04 236
 F05 236
 F06 236
 F07 236
 F08 234
 F09 236
 F10 236
 M01 236
 M02 236
 M03 236
 M04 236
 M05 236
 M06 236
 ⋮

Read an audio file from the data set, listen to it, and plot it.

[audioIn,audioInfo] = read(ads);
fs = audioInfo.SampleRate;

t = (0:size(audioIn,1)-1)/fs;
sound(audioIn,fs)
plot(t,audioIn)
xlabel("Time (s)")
ylabel("Amplitude")
axis([0 t(end) -1 1])
title("Sample Utterance from Data Set")

 info

4-409

Separate the audioDatastore object into four: one for training, one for enrollment, one to evaluate
the detection-error tradeoff, and one for testing. The training set contains 16 speakers. The
enrollment, detection-error tradeoff, and test sets contain the other four speakers.

speakersToTest = categorical(["M01","M05","F01","F05"]);

adsTrain = subset(ads,~ismember(ads.Labels,speakersToTest));

ads = subset(ads,ismember(ads.Labels,speakersToTest));
[adsEnroll,adsTest,adsDET] = splitEachLabel(ads,3,1);

Display the label distributions of the audioDatastore objects.

countEachLabel(adsTrain)

ans=16×2 table
 Label Count
 _____ _____

 F02 236
 F03 236
 F04 236
 F06 236
 F07 236
 F08 234
 F09 236
 F10 236
 M02 236

4 Classes

4-410

 M03 236
 M04 236
 M06 236
 M07 236
 M08 236
 M09 236
 M10 236

countEachLabel(adsEnroll)

ans=4×2 table
 Label Count
 _____ _____

 F01 3
 F05 3
 M01 3
 M05 3

countEachLabel(adsTest)

ans=4×2 table
 Label Count
 _____ _____

 F01 1
 F05 1
 M01 1
 M05 1

countEachLabel(adsDET)

ans=4×2 table
 Label Count
 _____ _____

 F01 232
 F05 232
 M01 232
 M05 232

Create an i-vector system. By default, the i-vector system assumes the input to the system is mono
audio signals.

speakerVerification = ivectorSystem(SampleRate=fs)

speakerVerification =
 ivectorSystem with properties:

 InputType: 'audio'
 SampleRate: 48000
 DetectSpeech: 1
 Verbose: 1
 EnrolledLabels: [0×2 table]

 info

4-411

To train the extractor of the i-vector system, call trainExtractor. Specify the number of universal
background model (UBM) components as 128 and the number of expectation maximization iterations
as 5. Specify the total variability space (TVS) rank as 64 and the number of iterations as 3.

trainExtractor(speakerVerification,adsTrain, ...
 UBMNumComponents=128,UBMNumIterations=5, ...
 TVSRank=64,TVSNumIterations=3)

Calculating standardization factorsdone.
Training universal background modeldone.
Training total variability spacedone.
i-vector extractor training complete.

To train the classifier of the i-vector system, use trainClassifier. To reduce dimensionality of the
i-vectors, specify the number of eigenvectors in the projection matrix as 16. Specify the number of
dimensions in the probabilistic linear discriminant analysis (PLDA) model as 16, and the number of
iterations as 3.

trainClassifier(speakerVerification,adsTrain,adsTrain.Labels, ...
 NumEigenvectors=16, ...
 PLDANumDimensions=16,PLDANumIterations=3)

Extracting i-vectors ...done.
Training projection matrixdone.
Training PLDA modeldone.
i-vector classifier training complete.

To calibrate the system so that scores can be interpreted as a measure of confidence in a positive
decision, use calibrate.

calibrate(speakerVerification,adsTrain,adsTrain.Labels)

Extracting i-vectors ...done.
Calibrating CSS scorer ...done.
Calibrating PLDA scorer ...done.
Calibration complete.

To inspect parameters used previously to train the i-vector system, use info.

info(speakerVerification)

i-vector system input
 Input feature vector length: 60
 Input data type: double

trainExtractor
 Train signals: 3774
 UBMNumComponents: 128
 UBMNumIterations: 5
 TVSRank: 64
 TVSNumIterations: 3

trainClassifier
 Train signals: 3774
 Train labels: F02 (236), F03 (236) ... and 14 more
 NumEigenvectors: 16
 PLDANumDimensions: 16
 PLDANumIterations: 3

4 Classes

4-412

calibrate
 Calibration signals: 3774
 Calibration labels: F02 (236), F03 (236) ... and 14 more

Split the enrollment set.

[adsEnrollPart1,adsEnrollPart2] = splitEachLabel(adsEnroll,1,2);

To enroll speakers in the i-vector system, call enroll.

enroll(speakerVerification,adsEnrollPart1,adsEnrollPart1.Labels)

Extracting i-vectors ...done.
Enrolling i-vectorsdone.
Enrollment complete.

When you enroll speakers, the read-only EnrolledLabels property is updated with the enrolled
labels and corresponding template i-vectors. The table also keeps track of the number of signals used
to create the template i-vector. Generally, using more signals results in a better template.

speakerVerification.EnrolledLabels

ans=4×2 table
 ivector NumSamples
 _____________ __________

 F01 {16×1 double} 1
 F05 {16×1 double} 1
 M01 {16×1 double} 1
 M05 {16×1 double} 1

Enroll the second part of the enrollment set and then view the enrolled labels table again. The i-
vector templates and the number of samples are updated.

enroll(speakerVerification,adsEnrollPart2,adsEnrollPart2.Labels)

Extracting i-vectors ...done.
Enrolling i-vectorsdone.
Enrollment complete.

speakerVerification.EnrolledLabels

ans=4×2 table
 ivector NumSamples
 _____________ __________

 F01 {16×1 double} 3
 F05 {16×1 double} 3
 M01 {16×1 double} 3
 M05 {16×1 double} 3

To evaluate the i-vector system and determine a decision threshold for speaker verification, call
detectionErrorTradeoff.

[results, eerThreshold] = detectionErrorTradeoff(speakerVerification,adsDET,adsDET.Labels);

 info

4-413

Extracting i-vectors ...done.
Scoring i-vector pairs ...done.
Detection error tradeoff evaluation complete.

The first output from detectionErrorTradeoff is a structure with two fields: CSS and PLDA. Each
field contains a table. Each row of the table contains a possible decision threshold for speaker
verification tasks, and the corresponding false alarm rate (FAR) and false rejection rate (FRR). The
FAR and FRR are determined using the enrolled speaker labels and the data input to the
detectionErrorTradeoff function.

results

results = struct with fields:
 PLDA: [1000×3 table]
 CSS: [1000×3 table]

results.CSS

ans=1000×3 table
 Threshold FAR FRR
 __________ _______ ___

 1.7736e-09 1 0
 1.8233e-09 0.99964 0
 1.8745e-09 0.99964 0
 1.927e-09 0.99964 0
 1.9811e-09 0.99964 0
 2.0366e-09 0.99964 0
 2.0937e-09 0.99964 0
 2.1524e-09 0.99964 0
 2.2128e-09 0.99964 0
 2.2748e-09 0.99964 0
 2.3386e-09 0.99964 0
 2.4042e-09 0.99964 0
 2.4716e-09 0.99964 0
 2.5409e-09 0.99964 0
 2.6122e-09 0.99964 0
 2.6854e-09 0.99964 0
 ⋮

results.PLDA

ans=1000×3 table
 Threshold FAR FRR
 __________ _______ ___

 4.7045e-34 1 0
 5.143e-34 0.99964 0
 5.6225e-34 0.99964 0
 6.1466e-34 0.99964 0
 6.7197e-34 0.99964 0
 7.3461e-34 0.99964 0
 8.0309e-34 0.99964 0
 8.7796e-34 0.99964 0
 9.5981e-34 0.99964 0
 1.0493e-33 0.99964 0
 1.1471e-33 0.99964 0

4 Classes

4-414

 1.254e-33 0.99964 0
 1.371e-33 0.99964 0
 1.4988e-33 0.99964 0
 1.6385e-33 0.99964 0
 1.7912e-33 0.99964 0
 ⋮

The second output from detectionErrorTradeoff is a structure with two fields: CSS and PLDA.
The corresponding value is the decision threshold that results in the equal error rate (when FAR and
FRR are equal).

eerThreshold

eerThreshold = struct with fields:
 PLDA: 0.0021
 CSS: 0.9366

The first time you call detectionErrorTradeoff, you must provide data and corresponding labels
to evaluate. Subsequently, you can get the same information, or a different analysis using the same
underlying data, by calling detectionErrorTradeoff without data and labels.

Call detectionErrorTradeoff a second time with no data arguments or output arguments to
visualize the detection-error tradeoff.

detectionErrorTradeoff(speakerVerification)

 info

4-415

Call detectionErrorTradeoff again. This time, visualize only the detection-error tradeoff for the
PLDA scorer.

detectionErrorTradeoff(speakerVerification,Scorer="plda")

Depending on your application, you may want to use a threshold that weights the error cost of a false
alarm higher or lower than the error cost of a false rejection. You may also be using data that is not
representative of the prior probability of the speaker being present. You can use the minDCF
parameter to specify custom costs and prior probability. Call detectionErrorTradeoff again, this
time specify the cost of a false rejection as 1, the cost of a false acceptance as 2, and the prior
probability that a speaker is present as 0.1.

costFR = 1;
costFA = 2;
priorProb = 0.1;
detectionErrorTradeoff(speakerVerification,Scorer="plda",minDCF=[costFR,costFA,priorProb])

4 Classes

4-416

Call detectionErrorTradeoff again. This time, get the minDCF threshold for the PLDA scorer and
the parameters of the detection cost function.

[~,minDCFThreshold] = detectionErrorTradeoff(speakerVerification,Scorer="plda",minDCF=[costFR,costFA,priorProb])

minDCFThreshold = 0.0595

Test Speaker Verification System

Read a signal from the test set.

adsTest = shuffle(adsTest);
[audioIn,audioInfo] = read(adsTest);
knownSpeakerID = audioInfo.Label

knownSpeakerID = 1×1 cell array
 {'F05'}

To perform speaker verification, call verify with the audio signal and specify the speaker ID, a
scorer, and a threshold for the scorer. The verify function returns a logical value indicating whether
a speaker identity is accepted or rejected, and a score indicating the similarity of the input audio and
the template i-vector corresponding to the enrolled label.

[tf,score] = verify(speakerVerification,audioIn,knownSpeakerID,"plda",eerThreshold.PLDA);
if tf
 fprintf('Success!\nSpeaker accepted.\nSimilarity score = %0.2f\n\n',score)
else

 info

4-417

 fprinf('Failure!\nSpeaker rejected.\nSimilarity score = %0.2f\n\n',score)
end

Success!
Speaker accepted.
Similarity score = 1.00

Call speaker verification again. This time, specify an incorrect speaker ID.

possibleSpeakers = speakerVerification.EnrolledLabels.Properties.RowNames;
imposterIdx = find(~ismember(possibleSpeakers,knownSpeakerID));
imposter = possibleSpeakers(imposterIdx(randperm(numel(imposterIdx),1)))

imposter = 1×1 cell array
 {'F01'}

[tf,score] = verify(speakerVerification,audioIn,imposter,"plda",eerThreshold.PLDA);
if tf
 fprintf('Failure!\nSpeaker accepted.\nSimilarity score = %0.2f\n\n',score)
else
 fprintf('Success!\nSpeaker rejected.\nSimilarity score = %0.2f\n\n',score)
end

Success!
Speaker rejected.
Similarity score = 0.00

References

[1] Signal Processing and Speech Communication Laboratory. https://www.spsc.tugraz.at/databases-
and-tools/ptdb-tug-pitch-tracking-database-from-graz-university-of-technology.html. Accessed 12 Dec.
2019.

Input Arguments
ivs — i-vector system
ivectorSystem object

i-vector system, specified as an object of type ivectorSystem.

Output Arguments
ivInfo — i-vector information
structure

Information about how the i-vector system was trained and evaluated, returned as a structure.
Data Types: struct

Version History
Introduced in R2021a

4 Classes

4-418

https://www.spsc.tugraz.at/databases-and-tools/ptdb-tug-pitch-tracking-database-from-graz-university-of-technology.html.
https://www.spsc.tugraz.at/databases-and-tools/ptdb-tug-pitch-tracking-database-from-graz-university-of-technology.html.

See Also
trainExtractor | trainClassifier | calibrate | unenroll | enroll |
detectionErrorTradeoff | verify | identify | ivector | addInfoHeader | release |
ivectorSystem | speakerRecognition

 info

4-419

addInfoHeader
Add custom information about i-vector system

Syntax
addInfoHeader(ivs,str)
addInfoHeader(ivs)

Description
addInfoHeader(ivs,str) adds a field called Header to the structure output by info(ivs) and
populates it with str.

addInfoHeader(ivs) clears the custom information from the i-vector system ivs.

Examples

Add Custom Header Information

Create a default i-vector system.

ivs = ivectorSystem;

Add custom header information to the object. Use the info function to display the information.

addInfoHeader(ivs,'Custom Header Information')

info(ivs)

Header
 Custom Header Information

Input Arguments
ivs — i-vector system
ivectorSystem object

i-vector system, specified as an object of type ivectorSystem.

str — Custom information
character vector | string scalar

Custom information about i-vector system, specified as a character vector or string scalar.
Data Types: char | string

Version History
Introduced in R2021b

4 Classes

4-420

See Also
trainExtractor | trainClassifier | unenroll | enroll | detectionErrorTradeoff |
verify | identify | ivector | info | release | ivectorSystem | speakerRecognition

 addInfoHeader

4-421

release
Allow property values and input characteristics to change

Syntax
release(ivs)

Description
release(ivs) allows property values and input characteristics of the i-vector system ivs to
change.

Examples

Train Environmental Sound Classification System

Download and unzip the environment sound classification data set. This data set consists of
recordings labeled as one of 10 different audio sound classes (ESC-10).

loc = matlab.internal.examples.downloadSupportFile("audio","ESC-10.zip");
unzip(loc,pwd)

Create an audioDatastore object to manage the data and split it into training and validation sets.
Call countEachLabel to display the distribution of sound classes and the number of unique labels.

ads = audioDatastore(pwd,IncludeSubfolders=true,LabelSource="foldernames");
countEachLabel(ads)

ans=10×2 table
 Label Count
 ______________ _____

 chainsaw 40
 clock_tick 40
 crackling_fire 40
 crying_baby 40
 dog 40
 helicopter 40
 rain 40
 rooster 38
 sea_waves 40
 sneezing 40

Listen to one of the files.

[audioIn,audioInfo] = read(ads);
fs = audioInfo.SampleRate;
sound(audioIn,fs)
audioInfo.Label

4 Classes

4-422

ans = categorical
 chainsaw

Split the datastore into training and test sets.

[adsTrain,adsTest] = splitEachLabel(ads,0.8);

Create an audioFeatureExtractor to extract all possible features from the audio.

afe = audioFeatureExtractor(SampleRate=fs, ...
 Window=hamming(round(0.03*fs),"periodic"), ...
 OverlapLength=round(0.02*fs));
params = info(afe,"all");
params = structfun(@(x)true,params,UniformOutput=false);
set(afe,params);
afe

afe =
 audioFeatureExtractor with properties:

 Properties
 Window: [1323×1 double]
 OverlapLength: 882
 SampleRate: 44100
 FFTLength: []
 SpectralDescriptorInput: 'linearSpectrum'
 FeatureVectorLength: 862

 Enabled Features
 linearSpectrum, melSpectrum, barkSpectrum, erbSpectrum, mfcc, mfccDelta
 mfccDeltaDelta, gtcc, gtccDelta, gtccDeltaDelta, spectralCentroid, spectralCrest
 spectralDecrease, spectralEntropy, spectralFlatness, spectralFlux, spectralKurtosis, spectralRolloffPoint
 spectralSkewness, spectralSlope, spectralSpread, pitch, harmonicRatio, zerocrossrate
 shortTimeEnergy

 Disabled Features
 none

 To extract a feature, set the corresponding property to true.
 For example, obj.mfcc = true, adds mfcc to the list of enabled features.

Create two directories in your current folder: train and test. Extract features from the training and
the test data sets and write the features as MAT files to the respective directories. Pre-extracting
features can save time when you want to evaluate different feature combinations or training
configurations.

if ~isdir("train")
 mkdir("train")
 mkdir("test")

 outputType = ".mat";
 writeall(adsTrain,"train",WriteFcn=@(x,y,z)writeFeatures(x,y,z,afe))
 writeall(adsTest,"test",WriteFcn=@(x,y,z)writeFeatures(x,y,z,afe))
end

Create signal datastores to point to the audio features.

 release

4-423

sdsTrain = signalDatastore("train",IncludeSubfolders=true);
sdsTest = signalDatastore("test",IncludeSubfolders=true);

Create label arrays that are in the same order as the signalDatastore files.

labelsTrain = categorical(extractBetween(sdsTrain.Files,"ESC-10"+filesep,filesep));
labelsTest = categorical(extractBetween(sdsTest.Files,"ESC-10"+filesep,filesep));

Create a transform datastore from the signal datastores to isolate and use only the desired features.
You can use the output from info on the audioFeatureExtractor to map your chosen features to
the index in the features matrix. You can experiment with the example by choosing different features.

featureIndices = info(afe)

featureIndices = struct with fields:
 linearSpectrum: [1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 …]
 melSpectrum: [663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694]
 barkSpectrum: [695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726]
 erbSpectrum: [727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769]
 mfcc: [770 771 772 773 774 775 776 777 778 779 780 781 782]
 mfccDelta: [783 784 785 786 787 788 789 790 791 792 793 794 795]
 mfccDeltaDelta: [796 797 798 799 800 801 802 803 804 805 806 807 808]
 gtcc: [809 810 811 812 813 814 815 816 817 818 819 820 821]
 gtccDelta: [822 823 824 825 826 827 828 829 830 831 832 833 834]
 gtccDeltaDelta: [835 836 837 838 839 840 841 842 843 844 845 846 847]
 spectralCentroid: 848
 spectralCrest: 849
 spectralDecrease: 850
 spectralEntropy: 851
 spectralFlatness: 852
 spectralFlux: 853
 spectralKurtosis: 854
 spectralRolloffPoint: 855
 spectralSkewness: 856
 spectralSlope: 857
 spectralSpread: 858
 pitch: 859
 harmonicRatio: 860
 zerocrossrate: 861
 shortTimeEnergy: 862

idxToUse = [...
 featureIndices.harmonicRatio ...
 ,featureIndices.spectralRolloffPoint ...
 ,featureIndices.spectralFlux ...
 ,featureIndices.spectralSlope ...
];
tdsTrain = transform(sdsTrain,@(x)x(:,idxToUse));
tdsTest = transform(sdsTest,@(x)x(:,idxToUse));

Create an i-vector system that accepts feature input.

soundClassifier = ivectorSystem(InputType="features");

Train the extractor and classifier using the training set.

trainExtractor(soundClassifier,tdsTrain,UBMNumComponents=128,TVSRank=64);

4 Classes

4-424

Calculating standardization factorsdone.
Training universal background modeldone.
Training total variability spacedone.
i-vector extractor training complete.

trainClassifier(soundClassifier,tdsTrain,labelsTrain,NumEigenvectors=32,PLDANumIterations=0)

Extracting i-vectors ...done.
Training projection matrixdone.
i-vector classifier training complete.

Enroll the labels from the training set to create i-vector templates for each of the environmental
sounds.

enroll(soundClassifier,tdsTrain,labelsTrain)

Extracting i-vectors ...done.
Enrolling i-vectorsdone.
Enrollment complete.

Calibrate the i-vector system.

calibrate(soundClassifier,tdsTrain,labelsTrain)

Extracting i-vectors ...done.
Calibrating CSS scorer ...done.
Calibration complete.

Use the identify function on the test set to return the system's inferred label.

inferredLabels = labelsTest;
inferredLabels(:) = inferredLabels(1);
for ii = 1:numel(labelsTest)
 features = read(tdsTest);
 tableOut = identify(soundClassifier,features,"css",NumCandidates=1);
 inferredLabels(ii) = tableOut.Label(1);
end

Create a confusion matrix to visualize performance on the test set.

uniqueLabels = unique(labelsTest);
cm = zeros(numel(uniqueLabels),numel(uniqueLabels));
for ii = 1:numel(uniqueLabels)
 for jj = 1:numel(uniqueLabels)
 cm(ii,jj) = sum((labelsTest==uniqueLabels(ii)) & (inferredLabels==uniqueLabels(jj)));
 end
end
labelStrings = replace(string(uniqueLabels),"_"," ");
heatmap(labelStrings,labelStrings,cm)
colorbar off
ylabel("True Labels")
xlabel("Predicted Labels")
accuracy = mean(inferredLabels==labelsTest);
title(sprintf("Accuracy = %0.2f %%",accuracy*100))

 release

4-425

Release the i-vector system.

release(soundClassifier)

Supporting Functions

function writeFeatures(audioIn,info,~,afe)
 % Convet to single-precision
 audioIn = single(audioIn);

 % Extract features
 features = extract(afe,audioIn);

 % Replace the file extension of the suggested output name with MAT.
 filename = strrep(info.SuggestedOutputName,".wav",".mat");

 % Save the MFCC coefficients to the MAT file.
 save(filename,"features")
end

Input Arguments
ivs — i-vector system
ivectorSystem object

i-vector system, specified as an object of type ivectorSystem.

4 Classes

4-426

Version History
Introduced in R2021a

See Also
trainExtractor | trainClassifier | calibrate | enroll | unenroll |
detectionErrorTradeoff | verify | identify | info | addInfoHeader | ivector |
ivectorSystem | speakerRecognition

 release

4-427

Blocks

5

Voice Activity Detector
Detect presence of speech in audio signal
Library: Audio Toolbox / Measurements

Description
The Voice Activity Detector block detects the presence of speech in an audio signal. You can also use
the Voice Activity Detector block to output an estimate of the noise variance per frequency bin.

Ports
Input

x — Input signal
matrix | 1-D vector

• Matrix input –– Each column of the input is treated as an independent channel.
• 1-D vector input –– The input is treated as a single channel.

This port is unnamed unless you specify additional input ports.
Data Types: single | double

SilenceToSpeech — Threshold (dB)
scalar in the range [0, 1]
Dependencies

To enable this port, select Specify silence-to-speech probability from input port for the
“Probability of transition from a silence frame to a speech frame” on page 5-0 parameter.
Data Types: single | double

SpeechToSilence — Threshold (dB)
scalar in the range [0, 1]
Dependencies

To enable this port, select Specify speech-to-silence probability from input port for the
“Probability of transition from a speech frame to a silence frame” on page 5-0 parameter.
Data Types: single | double

Output

P — Probability that speech is present
scalar | row vector

The block outputs a scalar or row vector with the same number of columns as the input signal.

5 Blocks

5-2

This port is unnamed until you select the Output noise variance parameter.
Data Types: single | double

N — Estimate of noise variance per frequency bin
column vector | matrix

The block outputs a column vector or a matrix with the same number of columns as the input signal.

Dependencies

To enable this port, select the Output noise variance parameter.
Data Types: single | double

Parameters
If a parameter is listed as tunable, then you can change its value during simulation.

Domain of the input — Domain of the input
Time (default) | Frequency

Window — Windowing function applied before FFT
Hann (default) | Chebyshev | Flat Top | Hamming | Kaiser | Rectangular

The window function is designed using the algorithms of the following functions:

• Hann –– hann
• Chebyshev –– chebwin
• Flat Top –– flattopwin
• Hamming –– hamming
• Kaiser –– kaiser

Tunable: No

Dependencies

To enable this parameter, set Domain of the input to Time.

Sidelobe attenuation of the window (dB) — Sidelobe attenuation of the window (dB)
60 (default) | positive finite scalar

Dependencies

To enable this parameter, set Domain of the input to Time and Window to Chebyshev or Kaiser.
Data Types: single | double

Inherit FFT length from input dimensions — Set FFT length to number of input
samples
on (default) | off

 Voice Activity Detector

5-3

Tunable: No

Dependencies

To enable this parameter, set Domain of the input to Time.

FFT length — Number of bins in frequency domain
1024 (default) | positive integer

Tunable: No

Dependencies

To enable this parameter, set Domain of the input to Time and clear the Inherit FFT length from
input dimensions parameter.
Data Types: single | double

Probability of transition from a silence frame to a speech frame — Probability
that a speech frame follows a silence frame
0.2 (default) | scalar in the range [0,1]

To specify Probability of transition from a silence frame to a speech frame from an input port,
select Specify silence-to-speech probability from input port.

Tunable: Yes
Data Types: single | double

Probability of transition from a speech frame to a silence frame — Probability
that a silence frame follows a speech frame
0.1 (default) | scalar in the range [0,1]

To specify Probability of transition from a speech frame to a silence frame from an input port,
select Specify speech-to-silence probability from input port.

Tunable: Yes
Data Types: single | double

Output noise variance — Output estimate of noise variance per frequency bin
off (default) | on

When you select this parameter, an additional output port, N, is added to the block.

Simulate using — Specify type of simulation to run
Code generation (default) | Interpreted execution

• Code generation – Simulate the model using generated C code. The first time you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations, as long as the model does not change. This option requires additional startup time,
but the speed of the subsequent simulations is comparable to Interpreted execution.

5 Blocks

5-4

• Interpreted execution – Simulate the model using the MATLAB interpreter. This option
reduces startup time, but has a slower simulation speed than Code generation. In this mode,
you can debug the source code of the block.

Tunable: No

Block Characteristics
Data Types double | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Algorithms
The Voice Activity Detector implements the algorithm described in [1].

If Domain of the input is specified as Time, the input signal is windowed and then converted to the
frequency domain according to the Window, Sidelobe attenuation of the window (dB), and FFT
length parameters. If Domain of the input is specified as Frequency, the input is assumed to be a
windowed discrete time Fourier transform (DTFT) of an audio signal. The signal is then converted to
the power domain. Noise variance is estimated according to [2]. The posterior and prior SNR are
estimated according to the Minimum Mean-Square Error (MMSE) formula described in [3]. A log
likelihood ratio test with a Hidden Markov Model (HMM)-based hang-over scheme is used, according
to [1].

Version History
Introduced in R2018a

References
[1] Sohn, Jongseo., Nam Soo Kim, and Wonyong Sung. "A Statistical Model-Based Voice Activity

Detection." Signal Processing Letters IEEE. Vol. 6, No. 1, 1999.

 Voice Activity Detector

5-5

[2] Martin, R. "Noise Power Spectral Density Estimation Based on Optimal Smoothing and Minimum
Statistics." IEEE Transactions on Speech and Audio Processing. Vol. 9, No. 5, 2001, pp. 504–
512.

[3] Ephraim, Y., and D. Malah. "Speech Enhancement Using a Minimum Mean-Square Error Short-
Time Spectral Amplitude Estimator." IEEE Transactions on Acoustics, Speech, and Signal
Processing. Vol. 32, No. 6, 1984, pp. 1109–1121.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
voiceActivityDetector

5 Blocks

5-6

Cepstral Feature Extractor
(To be removed) Extract cepstral features from audio segment

Note The Cepstral Feature Extractor block will be removed in a future release. For more
information, see “Version History”.

Library: Audio Toolbox / Measurements

Description
The Cepstral Feature Extractor block extracts cepstral features from an audio segment. Cepstral
features are commonly used to characterize speech and music signals.

Ports
Input

Port_1 — Audio input to cepstral feature extractor
column vector | matrix

Audio input to the cepstral feature extractor, specified as a column vector or a matrix. If specified as a
matrix, the columns are treated as independent audio channels.
Data Types: single | double

Output

coeffs — Cepstral coefficients
column vector | matrix

Cepstral coefficients, returned as a column vector or a matrix. If the coefficients matrix is an N-by-M
matrix, N is determined by the values you specify in the Number of coefficients to return and Log
energy usage parameters. M equals the number of input audio channels.

When the Log energy usage parameter is set to:

• Append –– The block prepends the log energy value to the coefficients vector. The length of the
coefficients vector is 1 + NumCoeffs, where NumCoeffs is the value specified in the Number of
coefficients to return parameter.

• Replace –– The block replaces the first coefficient with the log energy of the signal. The length of
the coefficients vector is NumCoeffs.

• Ignore –– The block does not calculate or return the log energy.

This port is unnamed until you select Output delta parameter, the Output delta-delta parameter, or
both.

 Cepstral Feature Extractor

5-7

Data Types: single | double

delta — Change in coefficients
column vector | matrix

Change in coefficients over consecutive calls to the algorithm, returned as a column vector or a
matrix. The delta array is of the same size and data type as the coeffs array.

Dependencies

To enable this port, select the Output delta parameter.
Data Types: single | double

deltaDelta — Change in delta values
column vector | matrix

Change in delta values over consecutive calls to the algorithm, returned as a column vector or a
matrix. The deltaDelta array is the same size and data type as the coeffs and delta arrays.

Dependencies

To enable this port, select the Output delta-delta parameter.
Data Types: single | double

Parameters
If a parameter is listed as tunable, then you can change its value during simulation.

Filter bank type — Type of filter bank
Mel (default) | Gammatone

Type of filter bank, specified as either Mel or Gammatone:

• Mel –– The block computes the mel frequency cepstral coefficients (MFCC).
• Gammatone –– The block computes the gammatone cepstral coefficients (GTCC).

Tunable: No

Domain of the input signal — Input signal domain
Time (default) | Frequency

Input signal domain, specified as either Time or Frequency.

Tunable: No

Number of coefficients to return — Number of coefficients to return
13 (default) | positive integer

Number of coefficients to return, specified as an integer in the range [2, v], where v is the number of
valid passbands. The number of valid passbands depends on the type of filter bank:

5 Blocks

5-8

• Mel –– The number of valid passbands is defined as sum(κ <= floor(fs/2))-2, where κ is the
number of band edges in the mel filter bank and fs is the sample rate.

• Gammatone –– The number of valid passbands is defined as ceil(hz2erb(R(2))-
hz2erb(R(1))), where R is the frequency range of the gammatone filter bank.

Tunable: No
Data Types: single | double

Nonlinear rectification — Type of nonlinear rectification
Log (default) | Cubic-Root

Type of nonlinear rectification applied prior to the discrete cosine transform.

Tunable: No

Inherit FFT length from input dimensions — Inherit FFT length from input
on (default) | off

When you select this parameter, the FFT length is equal to the number of rows in the input signal.

Tunable: No

Dependencies

To enable this parameter, set Domain of the input signal to Time.

FFTLength — FFT length
[] (default) | positive integer

FFT length, specified as a positive integer. The default, [], means that the FFT length is equal to the
number of rows in the input signal.

Tunable: No

Dependencies

To enable this parameter, set Domain of the input signal to Time and select the Inherit FFT
length from input dimensions parameter.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Log energy usage — Specify how the log energy is shown
Append (default) | Replace | Ignore

Specify how the log energy is shown in the coefficients vector output, specified as:

• Append –– The block prepends the log energy to the coefficients vector. The length of the
coefficients vector is 1 + NumCoeffs, where NumCoeffs is the value specified in the Number of
coefficients to return parameter.

• Replace –– The block replaces the first coefficient with the log energy of the signal. The length of
the coefficients vector is NumCoeffs.

 Cepstral Feature Extractor

5-9

• Ignore –– The block does not calculate or return the log energy.

Tunable: No

Output delta — Output delta values
off (default) | on

When you select this parameter, an additional output port, delta, is added to the block. This port
outputs the change in coefficients over consecutive calls to the algorithm.

Tunable: No

Output delta-delta — Output delta-delta values
off (default) | on

When you select this parameter, an additional output port, deltaDelta, is added to the block. This
port outputs the change in delta values over consecutive calls to the algorithm.

Tunable: No

Inherit sample rate from input — Specify source of input sample rate
off (default) | on

When you select this parameter, the block inherits its sample rate from the input signal. When you
clear this parameter, you specify the sample rate in Input sample rate (Hz) parameter.

Tunable: No

Input sample rate (Hz) — Sample rate of input
16000 (default) | positive scalar

Input sample rate in Hz, specified as a real positive scalar.

Dependencies

To enable this parameter, clear the Inherit sample rate from input parameter.

Simulate using — Specify type of simulation to run
Code generation (default) | Interpreted execution

• Code generation –– Simulate model using generated C code. The first time you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations, as long as the model does not change. This option requires additional startup time,
but the speed of the subsequent simulations is comparable to Interpreted execution.

• Interpreted execution –– Simulate model using the MATLAB interpreter. This option shortens
startup time but has a slower simulation speed than Code generation. In this mode, you can
debug the source code of the block.

Tunable: No

5 Blocks

5-10

Advanced Tab

Gammatone frequency range (Hz) — Frequency range of gammatone filter bank (Hz)
[50 8000] (default) | two-element row vector

Frequency range of the gammatone filter bank in Hz, specified as a positive, monotonically increasing
two-element row vector. The maximum frequency range can be any finite number. The center
frequencies of the filter bank are equally spaced across the frequency range on the ERB scale.

Tunable: No

Dependencies

To enable this parameter, set Filter bank type to Gammatone.

Band edges of Mel filter bank (Hz) — Band edges of mel filter bank
row vector

Band edges of the filter bank in Hz, specified as a nonnegative monotonically increasing row vector in
the range [0, ∞). The maximum bandedge frequency can be any finite number. The number of
bandedges must be in the range [4, 80].

The default band edges are spaced linearly for the first ten and then logarithmically thereafter. The
default band edges are set as recommended by [1].

Tunable: No

Dependencies

To enable this parameter, set Filter bank type to Mel.

Domain for Mel filter bank design — Mel filter bank design domain
Hz (default) | Bin

Mel filter bank design domain, specified as either Hz or Bin. The filter bank is designed as
overlapped triangles with band edges specified by the Band edges of filter bank (Hz) parameter.

The band edges are specified in Hz. When you set the design domain to:

• Hz –– Filter bank triangles are drawn in Hz and are mapped onto bins.

 Cepstral Feature Extractor

5-11

For details, see [1].
• Bin –– The band edge frequencies in Hz are converted to bins. The filter bank triangles are drawn

symmetrically in bins.

5 Blocks

5-12

For details, see [2].

Tunable: No
Dependencies

To enable this parameter, set Filter bank type to Mel.

Filter bank normalization — Normalize filter bank
Bandwidth (default) | Area | None

Normalization technique used to normalize the weights of the filter bank, specified as:

• Bandwidth –– The weights of each bandpass filter are normalized by the corresponding
bandwidth of the filter.

• Area –– The weights of each bandpass filter are normalized by the corresponding area of the
bandpass filter.

• None –– The weights of the filter are not normalized.

Tunable: No

 Cepstral Feature Extractor

5-13

Block Characteristics
Data Types double | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Algorithms
Auditory Cepstrum Coefficients

Auditory cepstrum coefficients are popular features extracted from speech signals for use in
recognition tasks. In the source-filter model of speech, cepstral coefficients are understood to
represent the filter (vocal tract). The vocal tract frequency response is relatively smooth, whereas the
source of voiced speech can be modeled as an impulse train. As a result, the vocal tract can be
estimated by the spectral envelope of a speech segment.

The motivating idea of cepstral coefficients is to compress information about the vocal tract
(smoothed spectrum) into a small number of coefficients based on an understanding of the cochlea.
Although there is no hard standard for calculating the coefficients, the basic steps are outlined by the
diagram.

Two popular implementations of the filter bank are the mel filter bank and the gammatone filter bank.

Mel Filter Bank

The default mel filter bank linearly spaces the first 10 triangular filters and logarithmically spaces the
remaining filters.

5 Blocks

5-14

Gammatone Filter Bank

The default gammatone filter bank is composed of gammatone filters spaced linearly on the ERB
scale between 50 and 8000 Hz. The filter bank is designed by gammatoneFilterBank.

Log Energy

If the input (x) is a time-domain signal, the log energy is computed using the following equation:

logE = log(sum(x2))

 Cepstral Feature Extractor

5-15

If the input (x) is a frequency-domain signal, the log energy is computed using the following equation:

logE = log sum x 2 /FFTLength

Version History
Introduced in R2018a

To be removed
Not recommended starting in R2022b

The Cepstral Feature Extractor block will be removed in a future release. Use the MFCC block or a
combination of the Auditory Spectrogram, Cepstral Coefficients, and Audio Delta blocks instead.

Cepstral Feature Extractor Configuration Recommended Replacement
Filter bank type parameter set to Mel Use the MFCC block.
Filter bank type parameter set to Gammatone Use the Auditory Spectrogram block combined

with the Cepstral Coefficients block. See “Extract
GTCC from Audio in Simulink” for an example.

Output delta or Output delta-delta parameters
selected

If using the MFCC block, select the Append
delta or Append delta-delta parameters. If
using the Cepstral Coefficients block instead, use
the Audio Delta block to extract delta features.

Log energy usage parameter set to Append or
Replace

No replacement

Band edges of Mel filter bank (Hz) parameter
specified

No replacement

Domain for Mel filter bank design parameter
set to Bin

No replacement

References
[1] Auditory Toolbox. https://engineering.purdue.edu/~malcolm/interval/1998-010/

AuditoryToolboxTechReport.pdf

[2] ETSI ES 201 108 V1.1.3 (2003-09). https://www.etsi.org/deliver/etsi_es/
201100_201199/201108/01.01.03_60/es_201108v010103p.pdf

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
MFCC | Cepstral Coefficients | mfcc | gtcc | cepstralCoefficients | audioFeatureExtractor

5 Blocks

5-16

https://engineering.purdue.edu/~malcolm/interval/1998-010/AuditoryToolboxTechReport.pdf
https://engineering.purdue.edu/~malcolm/interval/1998-010/AuditoryToolboxTechReport.pdf
https://www.etsi.org/deliver/etsi_es/201100_201199/201108/01.01.03_60/es_201108v010103p.pdf
https://www.etsi.org/deliver/etsi_es/201100_201199/201108/01.01.03_60/es_201108v010103p.pdf

Audio Delta
Compute delta features
Library: Audio Toolbox / Features

Description
The Audio Delta block computes the delta of the input audio features. The delta is an approximation
of the first derivative of the audio features with respect to time.

Ports
Input

Port_1 — Audio features
scalar | vector | matrix | 3-D array

Audio features, specified as a scalar, vector, matrix, or 3-D array. The delta computation operates
along the first dimension. All other dimensions are treated as independent channels.
Data Types: single | double

Output

Port_1 — Delta of audio features
scalar | vector | matrix | array

Delta of audio features, returned as an array that is the same size and data type as the input.
Data Types: single | double

Parameters
Delta window length — Window length over which to calculate delta

9 (default) | odd integer greater than 2

Window length over which to calculate delta, specified as an odd integer greater than 2.

Simulate using — Specify type of simulation to run

Interpreted execution (default) | Code generation

• Interpreted execution –– Simulate model using the MATLAB interpreter. This option shortens
startup time but has a slower simulation speed than Code generation. In this mode, you can
debug the source code of the block.

 Audio Delta

5-17

• Code generation –– Simulate model using generated C code. The first time you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations, as long as the model does not change. This option requires additional startup time,
but the speed of the subsequent simulations is comparable to Interpreted execution.

Block Characteristics
Data Types double | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals yes
Zero-Crossing
Detection

no

Algorithms
The delta of an audio feature x is a least-squares approximation of the local slope of a region centered
on sample x(k), which includes M samples before the current sample and M samples after the current
sample.

delta =
∑

k = −M

M
k x(k)

∑
k = −M

M
k2

The delta window length defines the length of the region from –M to M.

For more information, see [1].

Version History
Introduced in R2022b

References
[1] Rabiner, Lawrence R., and Ronald W. Schafer. Theory and Applications of Digital Speech

Processing. Upper Saddle River, NJ: Pearson, 2010.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
MFCC | Cepstral Coefficients

5 Blocks

5-18

Functions
mfcc | audioDelta | cepstralCoefficients

Objects
audioFeatureExtractor

 Audio Delta

5-19

Audio Device Reader
Record from sound card
Library: Audio Toolbox / Sources

Description
The Audio Device Reader block reads audio samples using your computer's audio device. The Audio
Device Reader block specifies the driver, the device and its attributes, and the data type and size
output from your Audio Device Reader block.

Ports
Output

A — Output signal
scalar | vector | matrix

The output of the Audio Device Reader block is determined by the block’s parameters. If the block
output is a matrix, the columns correspond to independent channels.
Data Types: single | double | int16 | int32 | uint8

O — Number of samples overrun
scalar

This port outputs the number of samples overrun while acquiring a frame of data (one output matrix).

Dependencies

To enable this port, select the Output number of samples overrun parameter.
Data Types: uint32

5 Blocks

5-20

Parameters
Main Tab

Driver — Driver used to access your audio device
DirectSound (default) | ASIO | WASAPI

• ASIO drivers do not come pre-installed on Windows machines. To use the ASIO driver option,
install an ASIO driver outside of MATLAB.

Note If Driver is set to ASIO, open the ASIO UI outside of MATLAB to set the sound card buffer
size to the value specified by the Samples per frame parameter. See the documentation of your
ASIO driver for more information.

• WASAPI drivers are supported for exclusive-mode only.

ASIO and WASAPI drivers do not provide sample rate conversion. For ASIO and WASAPI drivers, set
Sample rate (Hz) to a sample rate supported by your audio device.

This parameter applies only on Windows machines. Linux machines always use the ALSA driver. Mac
machines always use the CoreAudio driver.

Device — Device used to acquire audio samples

default audio device (default)

The device list is populated with devices available on your computer.

Info — View information about your audio input configuration
button

This button opens a dialog box that lists your selected audio driver, the full name of your audio
device, and the maximum input channels for your configuration. For example:

Sample rate (Hz) — Sample rate your device uses to acquire audio data
44100 (default) | integer

The possible range of Sample rate (Hz) depends on your audio hardware.

Number of channels — Number of channels acquired by your audio device
1 (default) | integer

The number of input channels is also the number of channels (matrix columns) output by the Audio
Device Reader block.

 Audio Device Reader

5-21

Dependencies

To specify which input channels your audio device acquires, on the Advanced tab, select the Use
default channel mapping parameter.

Samples per frame — Frame size read from audio device
1024 (default) | integer

Samples per frame is also the device buffer size, and the frame size (number of matrix rows) output
by the Audio Device Reader block.

Advanced Tab

Device bit depth — Data type used by device to acquire audio data
16-bit integer (default) | 8-bit integer | 16-bit integer | 24-bit integer | 32-bit
integer

Data type used by device to acquire audio data, specified as a character vector or string.

Use default channel mapping — Toggle channel mapping source
on (default) | off

When you select this parameter, the block uses the default mapping between the sound card’s input
channels and the matrix columns output by this block. When you clear this parameter, you specify the
mapping in Device input channels.

Device input channels — Specify nondefault channel mapping
[1:MaximumInputChannels] (default) | scalar | vector

Nondefault map of device channels and matrix output by the Audio Device Reader block, specified as
a scalar or vector. For example:

If Device input channels is specified as 1:3, then:

• Channel 1 maps to the first column of the output matrix.
• Channel 2 maps to the second column of the output matrix.
• Channel 3 maps to the third column of the output matrix.

If Device input channels is specified as [3,1,2], then:

• Channel 3 maps to the first column of the output matrix.
• Channel 1 maps to the second column of the output matrix.
• Channel 2 maps to the third column of the output matrix.

Dependencies

To specify a nondefault mapping, clear the Use default mapping between sound card’s input
channels and columns of output of this block parameter.

Output number of samples overrun — Specify additional output port for number of
samples overrun
off (default) | on

5 Blocks

5-22

When you select this parameter, an additional output port, O, is added to the block. The O port
outputs the number of samples overrun while acquiring a frame of data (one output matrix).

Output data type — Data type output from block
double (default) | single | int32 | int16 | uint8

Data type of the output.

Note If this parameter is specified as double or single, the block outputs data in the range [–1, 1].
For other data types, the range is [min, max] of the specified data type.

Block Characteristics
Data Types double | integera | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

a Supports 16- and 32-bit signed and 8-bit unsigned integers.

Version History
Introduced in R2016a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

The executable generated from this block relies on prebuilt dynamic library files (.dll files) included
with MATLAB. Use the packNGo function to package the code generated from this object and all the
relevant files in a compressed zip file. Using this zip file, you can relocate, unpack, and rebuild your
project in another development environment where MATLAB is not installed. For more details, see
“Run Audio I/O Features Outside MATLAB and Simulink”.

See Also
audioDeviceReader | audioDeviceWriter | Audio Device Writer

Topics
“Run Audio I/O Features Outside MATLAB and Simulink”
“Audio I/O: Buffering, Latency, and Throughput”

 Audio Device Reader

5-23

Audio Device Writer
Play to sound card
Library: Audio Toolbox / Sinks

DSP System Toolbox / Sinks

Description
The Audio Device Writer block writes audio samples to an audio output device.

Parameters of the Audio Device Writer block specify the driver, the device, and device attributes such
as sample rate and bit depth.

Ports
Input

Port_1 — Input signal
scalar | vector | matrix

If input to the Audio Device Writer block is of data type double or single, the block clips values
outside the range [–1, 1]. For other data types, the allowed input range is [min, max] of the specified
data type.
Data Types: single | double | int16 | int32 | uint8

Output

Port_1 — Number of samples underrun
scalar

This port outputs the number of samples underrun while writing a frame of data (one input matrix).

Dependencies

To enable this port, select the Output number of samples underrun parameter.
Data Types: uint32

5 Blocks

5-24

Parameters
Main Tab

Driver — Driver used to access your audio device
DirectSound (default) | ASIO | WASAPI

• ASIO drivers do not come pre-installed on Windows machines. To use the ASIO driver option,
install an ASIO driver outside of MATLAB.

Note If Driver is set to ASIO, open the ASIO UI outside of MATLAB to set the sound card buffer
size to the frame size (number of rows) input to the Audio Device Writer block. See the
documentation of your ASIO driver for more information.

• WASAPI drivers are supported for exclusive-mode only.

ASIO and WASAPI drivers do not provide sample rate conversion. For ASIO and WASAPI drivers,
supply an audio stream with a sample rate supported by your audio device.

This parameter applies only on Windows machines. Linux machines always use the ALSA driver. Mac
machines always use the CoreAudio driver.

To specify nondefault Driver values, you must install Audio Toolbox. If the toolbox is not installed,
specifying nondefault Driver values returns an error.

Device — Device used to play audio samples
default audio device (default)

The device list is populated with devices available on your computer.

Info — View information about your audio output configuration
button

This button opens a dialog box that lists your selected audio driver, the full name of your audio
device, and the maximum output channels for your configuration. For example:

Inherit sample rate from input — Specify source of input sample rate
on (default) | off

When you select this parameter, the block inherits its sample rate from the input signal. When you
clear this parameter, you specify the sample rate in Sample rate (Hz).

 Audio Device Writer

5-25

Sample rate (Hz) — Sample rate used by device to play audio data
44100 (default) | positive scalar

The possible range of Sample rate (Hz) depends on your audio hardware.
Dependencies

To enable this parameter, clear the Inherit sample rate from input parameter.

Advanced Tab

Device bit depth — Data type used by device to perform digital-to-analog conversion
16-bit integer (default) | 8-bit integer | 24-bit integer | 32-bit float

Before performing digital-to-analog conversion, the input data is cast to a data type specified by this
parameter.

Note To specify a nondefault Device bit depth, you must install Audio Toolbox. If the toolbox is not
installed, specifying a nondefault Device bit depth returns an error.

Use default channel mapping — Toggle channel mapping source
on (default) | off

When you select this parameter, the block uses the default mapping between columns of the matrix
input to this block and the channels of your device. When you clear this parameter, you specify the
mapping in Device output channels.

Device output channels — Specify nondefault channel mapping
[1:MaximumOutputChannels] (default) | scalar | vector

Nondefault mapping between columns of matrix input to the Audio Device Writer block and channels
of output device, specified as a scalar or vector. For example:

If Device output channels is specified as 1:3, then:

• The first column of the input matrix maps to channel 1.
• The second column of the input matrix maps to channel 2.
• The third column of the input matrix maps to channel 3.

If Device output channels is specified as [3,1,2], then:

• The first column of the input matrix maps to channel 3.
• The second column of the input matrix maps to channel 1.
• The third column of the input matrix maps to channel 2.

Note To selectively map between columns of the input matrix and your sound card's output channels,
you must install Audio Toolbox. If the toolbox is not installed, specifying nondefault values for Device
output channels returns an error.

5 Blocks

5-26

Dependencies

To enable this parameter, clear the Use default mapping between columns of input of this block
and sound card’s output channels parameter.

Output number of samples underrun — Specify output port for number of samples
underrun
off (default) | on

When you select this parameter, an output port is added to the block. The port outputs the number of
samples underrun while writing a frame of data (one input matrix).

Block Characteristics
Data Types double | integera | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals yes
Zero-Crossing
Detection

no

a Supports 16- and 32-bit signed and 8-bit unsigned integers.

Version History
Introduced in R2016a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

The following code generation limitations apply:

• Host computer only. Excludes Simulink Desktop Real-Time™ code generation.
• The executable generated from this block relies on prebuilt dynamic library files (.dll files)

included with MATLAB. Use the packNGo function to package the code generated from this block
and all the relevant files in a compressed zip file. Using this zip file, you can relocate, unpack, and
rebuild your project in another development environment where MATLAB is not installed. For
more details, see “Run Audio I/O Features Outside MATLAB and Simulink”.

See Also
Audio Device Reader | Binary File Reader | audioDeviceWriter | audioDeviceReader

Topics
“Run Audio I/O Features Outside MATLAB and Simulink”
“Audio I/O: Buffering, Latency, and Throughput”

 Audio Device Writer

5-27

Auditory Spectrogram
Extract mel, Bark, or ERB spectrogram from audio
Library: Audio Toolbox / Features

Description
The Auditory Spectrogram block extracts a spectrogram from the audio input signal. A spectrogram
contains an estimate of the short-term, time-localized frequency content of the input signal.

Ports
Input

Port_1 — Audio input
column vector | matrix

Audio input signal, specified as a column vector or a matrix. When you specify a matrix, the block
treats columns as independent audio channels.
Data Types: single | double

Output

spec — Spectrogram
matrix | 3-D array

Spectrogram, returned as a matrix or 3-D array. The dimensions of spec are L-by-M-by-N, where:

• L is the number of spectra, which is determined by the Number of spectra parameter.
• M is the number of bands, which is determined by the Auto-determine number of bands and

Number of bands parameters.
• N is the number of channels in the input audio signal.

Trailing singleton dimensions are removed from the output.

This port is unnamed until you select the Output center frequencies parameter.
Data Types: single | double

fvec — Center frequencies
row vector

Center frequencies of the bandpass filters in Hz, returned as a row vector with number of elements
equal to the number of bands.

Dependencies

To enable this port, select the Output center frequencies parameter.

5 Blocks

5-28

Data Types: single | double

Parameters
Filter Bank Parameters

Frequency scale — Frequency scale of filter bank

mel (default) | bark | erb

Frequency scale used to design the auditory filter bank, specified as mel, bark, or erb.

• mel –– Design the filter bank as half-overlapped triangles equally spaced on the mel scale.
• bark –– Design the filter bank as half-overlapped triangles equally spaced on the Bark scale.
• erb –– Design the filter bank as gammatone filters whose center frequencies are equally spaced

on the ERB scale.

Auto-determine number of bands — Automatically determine number of bandpass filters

on (default) | off

When you select this parameter, the block automatically determines the number of bandpass filters
based on the Frequency scale parameter.

• If you set Frequency scale to mel or bark, then the number of bands is 32.
• If you set Frequency scale to erb, then the number of bands is equal to ceil(hz2erb(fr(2))-

hz2erb(fr(1))), where fr is specified using Frequency range (Hz).

Number of bands — Number of bandpass filters

32 (default) | positive integer

Number of bandpass filters, specified as a positive integer.

Dependencies

To enable this parameter, clear the Auto-determine number of bands parameter.

Auto-determine frequency range — Automatically determine frequency range

on (default) | off

When you select this parameter, the block sets the Frequency range to [0,fs/2], where fs is the
sample rate. The sample rate is determined by the Inherit sample rate from input and Input
sample rate (Hz) parameters.

Frequency range (Hz) — Frequency range over which to design auditory filter bank

[0,22050] (default) | two-element row vector

Frequency range in Hz over which to design the auditory filter bank, specified as a two-element row
vector.

 Auditory Spectrogram

5-29

Dependencies

To enable this parameter, clear the Auto-determine frequency range parameter.

Filter bank design domain — Domain to design filter bank

linear (default) | warped

Domain in which the block designs the filter bank, specified as linear or warped. Set the filter bank
design domain to linear to design the bandpass filters in the linear (Hz) domain. Set the filter bank
design domain to warped to design the bandpass filters in the warped (mel or Bark) domain.

Dependencies

To enable this parameter, set Frequency scale to mel or bark.

Filter bank normalization — Normalization technique for filter bank

bandwidth (default) | area | none

Normalization technique used for the filter bank weights, specified as bandwidth, area, or none.

• bandwidth –– Normalize the weights of each bandpass filter by the corresponding bandwidth of
the filter.

• area –– Normalize the weights of each bandpass filter by the corresponding area of the bandpass
filter.

• none –– The block does not normalize the weights of the filters.

Output center frequencies — Specify additional output port for center frequencies

off (default) | on

When you select this parameter, the block displays an additional output port, fvec. This port outputs
the center frequencies of the bandpass filters.

Visualize filter bank — Open plot to visualize filter bank

button

Open plot to visualize the filters in the frequency domain.

Spectrogram Parameters

Window — Analysis window

hamming(1024,'periodic') (default) | real vector

Analysis window applied in the time domain, specified as a real vector.

Normalize window — Normalize analysis window

on (default) | off

When you select this parameter, the block applies window normalization.

5 Blocks

5-30

Overlap length — Overlap length of adjacent analysis windows

512 (default) | integer in the range [0, windowLength)

Overlap length of adjacent analysis windows, specified as an integer in the range [0, windowLength),
where windowLength is the length of the analysis window, which is specified by Window.

Auto-determine FFT length — Automatically determine FFT length

on (default) | off

When you select this parameter, the block automatically sets the FFT length to the window length
numel(Window).

FFT length — Number of DFT points

1024 (default) | positive integer

Number of points used to calculate the DFT, specified as a positive integer.

Dependencies

To enable this parameter, clear the Auto-determine FFT length parameter.

Spectrum type — Type of spectrum

magnitude (default) | power

Type of spectrum, specified as magnitude or power.

Number of spectra — Number of spectra

1 (default) | positive integer

Number of spectra in the spectrogram, specified as a positive integer.

Number of spectra overlap — Number of overlapped spectra

0 (default) | integer in the range [0, Number of spectra)

Number of spectra overlapped across consecutive spectrograms, specified as an integer in the range
[0, Number of spectra).

Simulation Parameters

Inherit sample rate from input — Specify source of input sample rate

off (default) | on

When you select this parameter, the block inherits its sample rate from the input signal. When you
clear this parameter, you specify the sample rate in the Input sample rate (Hz) parameter.

Input sample rate (Hz) — Sample rate of input

44.1e3 (default) | positive scalar

 Auditory Spectrogram

5-31

Input sample rate in Hz, specified as a real positive scalar.

Dependencies

To enable this parameter, clear the Inherit sample rate from input parameter.

Block Characteristics
Data Types double | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced in R2022a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Design Auditory Filter Bank | Design Mel Filter Bank | Mel Spectrogram | Cepstral Coefficients

Functions
designAuditoryFilterBank | melSpectrogram

Objects
audioFeatureExtractor

5 Blocks

5-32

Cepstral Coefficients
Extract cepstral coefficients from spectrogram
Library: Audio Toolbox / Features

Description
The Cepstral Coefficients block extracts the cepstral coefficients from a real-valued spectrogram or
auditory spectrogram. Cepstral coefficients are commonly used as compact representations of audio
signals.

Ports
Input

Port_1 — Spectrogram or auditory spectrogram
matrix | 3-D array

Spectrogram or auditory spectrogram, specified as an L-by-M matrix or L-by-M-by-N array, where:

• L is the number of frequency bands.
• M is the number of frames.
• N is the number of channels.

Data Types: single | double

Output

Port_1 — Cepstral Coefficients
matrix | 3-D array

Cepstral coefficients, returned as an M-by-B matrix or M-by-B-by-N array, where:

• M is the number of frames in the input spectrogram.
• B is the number of coefficients returned per frame, which is specified by the Number of cepstral
coefficients parameter.

• N is the number of channels in the input spectrogram.

Data Types: single | double

Parameters
Number of cepstral coefficients — Number of cepstral coefficients returned

13 (default) | positive integer greater than 1

 Cepstral Coefficients

5-33

Number of cepstral coefficients, specified as a positive integer greater than 1.

Rectification — Type of nonlinear rectification

Logarithm (default) | Cubic root | None

Type of nonlinear rectification applied to the spectrum prior to the discrete cosine transform,
specified as Logarithm, Cubic root, or None.

Simulate using — Specify type of simulation to run

Interpreted execution (default) | Code generation

• Interpreted execution –– Simulate model using the MATLAB interpreter. This option shortens
startup time but has a slower simulation speed than Code generation. In this mode, you can
debug the source code of the block.

• Code generation –– Simulate model using generated C code. The first time you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations, as long as the model does not change. This option requires additional startup time,
but the speed of the subsequent simulations is comparable to Interpreted execution.

Block Characteristics
Data Types double | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Algorithms
Given an auditory spectrogram, the algorithm to extract N cepstral coefficients from each individual
spectrum comprises the following steps.

1 Rectify the spectrum by applying a logarithm, cubic root, or optionally perform no rectification.
2 Apply the discrete cosine transform (DCT-II) to the rectified spectrum.
3 Return the first N coefficients from the cepstral representation.

For more information, see [1].

Version History
Introduced in R2022b

5 Blocks

5-34

References
[1] Rabiner, Lawrence R., and Ronald W. Schafer. Theory and Applications of Digital Speech

Processing. Upper Saddle River, NJ: Pearson, 2010.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
MFCC | Audio Delta | Auditory Spectrogram | Design Mel Filter Bank

Functions
mfcc | audioDelta | cepstralCoefficients | designAuditoryFilterBank |
melSpectrogram

Objects
audioFeatureExtractor

 Cepstral Coefficients

5-35

Compressor
Dynamic range compressor
Library: Audio Toolbox / Dynamic Range Control

Description
The Compressor block performs dynamic range compression independently across each input
channel. Dynamic range compression attenuates the volume of loud sounds that cross a given
threshold. The block uses specified attack and release times to achieve a smooth applied gain curve.

Ports
Input

x — Input signal
matrix | 1-D vector

• Matrix input –– Each column of the input is treated as an independent channel.
• 1-D vector input –– The input is treated as a single channel.

This port is unnamed unless you specify additional input ports.
Data Types: single | double

T — Threshold (dB)
scalar

Dependencies

To enable this port, select Specify from input port for the “Threshold (dB)” on page 5-0
parameter.
Data Types: single | double

R — Ratio
scalar

Dependencies

To enable this port, select Specify from input port for the “Ratio” on page 5-0 parameter.
Data Types: single | double

K — Knee width (dB)
scalar

Dependencies

To enable this port, select Specify from input port for the “Knee width (dB)” on page 5-0
parameter.

5 Blocks

5-36

Data Types: single | double

AT — Attack time (s)
scalar
Dependencies

To enable this port, select Specify from input port for the “Attack time (s)” on page 5-0
parameter.
Data Types: single | double

RT — Release time (s)
scalar
Dependencies

To enable this port, select Specify from input port for the “Release time (s)” on page 5-0
parameter.
Data Types: single | double

Output

Y — Output signal
matrix

The Compressor block outputs a signal with the same data type as the input signal. The size of the
output depends on the size of the input:

• Matrix input –– The block outputs a matrix the same size and data type as the input signal.
• 1-D vector input –– The block outputs an N-by-1 matrix (column vector), where N is the number of

elements in the 1-D vector.

Data Types: single | double

G — Gain applied to each input sample
matrix
Dependencies

To enable this port, select the Output gain (dB) parameter.
Data Types: single | double

Parameters
If a parameter is listed as tunable, then you can change its value during simulation.

Main Tab

Threshold (dB) — Operation threshold
–10 (default) | scalar in the range –50 to 0 inclusive

Operation threshold is the level above which gain is applied to the input signal.

To specify Threshold (dB) from an input port, select Specify from input port for the parameter.

 Compressor

5-37

Tunable: Yes

Ratio — Compression ratio
5 (default) | scalar in the range 1 to 50 inclusive

Compression ratio is the input/output ratio for signals that overshoot the operation threshold.

Assuming a hard knee characteristic and a steady-state input such that x[n] dB > Threshold (dB),
the compression ratio is defined as R = (x[n]− T)

(y[n]− T) , where

• R is the compression ratio.
• x[n] is the input signal in dB.
• y[n] is the output signal in dB.
• T is the threshold in dB.

To specify Ratio from an input port, select Specify from input port for the parameter.

Tunable: Yes

Knee width (dB) — Transition area in compression characteristic
0 (default) | scalar in the range 0 to 20 inclusive

For soft knee characteristics, the transition area is defined by the relation

y = x +
1
R − 1 × x− T + W

2
2

2 × W

for the range 2 × x− T ≤ W, where

• y is the output level in dB.
• x is the input level in dB.
• R is the compression ratio.
• T is the threshold in dB.
• W is the knee width in dB.

To specify Knee width (dB) from an input port, select Specify from input port for the parameter.

Tunable: Yes

View static characteristic — Open static characteristic plot of dynamic range
compressor
button

The plot is updated automatically when parameters of the Compressor block change.

Tunable: Yes

Attack time (s) — Time for applied gain to ramp up
0.05 (default) | scalar in the range 0 to 4 inclusive

5 Blocks

5-38

Attack time is the time the compressor gain takes to rise from 10% to 90% of its final value when the
input goes above the threshold. The Attack time (s) parameter smooths the applied gain curve.

To specify Attack time (s) from an input port, select Specify from input port for the parameter.

Tunable: Yes

Release time (s) — Time for applied gain to ramp down
0.2 (default) | scalar in the range 0 to 4 inclusive

Release time is the time the compressor gain takes to drop from 90% to 10% of its final value when
the input goes below the threshold. The Release time (s) parameter smooths the applied gain curve.

To specify Release time (s) from an input port, select Specify from input port for the parameter.

Tunable: Yes

Make-up gain mode — Make-up gain mode
Property (default) | Auto

• Property –– Make-up gain is set to the value specified by the Make-up gain (dB) parameter.
• Auto –– Make-up gain is applied at the output of the Compressor block such that a steady-state 0

dB input has a 0 dB output.

Tunable: No

Make-up gain (dB) — Applied make-up gain
0 (default) | scalar in the range –10 to 24 inclusive

Make-up gain compensates for gain lost during compression. It is applied at the output of the
Compressor block.

Tunable: Yes

Dependencies

To enable this parameter, set the Make-up gain mode parameter to Property.

Inherit sample rate from input — Specify source of input sample rate
on (default) | off

When you select this parameter, the block inherits its sample rate from the input signal. When you
clear this parameter, specify the sample rate in the Input sample rate (Hz) parameter.

Tunable: No

Input sample rate (Hz) — Sample rate of input
44100 (default) | positive scalar

 Compressor

5-39

Tunable: Yes

Dependencies

To enable this parameter, clear the Inherit sample rate from input parameter.

Advanced Tab

Output gain (dB) — Gain applied on each input sample
off (default) | on

When you select this parameter, an additional output port, G, is added to the block. The G port
outputs the gain applied on each input channel in dB.

Tunable: No

Sidechain — Enable sidechain input
off (default) | on

When you select this parameter, an additional input port SC is added to the block. The SC port
enables dynamic range compression of the input signal x using a separate sidechain signal.

The datatype and (frame) length input to the SC port must be the same as the input to the x port.

The number of channels of the sidechain input must be equal to the number of channels of x or be
equal to one.

• Sidechain channel count is equal to one –– The computed gain, G, based on this
channel is applied to all channels of x.

• Sidechain channel count is equal to channel count of x –– The computed gain, G,
for each sidechain channel is applied to the corresponding channel of x.

Simulate using — Specify type of simulation to run
Interpreted execution (default) | Code generation

• Interpreted execution –– Simulate model using the MATLAB interpreter. This option shortens
startup time and has a simulation speed comparable to Code generation. In this mode, you can
debug the source code of the block.

• Code generation –– Simulate model using generated C code. The first time you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations, as long as the model does not change. This option requires additional startup time,
but the speed of the subsequent simulations is comparable to Interpreted execution.

Tunable: No

Block Characteristics
Data Types double | single
Direct Feedthrough no
Multidimensional
Signals

no

5 Blocks

5-40

Variable-Size Signals yes
Zero-Crossing
Detection

no

Algorithms
The Compressor block processes a signal frame by frame and element by element.

1 The N-point signal, x[n], is converted to decibels:

xdB[n] = 20 × log10 x[n]
2 xdB[n] passes through the gain computer. The gain computer uses the static compression

characteristic of the Compressor block to attenuate gain that is above the threshold.

If you specified a soft knee, the gain computer has the following static characteristic:

xsc(xdB) =

xdB xdB < T − W
2

xdB +
1
R − 1 xdB− T + W

2
2

2W T − W
2 ≤ xdB ≤ T + W

2

T +
xdB− T

R xdB > T + W
2

,

where T is the threshold, R is the compression ratio, and W is the knee width.

If you specified a hard knee, the gain computer has the following static characteristic:

xsc(xdB) =
xdB xdB < T

T +
xdB− T

R xdB ≥ T

3 The computed gain, gc[n], is calculated as

gc[n] = xsc[n]− xdB[n] .
4 gc[n] is smoothed using specified attack and release time parameters:

 Compressor

5-41

gs[n] =
αAgs[n− 1] + (1− αA)gc[n], gc[n] ≤ gs[n− 1]
αRgs[n− 1] + (1− αR)gc[n], gc[n] > gs[n− 1]

The attack time coefficient, α A, is calculated as

αA = exp −log(9)
Fs × TA

.

The release time coefficient, α R, is calculated as

αR = exp −log(9)
Fs × TR

.

T A is the attack time period, specified by the Attack time (s) parameter. TR is the release time
period, specified by the Release time (s) parameter. Fs is the input sampling rate, specified by
the Inherit sample rate from input or the Input sample rate (Hz) parameter.

5 If Make-up gain (dB) is set to Auto, the make-up gain is calculated as the negative of the
computed gain for a 0 dB input:

M = −xsc xdB = 0 .

Given a steady-state input of 0 dB, this configuration achieves a steady-state output of 0 dB. The
make-up gain is determined by the Threshold (dB), Ratio, and Knee width (dB) parameters. It
does not depend on the input signal.

6 The make-up gain, M, is added to the smoothed gain, gs[n]:

gm[n] = gs[n] + M
7 The calculated gain in dB, gdB[n], is translated to a linear domain:

glin[n] = 10
gm[n]

20

8 The output of the dynamic range compressor is given as

y[n] = x[n] × glin[n] .

Version History
Introduced in R2016a

References
[1] Giannoulis, Dimitrios, Michael Massberg, and Joshua D. Reiss. "Digital Dynamic Range

Compressor Design –– A Tutorial And Analysis." Journal of Audio Engineering Society. Vol. 60,
Issue 6, 2012, pp. 399–408.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

5 Blocks

5-42

See Also
compressor | Limiter | Expander | Noise Gate

Topics
“Dynamic Range Control”

 Compressor

5-43

Crossover Filter
Audio crossover filter
Library: Audio Toolbox / Filters

Description
The Crossover Filter block implements an audio crossover filter, which is used to split an audio signal
into two or more frequency bands. Crossover filters are multiband filters whose overall magnitude
frequency response is flat.

Ports
Input

x — Input signal
matrix | 1-D vector

• Matrix input –– Each column of the input is treated as an independent channel.
• 1-D vector input –– The input is treated as a single channel.

This port is unnamed unless you specify additional input ports.
Data Types: single | double

F1 — Crossover frequency (Hz)
real scalar in the range 20 to 20000

Dependencies

To enable this port, select Specify from input port for the “Crossover frequency (Hz)” on page 5-
0 parameter.
Data Types: single | double

O1 — Crossover order
integer in the range 0 to 8

Dependencies

To enable this port, select Specify from input port for the “Crossover order” on page 5-0
parameter.
Data Types: single | double

F2 — Crossover frequency (Hz)
real scalar in the range 20 to 20000

5 Blocks

5-44

Dependencies

To enable this port, you need to both:

• Select Specify from input port for the “Crossover frequency (Hz)” on page 5-0 parameter.
• Set “Number of crossovers” on page 5-0 to 2, 3 or 4.

Data Types: single | double

O2 — Crossover order
integer in the range 0 to 8

Dependencies

To enable this port, you need to both:

• Select Specify from input port for the “Crossover order” on page 5-0 parameter.
• Set “Number of crossovers” on page 5-0 to 2, 3 or 4.

Data Types: single | double

F3 — Crossover frequency (Hz)
real scalar in the range 20 to 20000

Dependencies

To enable this port, you need to both:

• Select Specify from input port for the “Crossover frequency (Hz)” on page 5-0 parameter.
• Set “Number of crossovers” on page 5-0 to 3 or 4.

Data Types: single | double

O3 — Crossover order
integer in the range 0 to 8

Dependencies

To enable this port, you need to both:

• Select Specify from input port for the “Crossover order” on page 5-0 parameter.
• Set “Number of crossovers” on page 5-0 to 3 or 4.

Data Types: single | double

F4 — Crossover frequency (Hz)
real scalar in the range 20 to 20000

Dependencies

To enable this port, you need to both:

• Select Specify from input port for the “Crossover frequency (Hz)” on page 5-0 parameter.
• Set “Number of crossovers” on page 5-0 to 4.

Data Types: single | double

 Crossover Filter

5-45

O4 — Crossover order
integer in the range 0 to 8
Dependencies

To enable this port, you need to both:

• Select Specify from input port for the “Crossover order” on page 5-0 parameter.
• Set “Number of crossovers” on page 5-0 to 4.

Data Types: single | double

Output

Y1 — Output signal
matrix

Port Y1 always corresponds to a lowpass filter.
Dependencies

Available if Number of crossovers is set to 1, 2, 3, or 4.
Data Types: single | double

Y2 — Output signal
matrix

Depending on the number of crossovers specified, port Y2 outputs the original audio signal passed
through a bandpass or highpass filter.
Dependencies

Available if Number of crossovers is set to 1, 2, 3, or 4.
Data Types: single | double

Y3 — Output signal
matrix

Depending on the number of crossovers specified, port Y3 corresponds to a bandpass or highpass
filter of the original audio signal.
Dependencies

Available if Number of crossovers is set to 2, 3, or 4.
Data Types: single | double

Y4 — Output signal
matrix
Dependencies

Available if Number of crossovers is set to 3 or 4.
Data Types: single | double

Y5 — Output signal
matrix

5 Blocks

5-46

Dependencies

Available if Number of crossovers is set to 4.
Data Types: single | double

Parameters
If a parameter is listed as tunable, then you can change its value during simulation.

Number of crossovers — Number of magnitude response band crossings
1 (default) | 2 | 3 | 4

If you specify multiple crossovers, the corresponding Crossover frequency (Hz) and Crossover
order parameters populate in the dialog box automatically.

The number of bands output by the Crossover Filter block is one more than the Number of
crossovers.

Number of Crossovers Number of Bands in Output
1 Two
2 Three
3 Four
4 Five

Crossover frequency (Hz) — Intersections of magnitude response bands
100 (default) | real scalar in the range 20 to 20000

Crossover frequencies are the intersections of magnitude response bands of the individual two-band
crossover filters used in the multiband crossover filter.

Tunable: Yes

Crossover order — Order of individual crossover filters
2 (default) | integer in the range [0, 8]

The crossover filter order relates to the crossover filter slope in dB/octave: slope = N × 6, where N is
the crossover order.

Tunable: Yes

View filter response — Open plot of magnitude response of each filter band
button

The plot is updated automatically when parameters of the Crossover Filter block change.

Tunable: Yes

Variable name — Variable name of exported filter
myFilt (default) | valid variable name

 Crossover Filter

5-47

Name of the variable in the base workspace to contain the filter when it is exported. The name must
be a valid MATLAB variable name.

Overwrite variable if it already exists — Overwrite variable if it already exists
on (default) | off

When you select this parameter, exporting the filter overwrites the variable specified by the Variable
name parameter if it already exists in the base workspace. If you do not select this parameter and
the specified variable already exists in the workspace, exporting the filter creates a new variable with
an underscore and a number appended to the variable name. For example, if the variable name is var
and it already exists, the exported variable will be named var_1.

Export filter to workspace — Export filter to workspace
button

Export the filter to the base workspace in the variable specified by the Variable name parameter.

Tips

• You cannot export the filter if you have enabled the Inherit sample rate from input parameter
and the model is not running.

• You cannot export the filter if you are specifying filter characteristics from input ports.

Inherit sample rate from input — Specify source of input sample rate
off (default) | on

When you select this parameter, the block inherits its sample rate from the input signal. When you
clear this parameter, you specify the sample rate in Input sample rate (Hz).

Input sample rate (Hz) — Sample rate of input
44100 (default) | positive scalar

Tunable: Yes

Dependencies

To enable this parameter, clear the Inherit sample rate from input parameter.

Simulate using — Specify type of simulation to run
Interpreted execution (default) | Code generation

• Interpreted execution – Simulate the model using the MATLAB interpreter. This option
reduces startup time and the simulation speed is comparable to Code generation. In this mode,
you can debug the source code of the block.

• Code generation – Simulate the model using generated C code. The first time you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations, as long as the model does not change. This option requires additional startup time,
but the speed of the subsequent simulations is comparable to Interpreted execution.

Tunable: No

5 Blocks

5-48

Block Characteristics
Data Types double | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals yes
Zero-Crossing
Detection

no

Algorithms
The Crossover Filter block is implemented as a binary tree of crossover pairs with additional phase-
compensating sections [1]. Odd-order crossovers are implemented with Butterworth filters, while
even-order crossovers are implemented with cascaded Butterworth filters (Linkwitz-Riley filters).

Odd-Order Crossover Pair

Odd-order two-band (one crossover) filters are implemented as parallel complementary highpass and
lowpass filters.

LP and HP are Butterworth filters of order N, implemented as direct-form II transposed second-order
sections. The shared cutoff frequency used in their design corresponds to the crossover of the
resulting bands.

Even-Order Crossover Pair

Even-order two-band (one crossover) filters are implemented as parallel complementary highpass and
lowpass filters.

LP and HP are Butterworth filters of order N/2, where N is the order of the overall filter. The filters
are implemented as direct-form II transposed second-order sections.

 Crossover Filter

5-49

For overall filters of orders 2 and 6, XHI is multiplied by –1 internally so that the branches of your
crossover pair are in-phase.

Even-Order Three-Band Filter

Even-order three-band (two crossovers) filters are implemented as parallel complementary highpass
and lowpass filters organized in a tree structure.

The phase-compensating section is equivalent to an allpass filter.

The design of four-band and five-band filters (three and four crossovers) are extensions of the pattern
developed for even-order and odd-order crossovers and the tree structure specified for three-band
(two crossover) filters.

Version History
Introduced in R2016a

References
[1] D’Appolito, Joseph A. "Active Realization of Multiway All-Pass Crossover Systems." Journal of

Audio Engineering Society. Vol. 35, Issue 4, 1987, pp. 239–245.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
crossoverFilter

Topics
“Multiband Dynamic Range Compression”

5 Blocks

5-50

Design Auditory Filter Bank
Design frequency-domain auditory filter bank
Library: Audio Toolbox / Features

Description
The Design Auditory Filter Bank block outputs a frequency-domain auditory filter bank. You can use
an auditory filter bank to decompose an audio signal into separate frequency bands for feature
extraction.

Ports
Output

fb — Filter bank
column vector | matrix

Auditory filter bank, returned as an M-by-N matrix, where:

• M is the number of bands, which is determined by the Auto-determine number of bands and
Number of bands parameters.

• N is the number of points in the spectrum. If you select Design one-sided filter bank, then N is
equal to ceil(NFFT/2), where NFFT is the FFT length. If you do not select Design one-sided
filter bank, then N is equal to the FFT length.

This port is unnamed until you select the Output center frequencies parameter.
Data Types: single | double

fvec — Center frequencies
row vector

Center frequencies of the bandpass filters in Hz, returned as a row vector with number of elements
equal to the number of bands.

Dependencies

To enable this port, select the Output center frequencies parameter.
Data Types: single | double

Parameters
Frequency scale — Frequency scale of filter bank

mel (default) | bark | erb

Frequency scale used to design the auditory filter bank, specified as mel, bark, or erb.

 Design Auditory Filter Bank

5-51

• mel –– Design the filter bank as half-overlapped triangles equally spaced on the mel scale.
• bark –– Design the filter bank as half-overlapped triangles equally spaced on the Bark scale.
• erb –– Design the filter bank as gammatone filters whose center frequencies are equally spaced

on the ERB scale.

FFT length — Number of DFT points

1024 (default) | positive integer

Number of points used to calculate the DFT, specified as a positive integer.

Design one-sided filter bank — Design one-sided or two-sided filter bank

on (default) | off

When you select this parameter, the block designs a one-sided filter bank. Otherwise, the filter bank
is two sided.

Auto-determine number of bands — Automatically determine number of bandpass filters

on (default) | off

When you select this parameter, the block automatically determines the number of bandpass filters
based on the Frequency scale parameter.

• If you set Frequency scale to mel or bark, then the number of bands is 32.
• If you set Frequency scale to erb, then the number of bands is equal to ceil(hz2erb(fr(2))-

hz2erb(fr(1))), where fr is specified using Frequency range (Hz).

Number of bands — Number of bandpass filters

32 (default) | positive integer

Number of bandpass filters, specified as a positive integer.

Dependencies

To enable this parameter, clear the Auto-determine number of bands parameter.

Auto-determine frequency range — Automatically determine frequency range

on (default) | off

When you select this parameter, the block sets the Frequency range to [0,fs/2], where fs is
specified using Sample rate (Hz).

Frequency range (Hz) — Frequency range over which to design auditory filter bank

[0,22050] (default) | two-element row vector

Frequency range in Hz over which to design the auditory filter bank, specified as a two-element row
vector.

5 Blocks

5-52

Dependencies

To enable this parameter, clear the Auto-determine frequency range parameter.

Filter bank design domain — Domain to design filter bank

linear (default) | warped

Domain in which the block designs the filter bank, specified as linear or warped. Set the filter bank
design domain to linear to design the bandpass filters in the linear (Hz) domain. Set the filter bank
design domain to warped to design the bandpass filters in the warped (mel or Bark) domain.

Dependencies

To enable this parameter, set Frequency scale to mel or bark.

Filter bank normalization — Normalization technique for filter bank

bandwidth (default) | area | none

Normalization technique used for the filter bank weights, specified as bandwidth, area, or none.

• bandwidth –– Normalize the weights of each bandpass filter by the corresponding bandwidth of
the filter.

• area –– Normalize the weights of each bandpass filter by the corresponding area of the bandpass
filter.

• none –– The block does not normalize the weights of the filters.

Output data type — Data type of output

double (default) | single

Data type of output, specified as double or single.

Sample rate (Hz) — Sample rate

44.1e3 (default) | positive scalar

Sample rate in Hz of the filter design, specified as a positive scalar.

Visualize filter bank — Open plot to visualize filter bank

button

Open plot to visualize the filters in the frequency domain.

Output center frequencies — Specify additional output port for center frequencies

off (default) | on

When you select this parameter, the block displays an additional output port, fvec. This port outputs
the center frequencies of the bandpass filters.

 Design Auditory Filter Bank

5-53

Block Characteristics
Data Types double | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced in R2022a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Auditory Spectrogram | Design Mel Filter Bank | Mel Spectrogram

Functions
designAuditoryFilterBank | melSpectrogram

Objects
audioFeatureExtractor

5 Blocks

5-54

Design Mel Filter Bank
Design frequency-domain mel filter bank
Library: Audio Toolbox / Features

Description
The Design Mel Filter Bank block outputs a frequency-domain auditory filter bank using the mel
frequency scale. You can use a mel filter bank to decompose an audio signal into separate frequency
bands in the mel frequency scale, which mimics the nonlinear human perception of sound.

Ports
Output

fb — Filter bank
column vector | matrix

Mel filter bank, returned as an M-by-N matrix, where:

• M is the number of bands, which is determined by the Auto-determine number of bands and
Number of bands parameters.

• N is the number of points in the spectrum. If you select Design one-sided filter bank, then N is
equal to ceil(NFFT/2), where NFFT is the FFT length. If you do not select Design one-sided
filter bank, then N is equal to the FFT length.

This port is unnamed until you select the Output center frequencies parameter.
Data Types: single | double

fvec — Center frequencies
row vector

Center frequencies of the bandpass filters in Hz, returned as a row vector with number of elements
equal to the number of bands.

Dependencies

To enable this port, select the Output center frequencies parameter.
Data Types: single | double

Parameters
FFT length — Number of DFT points

1024 (default) | positive integer

Number of points used to calculate the DFT, specified as a positive integer.

 Design Mel Filter Bank

5-55

Design one-sided filter bank — Design one-sided or two-sided filter bank

on (default) | off

When you select this parameter, the block designs a one-sided filter bank. Otherwise, the filter bank
is two sided.

Number of bands — Number of bandpass filters

32 (default) | positive integer

Number of bandpass filters, specified as a positive integer.

Auto-determine frequency range — Automatically determine frequency range

on (default) | off

When you select this parameter, the block sets the Frequency range to [0,fs/2], where fs is
specified using Sample rate (Hz).

Frequency range (Hz) — Frequency range over which to design filter bank

[0,22050] (default) | two-element row vector

Frequency range in Hz over which to design the filter bank, specified as a two-element row vector.
Dependencies

To enable this parameter, clear the Auto-determine frequency range parameter.

Filter bank design domain — Domain to design filter bank

linear (default) | warped

Domain in which the block designs the filter bank, specified as linear or warped. Set the filter bank
design domain to linear to design the bandpass filters in the linear (Hz) domain. Set the filter bank
design domain to warped to design the bandpass filters in the warped (mel) domain.

Filter bank normalization — Normalization technique for filter bank

bandwidth (default) | area | none

Normalization technique used for the filter bank weights, specified as bandwidth, area, or none.

• bandwidth –– Normalize the weights of each bandpass filter by the corresponding bandwidth of
the filter.

• area –– Normalize the weights of each bandpass filter by the corresponding area of the bandpass
filter.

• none –– The block does not normalize the weights of the filters.

Output data type — Data type of output

double (default) | single

Data type of output, specified as double or single.

5 Blocks

5-56

Sample rate (Hz) — Sample rate

44.1e3 (default) | positive scalar

Sample rate in Hz of the filter design, specified as a positive scalar.

Visualize filter bank — Open plot to visualize filter bank

button

Open plot to visualize the filters in the frequency domain.

Output center frequencies — Specify additional output port for center frequencies

off (default) | on

When you select this parameter, the block displays an additional output port, fvec. This port outputs
the center frequencies of the bandpass filters.

Block Characteristics
Data Types double | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced in R2022a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Auditory Spectrogram | Design Auditory Filter Bank | Mel Spectrogram

Functions
designAuditoryFilterBank | melSpectrogram

Objects
audioFeatureExtractor

 Design Mel Filter Bank

5-57

Expander
Dynamic range expander
Library: Audio Toolbox / Dynamic Range Control

Description
The Expander block performs dynamic range expansion independently across each input channel.
Dynamic range expansion attenuates the volume of quiet sounds below a given threshold. The block
uses specified attack, release, and hold times to achieve a smooth applied gain curve.

Ports
Input

x — Input signal
matrix | 1-D vector

• Matrix input –– Each column of the input is treated as an independent channel.
• 1-D vector input –– The input is treated as a single channel.

This port is unnamed unless you specify additional input ports.
Data Types: single | double

R — Ratio
scalar

Dependencies

To enable this port, select Specify from input port for the “Ratio” on page 5-0 parameter.
Data Types: single | double

T — Threshold (dB)
scalar

Dependencies

To enable this port, select Specify from input port for the “Threshold (dB)” on page 5-0
parameter.
Data Types: single | double

K — Knee width (dB)
scalar

Dependencies

To enable this port, select Specify from input port for the “Knee width (dB)” on page 5-0
parameter.

5 Blocks

5-58

Data Types: single | double

AT — Attack time (s)
scalar
Dependencies

To enable this port, select Specify from input port for the “Attack time (s)” on page 5-0
parameter.
Data Types: single | double

RT — Release time (s)
scalar
Dependencies

To enable this port, select Specify from input port for the “Release time (s)” on page 5-0
parameter.
Data Types: single | double

HT — Hold time (s)
scalar
Dependencies

To enable this port, select Specify from input port for the “Hold time (s)” on page 5-0 parameter.
Data Types: single | double

Output

Y — Output signal
matrix

The Expander block outputs a signal with the same data type as the input signal. The size of the
output depends on the size of the input:

• Matrix input –– The block outputs a matrix the same size and data type as the input signal.
• 1-D vector input –– The block outputs an N-by-1 matrix (column vector), where N is the number of

elements in the 1-D vector.

This port is unnamed until you select the Output gain (dB) parameter.
Data Types: single | double

G — Gain applied to each input sample
matrix
Dependencies

To enable this port, select the Output gain (dB) parameter.
Data Types: single | double

Parameters
If a parameter is listed as tunable, then you can change its value during simulation.

 Expander

5-59

Main Tab

Ratio — Expansion ratio
5 (default) | scalar in the range 1 to 50 inclusive

Expansion ratio is the input/output ratio for signals that undershoot the operation threshold.

Assuming a hard knee characteristic and a steady-state input such that x[n] dB < Threshold (dB),
the expansion ratio is defined as R = (y[n]− T)

(x[n]− T) , where

• R is the expansion ratio.
• y[n] is the output signal in dB.
• x[n] is the input signal in dB.
• T is the threshold in dB.

To specify Ratio from an input port, select Specify from input port for the parameter.

Tunable: Yes

Threshold (dB) — Operation threshold
–10 (default) | scalar in the range –140 to 0 inclusive

Operation threshold is the level below which gain is applied to the input signal.

To specify Threshold (dB) from an input port, select Specify from input port for the parameter.

Tunable: Yes

Knee width (dB) — Transition area in the compression characteristic
0 (default) | scalar in the range 0 to 20

For soft knee characteristics, the transition area is defined by the relation

y = x +
(1− R) × x− T − W

2
2

2 × W

for the range 2 × x− T ≤ W, where

• y is the output level in dB.
• x is the input level in dB.
• R is the expansion ratio.
• T is the threshold in dB.
• W is the knee width in dB.

To specify Knee width (dB) from an input port, select Specify from input port for the parameter.

Tunable: Yes

5 Blocks

5-60

View static characteristic — Open static characteristic plot of dynamic range
expander
button

The plot is updated automatically when parameters of the Expander block change.

Tunable: Yes

Attack time (s) — Time for applied gain to ramp up
0.05 (default) | scalar in the range 0 to 4 inclusive

Attack time is the time the expander gain takes to rise from 10% to 90% of its final value when the
input goes below the threshold. The Attack time (s) parameter smooths the applied gain curve.

To specify Attack time (s) from an input port, select Specify from input port for the parameter.

Tunable: Yes

Release time (s) — Time for applied gain to ramp down
0.2 (default) | scalar in the range 0 to 4 inclusive

Release time is the time the expander gain takes to drop from 90% to 10% of its final value when the
input goes above the threshold. The Release time (s) parameter smooths the applied gain curve.

To specify Release time (s) from an input port, select Specify from input port for the parameter.

Tunable: Yes

Hold time (s) — Time during which applied gain holds steady
0.05 (default) | scalar in the range 0 to 4 inclusive

Hold time is the period for which the (negative) gain is held before starting to decrease towards its
steady state value when the input level drops below the threshold.

To specify Hold time (s) from an input port, select Specify from input port for the parameter.

Tunable: Yes

Inherit sample rate from input — Specify source of input sample rate
on (default) | off

When you select this parameter, the block inherits its sample rate from the input signal. When you
clear this parameter, specify the sample rate in the Input sample rate (Hz) parameter.

Tunable: No

Input sample rate (Hz) — Sample rate of input
44100 (default) | positive scalar

Tunable: Yes

 Expander

5-61

Dependencies

To enable this parameter, clear the Inherit sample rate from input parameter.

Advanced Tab

Output gain (dB) — Gain applied on each input sample
off (default) | on

When you select this parameter, an additional output port, G, is added to the block. The G port
outputs the gain applied on each input channel in dB.

Tunable: No

Sidechain — Enable sidechain input
off (default) | on

When you select this parameter, an additional input port SC is added to the block. The SC port
enables dynamic range expansion of the input signal x using a separate sidechain signal.

The datatype and (frame) length input to the SC port must be the same as the input to the x port.

The number of channels of the sidechain input must be equal to the number of channels of x or be
equal to one.

• Sidechain channel count is equal to one –– The computed gain, G, based on this
channel is applied to all channels of x.

• Sidechain channel count is equal to channel count of x –– The computed gain, G,
for each sidechain channel is applied to the corresponding channel of x.

Tunable: No

Simulate using — Specify type of simulation to run
Interpreted execution (default) | Code generation

• Interpreted execution –– Simulate model using the MATLAB interpreter. This option shortens
startup time and has a simulation speed comparable to Code generation. In this mode, you can
debug the source code of the block.

• Code generation –– Simulate model using generated C code. The first time you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations, as long as the model does not change. This option requires additional startup time,
but the speed of the subsequent simulations is comparable to Interpreted execution.

Tunable: No

Block Characteristics
Data Types double | single
Direct Feedthrough no

5 Blocks

5-62

Multidimensional
Signals

no

Variable-Size Signals yes
Zero-Crossing
Detection

no

Algorithms
The Expander block processes a signal frame by frame and element by element.

1 The N-point signal, x[n], is converted to decibels:

xdB[n] = 20 × log10 x[n]
2 xdB[n] passes through the gain computer. The gain computer uses the static characteristic

properties of the dynamic range expander to attenuate gain that is below the threshold.

If you specified a soft knee, the gain computer has the following static characteristic:

xsc(xdB) =

T + xdB− T × R xdB < T − W
2

xdB +
1− R xdB− T − W

2
2

2W T − W
2 ≤ xdB ≤ T + W

2

xdB xdB > T + W
2

,

where T is the threshold, R is the expansion ratio, and W is the knee width.

If you specified a hard knee, the gain computer has the following static characteristic:

xsc(xdB) =
T + xdB− T × R xdB < T

xdB xdB ≥ T
3 The computed gain, gc[n], is calculated as

gc[n] = xsc[n]− xdB[n] .
4 gc[n] is smoothed using specified attack, release, and hold time parameters:

 Expander

5-63

gs[n] =
αAgs[n− 1] + (1− αA)gc[n] CA > TH & gc[n] ≤ gs[n− 1]

gs[n− 1] CA ≤ TH
αRgs[n− 1] + (1− αR)gc[n] gc[n] > gs[n− 1]

CA is the hold counter for attack. The limit, TH, is determined by the Hold time (s) parameter.

The attack time coefficient, α A, is calculated as

αA = exp −log(9)
Fs × TA

.

The release time coefficient, α R, is calculated as

αR = exp −log(9)
Fs × TR

.

TA is the attack time period, specified by the Attack time (s) parameter. T R is the release time
period, specified by the Release time (s) parameter. Fs is the input sampling rate, specified by
the Inherit sample rate from input or Input sample rate (Hz) parameter.

5 The smoothed gain in dB, gs[n], is translated to a linear domain:

glin[n] = 10
gs[n]
20 .

6 The output of the dynamic range expander is given as

y[n] = x[n] × glin[n] .

Version History
Introduced in R2016a

References
[1] Giannoulis, Dimitrios, Michael Massberg, and Joshua D. Reiss. "Digital Dynamic Range

Compressor Design –– A Tutorial And Analysis." Journal of Audio Engineering Society. Vol. 60,
Issue 6, 2012, pp. 399–408.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
expander | Limiter | Compressor | Noise Gate

Topics
“Dynamic Range Control”

5 Blocks

5-64

Graphic EQ
Standards-based graphic equalizer
Library: Audio Toolbox / Filters

Description
The Graphic EQ block implements a graphic equalizer that can tune the gain on individual octave or
fractional octave bands. The block filters the data independently across each input channel over time
using the filter specifications. Center frequencies for bands in the graphic equalizer are based on the
ANSI S1.11-2004 standard.

Ports
Input

Port_1 — Input signal
matrix | 1-D vector

• Matrix input –– Each column of the input is treated as an independent channel.
• 1-D vector input –– The input is treated as a signal channel.

Data Types: single | double

Output

Port_1 — Output signal
matrix

The Graphic EQ block outputs a signal with the same data type as the input signal. The size of the
output depends on the size of the input:

• Matrix input –– The block outputs a matrix the same size and data type as the input signal.
• 1-D vector input –– The block outputs an N-by-1 matrix (column vector), where N is the number of

elements in the 1-D vector input.

Data Types: single | double

Parameters
If a parameter is listed as tunable, then you can change its value during simulation.

EQ Order — Order of individual equalizer bands
2 (default) | positive even integer

 Graphic EQ

5-65

Specify the order of individual equalizer bands as a positive even integer. All equalizer bands have the
same order.

Tunable: Yes

Bandwidth — Filter bandwidth (octaves)
1 octave (default) | 2/3 octave | 1/3 octave

Specify the filter bandwidth as 1 octave, 2/3 octave, or 1/3 octave.

The ANSI S1.11-2004 standard defines the center and edge frequencies of your equalizer. The ISO
266:1997(E) standard specifies corresponding preferred frequencies for labeling purposes.

1-Octave Bandwidth

Center frequencies 32 63 126 251 501 1000 1995 3981 7943
15849

Edge frequencies 22 45 89 178 355 708 1413 2818 5623
1122 22387

Preferred frequencies 31.5 63 125 250 500 1000 2000 4000
8000 16000

2/3-Octave Bandwidth

Center frequencies 25 40 63 100 158 251 398 631 1000 1585
2512 3981 6310 10000 15849

Edge frequencies 20 32 50 79 126 200 316 501 794 1259
1995 3162 5012 7943 12589 19953

Preferred frequencies 25 40 63 100 160 250 400 630 1000 1600
2500 4000 6300 10000 16000

1/3-Octave Bandwidth

Center frequencies 25 32 40 50 63 79 100 126 158 200 251
316 398 501 631 794 1000 1259 1585
1995 2512 3162 3981 5012 6310 7943
10000 12589 15849 19953

Edge frequencies 22 28 35 45 56 71 89 112 141 178 224
282 355 447 562 708 891 1122 1413 1778
2239 2818 3548 4467 5623 7079 8913
11220 14125 17783 22387

Preferred frequencies 25 31.5 40 50 63 80 100 125 160 200
250 315 400 500 630 800 1000 1250 1600
2000 2500 3150 4000 5000 6300 8000
10000 12500 16000 20000

Tunable: Yes

Structure — Type of implementation
Cascade (default) | Parallel

5 Blocks

5-66

Specify the type of implementation as Cascade or Parallel. See “Algorithms” on page 5-68 and
“Graphic Equalization” for information about these implementation structures.

Tunable: No

Gains — Gain of each octave or fractional octave band (dB)
0 | scalar

Specify the gain of each octave or fractional octave band in dB. The number and position of filters in
the graphic equalizer depends on the Bandwidth on page 5-0 parameter.

Tunable: Yes

Variable name — Variable name of exported filter
myFilt (default) | valid variable name

Name of the variable in the base workspace to contain the filter when it is exported. The name must
be a valid MATLAB variable name.

Overwrite variable if it already exists — Overwrite variable if it already exists
on (default) | off

When you select this parameter, exporting the filter overwrites the variable specified by the Variable
name parameter if it already exists in the base workspace. If you do not select this parameter and
the specified variable already exists in the workspace, exporting the filter creates a new variable with
an underscore and a number appended to the variable name. For example, if the variable name is var
and it already exists, the exported variable will be named var_1.

Export filter to workspace — Export filter to workspace
button

Export the filter to the base workspace in the variable specified by the Variable name parameter.

Tips

You cannot export the filter if you have enabled the Inherit sample rate from input parameter and
the model is not running.

Inherit sample rate from input — Specify source of input sample rate
off (default) | on

When you select this parameter, the block inherits its sample rate from the input signal. When you
clear this parameter, specify the sample rate in Input sample rate (Hz) on page 5-0 .

Tunable: No

Input sample rate (Hz) — Sample rate of input
44100 (default) | scalar

 Graphic EQ

5-67

Tunable: Yes

Dependencies

To enable this parameter, clear the Inherit sample rate from input on page 5-0 parameter.

Simulate using — Specify type of simulation to run
Code generation (default) | Interpreted execution

• Interpreted execution –– Simulate model using the MATLAB interpreter. This option shortens
startup time and has simulation speed comparable to Code generation. In this mode, you can
debug the source code of the block.

• Code generation –– Simulate model using generated C code. The first time you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations, as long as the model does not change. This option requires additional startup time
but the speed of the subsequent simulations is faster than Interpreted execution.

Tunable: No

Block Characteristics
Data Types double | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals yes
Zero-Crossing
Detection

no

Algorithms
The implementation of your graphic equalizer depends on the Structure on page 5-0 parameter.
See “Graphic Equalization” for a discussion of the pros and cons of the parallel and cascade
implementations. Refer to the following sections to understand how these algorithms are
implemented in Audio Toolbox.

5 Blocks

5-68

Parallel Structure

Filter Bank Design

The parallel implementation designs the individual equalizers using the octaveFilter design
method and spaces them on the spectrum according to the ANSI S1.11-2004 standard.

If you set the Input sample rate (Hz) parameter so that the Nyquist frequency (Input sample rate
(Hz)/2) is less than the final bandpass edge defined by the ANSI S1.11-2004 standard, then:

• The final bandpass filter is the one whose upper bandpass edge is less than the Nyquist frequency.
• The final filter is implemented as a highpass filter designed by the designParamEQ function.

Real-Time Computation

1 The input signal is fed into a filterbank of M filters, where M depends on the specified
Bandwidth and Input sample rate (Hz) parameters.

2 Each branch of the filterbank is multiplied by the linear form of the corresponding element of the
Gains parameter.

3 The branches are summed and the output signal is returned.

 Graphic EQ

5-69

Cascade Structure

Filter Bank Design

The cascade implementation designs the graphic equalizer filter bank using the
multibandParametricEQ System object.

Gain Setting

If the EQ Order on page 5-0 parameter is set to 2, then a gain correction is calculated according to
[1]. The gain correction is independent of the requested gains. The gain correction is recomputed
during the real-time processing only if the Input sample rate (Hz) parameter is modified.

If the EQ Order parameter is not set to 2, no gain correction is applied and the requested gains are
passed on to the multibandParametricEQ object.

Real-Time Computation

The input signal is fed into a cascade of M biquad filters, where M depends on the specified
Bandwidth and Input sample rate (Hz) parameters.

Version History
Introduced in R2017b

References
[1] Oliver, Richard J., and Jean-Marc Jot. "Efficient Multi-Band Digital Audio Graphic Equalizer with

Accurate Frequency Response Control." Presented at the 139th Convention of the AES, New
York, October 2015.

5 Blocks

5-70

[2] Acoustical Society of America. American National Standard Specification for Octave-Band and
Fractional-Octave-Band Analog and Digital Filters. ANSI S1.11-2004. Melville, NY: Acoustical
Society of America, 2009.

[3] International Organization for Standardization. Acoustics –– Preferred frequencies. ISO
266:1997(E). Second Edition. 1997.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Single-Band Parametric EQ | Multiband Parametric EQ | graphicEQ | multibandParametricEQ |
designVarSlopeFilter | designParamEQ | designShelvingEQ

Topics
“Graphic Equalization”
“Equalization”

 Graphic EQ

5-71

Limiter
Dynamic range limiter
Library: Audio Toolbox / Dynamic Range Control

Description
The Limiter block performs dynamic range limiting independently across each input channel.
Dynamic range limiting suppresses the volume of loud sounds that cross a given threshold. The block
uses specified attack and release times to achieve a smooth applied gain curve.

Ports
Input

x — Input signal
1-D vector | matrix

• Matrix input –– Each column of the input is treated as an independent channel.
• 1-D vector input –– The input is treated as a single channel.

This port is unnamed unless you specify additional input ports.
Data Types: single | double

T — Threshold (dB)
scalar
Dependencies

To enable this port, select Specify from input port for the “Threshold (dB)” on page 5-0
parameter.
Data Types: single | double

K — Knee width (dB)
scalar
Dependencies

To enable this port, select Specify from input port for the “Knee width (dB)” on page 5-0
parameter.
Data Types: single | double

AT — Attack time (s)
scalar
Dependencies

To enable this port, select Specify from input port for the “Attack time (s)” on page 5-0
parameter.

5 Blocks

5-72

Data Types: single | double

RT — Release time (s)
scalar

Dependencies

To enable this port, select Specify from input port for the “Release time (s)” on page 5-0
parameter.
Data Types: single | double

Output

Y — Output signal
matrix

The Limiter block outputs a signal with the same data type as the input signal. The size of the output
depends on the size of the input:

• Matrix input –– The block outputs a matrix the same size and data type as the input signal.
• 1-D vector input –– The block outputs an N-by-1 matrix (column vector), where N is the number of

elements in the 1-D vector.

This port is unnamed until you select the Output gain (dB) parameter.
Data Types: single | double

G — Gain applied to each input sample
matrix

Dependencies

To enable this port, select the Output gain (dB) parameter.
Data Types: single | double

Parameters
If a parameter is listed as tunable, then you can change its value during simulation.

Main Tab

Threshold (dB) — Operation threshold
–10 (default) | scalar in the range –50 to 0 inclusive

Operation threshold is the level above which gain is applied to the input signal.

To specify Threshold (dB) from an input port, select Specify from input port for the parameter.

Tunable: Yes

Knee width (dB) — Transition area in the limiter characteristic
0 (default) | scalar in the range 0 to 20 inclusive

 Limiter

5-73

For soft knee characteristics, the transition area is defined by the relation

y = x−
x− T + W

2
2

2 × W

for the range 2 × x− T ≤ W, where

• y is the output level in dB.
• x is the input level in dB.
• T is the threshold in dB.
• W is the knee width in dB.

To specify Knee width (dB) from an input port, select Specify from input port for the parameter.

Tunable: Yes

View static characteristic — Open static characteristic plot of dynamic range limiter
button

The plot is updated automatically when parameters of the Limiter block change.

Tunable: Yes

Attack time (s) — Time for applied gain to ramp up
0 (default) | scalar in the range 0 to 4 inclusive

Attack time is the time the limiter gain takes to rise from 10% to 90% of its final value when the input
goes above the threshold. The Attack time (s) parameter smooths the applied gain curve.

To specify Attack time (s) from an input port, select Specify from input port for the parameter.

Tunable: Yes

Release time (s) — Time for applied gain to ramp down
0.2 (default) | scalar in the range 0 to 4 inclusive

Release time is the time the limiter gain takes to drop from 90% to 10% of its final value when the
input goes below the threshold. The Release time (s) parameter smooths the applied gain curve.

To specify Release time (s) from an input port, select Specify from input port for the parameter.

Tunable: Yes

Make-up gain mode — Make-up gain mode
Property (default) | Auto

• Property –– Make-up gain is set to the value specified by the Make-up gain (dB) parameter.

• Auto –– Make-up gain is applied at the output of the Limiter block such that a steady-state 0 dB
input has a 0 dB output.

5 Blocks

5-74

Tunable: No

Make-up gain (dB) — Applied make-up gain
0 (default) | scalar in the range –10 to 24 inclusive

Make-up gain compensates for gain lost during limiting. It is applied at the output of the Limiter
block.

Tunable: Yes

Dependencies

To enable this parameter, set the Make-up gain mode parameter to Property.

Inherit sample rate from input — Specify source of input sample rate
on (default) | off

When you select this parameter, the block inherits its sample rate from the input signal. When you
clear this parameter, specify the sample rate in the Input sample rate (Hz) parameter.

Tunable: No

Input sample rate (Hz) — Specify input sample rate
44100 (default) | positive scalar

Tunable: Yes

Dependencies

To enable this parameter, clear the Inherit sample rate from input parameter.

Advanced Tab

Output gain (dB) — Gain applied on each input sample
off (default) | on

When you select this parameter, an additional output port, G, is added to the block. The G port
outputs the gain applied on each input channel in dB.

Tunable: No

Sidechain — Enable sidechain input
off (default) | on

When you select this parameter, an additional input port SC is added to the block. The SC port
enables dynamic range limiting of the input signal x using a separate sidechain signal.

The datatype and (frame) length input to the SC port must be the same as the input to the x port.

The number of channels of the sidechain input must be equal to the number of channels of x or be
equal to one.

 Limiter

5-75

• Sidechain channel count is equal to one –– The computed gain, G, based on this
channel is applied to all channels of x.

• Sidechain channel count is equal to channel count of x –– The computed gain, G,
for each sidechain channel is applied to the corresponding channel of x.

Tunable: No

Simulate using — Specify type of simulation to run
Interpreted execution (default) | Code generation

• Interpreted execution –– Simulate model using the MATLAB interpreter. This option shortens
startup time and has a simulation speed comparable to Code generation. In this mode, you can
debug the source code of the block.

• Code generation –– Simulate model using generated C code. The first time you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations, as long as the model does not change. This option requires additional startup time,
but the speed of the subsequent simulations is comparable to Interpreted execution.

Tunable: No

Block Characteristics
Data Types double | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals yes
Zero-Crossing
Detection

no

Algorithms
The Limiter block processes a signal frame by frame and element by element.

5 Blocks

5-76

1 The N-point signal, x[n], is converted to decibels:

xdB[n] = 20 × log10 x[n]
2 xdB[n] passes through the gain computer. The gain computer uses the static characteristic

properties of the dynamic range limiter to brickwall gain that is above the threshold.

If you specified a soft knee, the gain computer has the following static characteristic:

xsc(xdB) =

xdB xdB < T − W
2

xdB−
xdB− T + W

2
2

2W T − W
2 ≤ xdB ≤ T + W

2

T xdB > T + W
2

,

where T is the threshold and W is the knee width.

If you specified a hard knee, the gain computer has the following static characteristic:

xsc(xdB) =
xdB xdB < T
T xdB ≥ T

3 The computed gain, gc[n], is calculated as

gc[n] = xsc[n]− xdB[n] .
4 gc[n] is smoothed using specified attack and release time parameters:

gs[n] =
αAgs[n− 1] + (1− αA)gc[n], gc[n] ≤ gs[n− 1]
αRgs[n− 1] + (1− αR)gc[n], gc[n] > gs[n− 1]

The attack time coefficient, αA , is calculated as

αA = exp −log(9)
Fs × TA

.

The release time coefficient, αR , is calculated as

αR = exp −log(9)
Fs × TR

.

TA is the attack time period, specified by the Attack time (s) parameter. TR is the release time
period, specified by the Release time (s) parameter. Fs is the input sampling rate, specified by
the Inherit sample rate from input or Input sample rate (Hz) parameter.

5 If the Make-up gain (dB) parameter is set to Auto, the make-up gain is calculated as the
negative of the computed gain for a 0 dB input:

M = − xsc(xdB = 0)

Given a steady-state input of 0 dB, this configuration achieves a steady-state output of 0 dB. The
make-up gain is determined by the Threshold (dB) and Knee width (dB) parameters. It does
not depend on the input signal.

6 The make-up gain, M, is added to the smoothed gain, gs[n]:

 Limiter

5-77

gm[n] = gs[n] + M
7 The calculated gain in dB, gm[n], is translated to a linear domain:

glin[n] = 10
gm[n]

20

8 The output of the dynamic range limiter is given as

y[n] = x[n] × glin[n] .

Version History
Introduced in R2016a

References
[1] Giannoulis, Dimitrios, Michael Massberg, and Joshua D. Reiss. "Digital Dynamic Range

Compressor Design –– A Tutorial And Analysis." Journal of Audio Engineering Society. Vol. 60,
Issue 6, 2012, pp. 399–408.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Compressor | Expander | Noise Gate | limiter

Topics
“Dynamic Range Control”

5 Blocks

5-78

Loudness Meter
Standard-compliant loudness measurements
Library: Audio Toolbox / Measurements

Description
The Loudness Meter block measures the loudness and true-peak of an audio signal based on EBU R
128 and ITU-R BS.1770-4 standards.

Ports
Input

Port_1 — Input signal
matrix | 1-D vector

• Matrix input –– Each column of the input is treated as an independent channel. If you use the
default Channel weights, specify the input channels in order: [Left, Right, Center, Left surround,
Right surround].

• 1-D vector input –– The input is treated as a single channel.

Data Types: single | double

Output

M — Momentary loudness measurement
column vector

The block outputs a column vector with the same data type and number of rows as the input signal.
Data Types: single | double

S — Short-term loudness measurement
column vector

The block outputs a column vector with the same data type and number of rows as the input signal.
Data Types: single | double

TP — True-peak value
real scalar

The block outputs a real scalar with the same data type as the input signal.
Dependencies

To enable this port, select the Output true-peak value parameter.
Data Types: single | double

 Loudness Meter

5-79

Parameters
If a parameter is listed as tunable, then you can change its value during simulation.

Channel weights — Linear weighting applied to each input channel
[1, 1, 1, 1.41, 1.41] (default) | nonnegative row vector

The number of elements of the row vector must be equal to or greater than the number of input
channels. Excess values in the vector are ignored.

The default channel weights follow the ITU-R BS.1170-4 standard. To use the default channel weights,
specify the input to the Loudness Meter block as a matrix whose columns correspond to channels in
this order: [Left, Right, Center, Left surround, Right surround].

It is a best practice to specify the channel weights in order: [Left, Right, Center, Left surround, Right
surround].

Tunable: Yes

Use relative scale for loudness measurements — Specify block to output loudness
measurements relative to target level
off (default) | on

• On — The loudness measurements are relative to the value specified by Target loudness level
(LUFS). The output of the block is returned in loudness units (LU).

• Off — The loudness measurements are absolute, and returned in loudness units full scale (LUFS).

Tunable: No

Target loudness level (LUFS) — Reference level for relative loudness measurements
–23 (default) | real scalar

For example, if the Target loudness level (LUFS) is –23, then a loudness value of –24 LUFS is
reported as –1 LU.

Tunable: Yes

Dependencies

To enable this parameter, select the Use relative scale for loudness measurements parameter.

Output true-peak value — Add output port for true-peak value
off (default) | on

When you select this parameter, an additional output port, TP, is added to the block. The TP port
outputs the true-peak value of the input frame.

Tunable: No

Inherit sample rate from input — Specify source of input sample rate
on (default) | off

5 Blocks

5-80

When you select this parameter, the block inherits its sample rate from the input signal. When you
clear this parameter, you specify the sample rate in Input sample rate (Hz).

Tunable: No

Input sample rate (Hz) — Sample rate of input
44100 (default) | scalar

Tunable: Yes

Dependencies

To enable this parameter, clear the Inherit sample rate from input parameter.

Simulate using — Specify type of simulation to run
Code generation (default) | Interpreted execution

• Code generation –– Simulate model using generated C code. The first time you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations, as long as the model does not change. This option requires additional startup time
but the speed of the subsequent simulations is comparable to Interpreted execution.

• Interpreted execution –– Simulate model using the MATLAB interpreter. This option shortens
startup time but has a slower simulation speed than Code generation. In this mode, you can
debug the source code of the block.

Tunable: No

Block Characteristics
Data Types double | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals yes
Zero-Crossing
Detection

no

Algorithms
The Loudness Meter block calculates the momentary loudness, short-term loudness, and true-peak
value of an audio signal. You can specify any number of channels and nondefault channel weights
used for loudness measurements. The block algorithm is described for the general case of n channels
and default channel weights.

 Loudness Meter

5-81

Loudness Measurements

The input channels, x, pass through a K-weighted filter implemented using the algorithm of the
Weighting Filter block. The K-weighted filter shapes the frequency spectrum to reflect perceived
loudness.

Momentary Loudness

1 The K-weighted channels, y, are divided into 0.4-second segments with 0.3-second overlap. If the
required number of samples have not been collected yet, the Loudness Meter block returns the
last computed value for momentary loudness. If enough samples have been collected, then the
power (mean square) of each segment of the K-weighted channels is calculated:

mPi = 1
w ∑

k = 1

w
yi

2[k]

• mPi is the momentary power of the ith segment.
• w is the segment length in samples.

2 The momentary loudness, mL, is computed for each segment:

mLi = − 0.691 + 10log10 ∑
c = 1

n
Gc × mP i, c LUFS

• Gc is the weighting for channel c.

mL is the momentary loudness returned by your Loudness Meter block.

Short-Term Loudness

1 The K-weighted channels, y, are divided into 3-second segments with 2.9-second overlap. If the
required number of samples have not been collected yet, the Loudness Meter block returns the
last computed values for short-term loudness and loudness range. If enough samples have been
collected, then the power (mean square) of each K-weighted channel is calculated:

sPi = 1
w ∑

k = 1

w
yi

2[k]

• sPi is the short-term power of the ith segment of a channel.
• w is the segment length in samples.

5 Blocks

5-82

2 The short-term loudness, sL, is computed for each segment:

sLi = − 0.691 + 10 log10 ∑
c = 1

n
Gc × sP i, c LUFS

• Gc is the weighting for channel c.

sL is the short-term loudness returned by your Loudness Meter block.

True-Peak

The true-peak measurement considers only the current input frame of a call to your loudness meter.

1 The signal is oversampled to at least 192 kHz. To optimize processing, the input sample rate
determines the exact oversampling. An input sample rate below 750 Hz is not considered.

Input Sample Rate (kHz) Upsample Factor
[0.75,1.5) 256
[1.5,3) 128
[3,6) 64
[6,12) 32
[12,24) 16
[24,48) 8
[48,96) 4
[96,192) 2
[192,∞) not required

2 The oversampled signal, a, passes through a lowpass filter with a half-polyphase length of 12 and
stopband attenuation of 80 dB. The filter design uses designMultirateFIR.

3 The filtered signal, b, is rectified and converted to the dB TP scale:

c = 20 × log10 b
4 The true-peak is determined as the maximum of the converted signal, c.

Version History
Introduced in R2016b

References
[1] International Telecommunication Union; Radiocommunication Sector. Algorithms to Measure

Audio Programme Loudness and True-Peak Audio Level. ITU-R BS.1770-4. 2015.

[2] European Broadcasting Union. Loudness Normalisation and Permitted Maximum Level of Audio
Signals. EBU R 128. 2014.

[3] European Broadcasting Union. Loudness Metering: 'EBU Mode' Metering to Supplement EBU R
128 Loudness Normalization. EBU R 128 Tech 3341. 2014.

 Loudness Meter

5-83

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
integratedLoudness | loudnessMeter

5 Blocks

5-84

Mel Spectrogram
Extract mel spectrogram from audio
Library: Audio Toolbox / Features

Description
The Mel Spectrogram block extracts the mel spectrogram from the audio input signal. A mel
spectrogram contains an estimate of the short-term, time-localized frequency content of the input
signal in the mel frequency scale.

Ports
Input

Port_1 — Audio input
column vector | matrix

Audio input signal, specified as a column vector or a matrix. When you specify a matrix, the block
treats columns as independent audio channels.
Data Types: single | double

Output

spec — Mel spectrogram
matrix | 3-D array

Mel spectrogram, returned as a matrix or 3-D array. The dimensions of spec are L-by-M-by-N, where:

• L is the number of spectra, which is determined by the Number of spectra parameter.
• M is the number of bands, which is determined by the Number of bands parameter.
• N is the number of channels in the input audio signal.

Trailing singleton dimensions are removed from the output.

This port is unnamed until you select the Output center frequencies parameter.
Data Types: single | double

fvec — Center frequencies
row vector

Center frequencies of the bandpass filters in Hz, returned as a row vector with number of elements
equal to the number of bands.

Dependencies

To enable this port, select the Output frequency vector parameter.

 Mel Spectrogram

5-85

Data Types: single | double

Parameters
Filter Bank Parameters

Number of bands — Number of bandpass filters

32 (default) | positive integer

Number of bandpass filters, specified as a positive integer.

Auto-determine frequency range — Automatically determine frequency range

on (default) | off

When you select this parameter, the block sets the Frequency range to [0,fs/2], where fs is the
sample rate. The sample rate is determined by the Inherit sample rate from input and Input
sample rate (Hz) parameters.

Frequency range (Hz) — Frequency range over which to design auditory filter bank

[0,22050] (default) | two-element row vector

Frequency range in Hz over which to design the auditory filter bank, specified as a two-element row
vector.

Dependencies

To enable this parameter, clear the Auto-determine frequency range parameter.

Filter bank design domain — Domain to design filter bank

linear (default) | warped

Domain in which the block designs the filter bank, specified as linear or warped. Set the filter bank
design domain to linear to design the bandpass filters in the linear (Hz) domain. Set the filter bank
design domain to warped to design the bandpass filters in the warped (mel) domain.

Filter bank normalization — Normalization technique for filter bank

bandwidth (default) | area | none

Normalization technique used for the filter bank weights, specified as bandwidth, area, or none.

• bandwidth –– Normalize the weights of each bandpass filter by the corresponding bandwidth of
the filter.

• area –– Normalize the weights of each bandpass filter by the corresponding area of the bandpass
filter.

• none –– The block does not normalize the weights of the filters.

Visualize filter bank — Open plot to visualize filter bank

button

5 Blocks

5-86

Open plot to visualize the filters in the frequency domain.

Output frequency vector — Specify additional output port for center frequencies

off (default) | on

When you select this parameter, the block displays an additional output port, fvec. This port outputs
the center frequencies of the bandpass filters.

Spectrogram Parameters

Window — Analysis window

hamming(1024,'periodic') (default) | real vector

Analysis window applied in the time domain, specified as a real vector.

Normalize window — Normalize analysis window

on (default) | off

When you select this parameter, the block applies window normalization.

Overlap length — Overlap length of adjacent analysis windows

512 (default) | integer in the range [0, windowLength)

Overlap length of adjacent analysis windows, specified as an integer in the range [0, windowLength),
where windowLength is the length of the analysis window, which is specified by Window.

Auto-determine FFT length — Automatically determine FFT length

on (default) | off

When you select this parameter, the block automatically sets the FFT length to the window length,
numel(Window).

FFT length — Number of DFT points

1024 (default) | positive integer

Number of points used to calculate the DFT, specified as a positive integer.
Dependencies

To enable this parameter, clear the Auto-determine FFT length parameter.

Spectrum type — Type of spectrum

magnitude (default) | power

Type of spectrum, specified as magnitude or power.

Number of spectra — Number of spectra

1 (default) | positive integer

 Mel Spectrogram

5-87

Number of spectra in the spectrogram, specified as a positive integer.

Number of spectra overlap — Number of overlapped spectra

0 (default) | integer in the range [0, Number of spectra).

Number of spectra overlapped across consecutive spectrograms, specified as an integer in the range
[0, Number of spectra)

Simulation Parameters

Inherit sample rate from input — Specify source of input sample rate

off (default) | on

When you select this parameter, the block inherits its sample rate from the input signal. When you
clear this parameter, you specify the sample rate in the Input sample rate (Hz) parameter.

Input sample rate (Hz) — Sample rate of input

44.1e3 (default) | positive scalar

Input sample rate in Hz, specified as a real positive scalar.
Dependencies

To enable this parameter, clear the Inherit sample rate from input parameter.

Block Characteristics
Data Types double | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced in R2022a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Auditory Spectrogram | Design Auditory Filter Bank | Design Mel Filter Bank | MFCC

5 Blocks

5-88

Functions
designAuditoryFilterBank | melSpectrogram

Objects
audioFeatureExtractor

 Mel Spectrogram

5-89

MFCC
Extract mel-frequency cepstral coefficients from audio
Library: Audio Toolbox / Features

Description
The MFCC block extracts feature vectors containing the mel-frequency cepstral coefficients (MFCCs),
as well as their delta and delta-delta features, from the audio input signal. MFCCs are popular
features extracted from speech signals for use in classification tasks.

Ports
Input

Port_1 — Audio input
column vector | matrix

Audio input signal, specified as a column vector or a matrix. When you specify a matrix, the block
treats columns as independent audio channels.
Data Types: single | double

Output

Port_1 — MFCC features
matrix | 3-D array

MFCC features returned as a matrix or 3-D array. The features include the MFCCs themselves and
optionally include the delta and delta-delta features of the MFCCs. The dimensions of the output are
L-by-M-by-N, where:

• L is the number of feature vectors, which is specified by the Number of feature vectors
parameter.

• M is the number of features in each feature vector, which is determined by the Number of
cepstral coefficients, Append delta, and Append delta-delta parameters.

• N is the number of channels in the input audio signal.

Trailing dimensions of size 1 are removed from the output.
Data Types: single | double

5 Blocks

5-90

Parameters
Mel-Frequency Cepstral Coefficients

Window — Analysis window

hamming(1024,'periodic') (default) | real vector

Analysis window applied to the input signal in the time domain, specified as a real vector.

Overlap length — Number of overlapping samples between adjacent windows

512 (default) | integer in the range [0, windowLength)

Number of overlapping samples between adjacent windows, specified as an integer in the range [0,
windowLength), where windowLength is the length of the analysis window and is specified by the
Window parameter.

Number of cepstral coefficients — Number of cepstral coefficients in each feature
vector

13 (default) | positive integer greater than 1

Number of cepstral coefficients in each feature vector, specified as a positive integer greater than 1.

Rectification — Type of nonlinear rectification

Logarithm (default) | Cubic root

Type of nonlinear rectification applied to the spectrum prior to the discrete cosine transform,
specified as Logarithm or Cubic root.

Append delta — Append delta of MFCCs to feature vectors

on (default) | off

When you select this parameter, the block appends the delta of the MFCCs to the coefficients in each
feature vector. The delta is an approximation of the first derivative of the MFCCs with respect to
time. The number of delta features is equal to the number of MFCCs, which is specified by Number
of cepstral coefficients.

Append delta-delta — Append delta-delta of MFCCs to feature vectors

on (default) | off

When you select this parameter, the block appends the delta-delta of the MFCCs to each output
feature vector. The delta-delta is an approximation of the second derivative of the MFCCs with
respect to time. The number of delta-delta features is equal to the number of MFCCs, which is
specified by Number of cepstral coefficients.

The block appends the delta-delta after the delta in the feature vectors if you also select the Append
delta parameter.

Delta window length — Number of coefficients for calculating delta and delta-delta

 MFCC

5-91

9 (default) | odd integer greater than 2

Number of coefficients for calculating delta and delta-delta, specified as an odd integer greater than
2.

Output Buffering

Number of feature vectors — Number of MFCC feature vectors in output

1 (default) | positive integer

Number of MFCC feature vectors in output, specified as a positive integer. The block buffers the
output to return the specified number of feature vectors.

Number of overlapped feature vectors — Number of feature vectors overlapped in
output

0 (default) | nonnegative integer

Number of feature vectors the block overlaps in the output, specified as a nonnegative integer less
than Number of feature vectors.

Simulation Parameters

Inherit sample rate from input — Specify source of input sample rate

off (default) | on

When you select this parameter, the block inherits its sample rate from the input signal. When you
clear this parameter, you specify the sample rate in the Input sample rate (Hz) parameter.

Input sample rate (Hz) — Sample rate of input

44.1e3 (default) | positive scalar

Input sample rate in Hz, specified as a positive scalar.

Dependencies

To enable this parameter, clear the Inherit sample rate from input parameter.

Mel Filter Bank Design

Number of bands — Number of bands in mel filter bank

32 (default) | positive integer

Number of bands in mel filter bank, specified as a positive integer.

Auto-determine frequency range — Automatically determine frequency range

on (default) | off

When you select this parameter, the block sets the Frequency range to [0,fs/2], where fs is the
sample rate. The block determines the sample rate using the Inherit sample rate from input and
Input sample rate (Hz) parameters.

5 Blocks

5-92

Frequency range (Hz) — Frequency range of mel filter bank

[0,22050] (default) | two-element row vector

Frequency range in Hz of mel filter bank, specified as a two-element row vector.

Dependencies

To enable this parameter, clear the Auto-determine frequency range parameter.

Filter bank design domain — Design domain of mel filter bank

linear (default) | warped

Design domain of mel filter bank, specified as linear or warped.

Filter bank normalization — Normalization technique for filter bank

bandwidth (default) | area | none

Normalization technique that the block uses for the filter bank weights, specified as bandwidth,
area, or none.

• bandwidth –– Normalize the weights of each bandpass filter by the corresponding bandwidth of
the filter.

• area –– Normalize the weights of each bandpass filter by the corresponding area of the bandpass
filter.

• none –– The block does not normalize the weights of the filters.

Spectrogram

Normalize window — Normalize analysis window

on (default) | off

When you select this parameter, the block applies window normalization.

Spectrum type — Type of spectrum

power (default) | magnitude

Type of spectrum, specified as power or magnitude.

Auto-determine FFT length — Automatically determine FFT length

on (default) | off

When you select this parameter, the block automatically sets the FFT length to the window length.
The window length is determined by the Window parameter.

FFT length — Number of DFT points

1024 (default) | positive integer

Number of points used to calculate the DFT, specified as a positive integer.

 MFCC

5-93

Dependencies

To enable this parameter, clear the Auto-determine FFT length parameter.

Block Characteristics
Data Types double | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Algorithms
MFCC

Mel-frequency cepstrum coefficients are popular features extracted from speech signals for use in
recognition tasks. In the source-filter model of speech, cepstral coefficients are understood to
represent the filter (vocal tract). The vocal tract frequency response is relatively smooth, whereas the
source of voiced speech can be modeled as an impulse train. As a result, the vocal tract can be
estimated by the spectral envelope of a speech segment.

The motivating idea of mel-frequency cepstral coefficients is to compress information about the vocal
tract (smoothed spectrum) into a small number of coefficients based on an understanding of the
cochlea. Although there is no hard standard for calculating the coefficients, the basic steps are
outlined by the diagram.

Delta

The delta of an audio feature x is a least-squares approximation of the local slope of a region centered
on sample x(k), which includes M samples before the current sample and M samples after the current
sample.

5 Blocks

5-94

delta =
∑

k = −M

M
k x(k)

∑
k = −M

M
k2

The delta window length defines the length of the region from –M to M.

Version History
Introduced in R2022b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Cepstral Coefficients | Audio Delta | Design Mel Filter Bank

Functions
mfcc | audioDelta | cepstralCoefficients | designAuditoryFilterBank |
melSpectrogram

Objects
audioFeatureExtractor

 MFCC

5-95

MIDI Controls
Output values from controls on MIDI control surface
Library: Audio Toolbox / Sources

DSP System Toolbox / Sources

Description
The MIDI Controls block outputs values from controls on a MIDI control surface in real time. Use the
MIDI Controls block to interact with your audio processing model.

The MIDI Controls block combines the functionality of the general MIDI functions in MATLAB:
midicontrols, midiread, midisync. Use the MATLAB midiid command to discover MIDI device
names or MIDI device control numbers.

Ports
Output

Port_1 — Output signal
matrix

The output size of the MIDI Controls block is determined by the MIDI controls and MIDI control
numbers parameters.

The output data type is determined by the Output mode parameter.

Data Type Output Mode
double Normalized (0-1)
uint8 RAW MIDI (0-127)

Data Types: double | uint8

Parameters
MIDI device — MIDI control surface your block listens to
Default (default) | Specify other

To set the default MIDI device, use the setpref function. For example, if the device is named
BCF2000, at the MATLAB command line, enter:

setpref('midi','DefaultDevice','BCF2000');

MIDI device name — Device name of MIDI control surface your block listens to
character vector

5 Blocks

5-96

The MIDI device name is assigned by the device manufacturer or host operating system, and
specified as a character vector. Use midiid to interactively identify your MIDI device.

To enable this parameter, set MIDI device to Specify other.

MIDI controls — Specify if block responds to all controllers or specific controllers on MIDI
surface
Respond to any control (default) | Respond to specified controls

This parameter also determines the size of the block output port. If you choose Respond to any
control, then the block output is a scalar corresponding to the value of the most recently
manipulated control.

MIDI control numbers — Control numbers associated with MIDI surface controllers that
your block responds to
0 (default) | integer | array of integers

Use midiid to interactively identify the control numbers of your MIDI device. This parameter is
available when you set MIDI controls to Respond to specified controls.

Initial values — Control numbers associated with MIDI surface controllers that your
block responds to
0 (default) | scalar | array

If you specify Initial values as a scalar, all controls specified by MIDI control numbers are
assigned that value.

If you specify Initial values as an array, the array must be the same size as MIDI control numbers.

Send initial values to device at start — Synchronize MIDI surface with values
specified initial values
off (default) | on

Select this parameter to synchronize a MIDI device with values specified by the Initial values when
simulation starts. If your MIDI device can receive and respond to messages, it adjusts its controls as
specified. This parameter is valid only when MIDI controls is set to Respond to specified
controls.

Many MIDI devices are not bidirectional. Selecting this parameter with a unidirectional device has no
effect. The MIDI Controls block cannot tell whether a value is successfully sent to a device or even
whether the device is bidirectional. If sending a value fails, no errors or warnings are generated.

Output Mode — Output mode for MIDI control value
Normalized (0-1) (default) | RAW MIDI (0-127)

Output mode for MIDI control value, specified as Normalized (0-1) or RAW MIDI (0-127).

 MIDI Controls

5-97

Block Characteristics
Data Types double | integer
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Tips
• The MIDI Controls block is not supported for rapid accelerator mode.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

The executable generated from this block relies on prebuilt dynamic library files (.dll files) included
with MATLAB. Use the packNGo function to package the code generated from this object and all the
relevant files in a compressed zip file. Using this zip file, you can relocate, unpack, and rebuild your
project in another development environment where MATLAB is not installed. For more details, see
“Run Audio I/O Features Outside MATLAB and Simulink”.

See Also
parameterTuner | Audio Test Bench | midiid | midicontrols | midiread | midisync

Topics
“MIDI Control Surface Interface”

5 Blocks

5-98

Noise Gate
Dynamic range gate
Library: Audio Toolbox / Dynamic Range Control

Description
The Noise Gate block performs dynamic range gating independently across each input channel.
Dynamic range gating suppresses signals below a given threshold. The block uses specified attack,
release, and hold times to achieve a smooth applied gain curve.

Ports
Input

x — Input signal
matrix | 1-D vector

• Matrix input –– Each column of the input is treated as an independent channel.
• 1-D vector input –– The input is treated as a single channel.

This port is unnamed unless you specify additional input ports.
Data Types: single | double

T — Threshold (dB)
scalar
Dependencies

To enable this port, select Specify from input port for the “Threshold (dB)” on page 5-0
parameter.
Data Types: single | double

AT — Attack time (s)
scalar
Dependencies

To enable this port, select Specify from input port for the “Attack time (s)” on page 5-0
parameter.
Data Types: single | double

RT — Release time (s)
scalar
Dependencies

To enable this port, select Specify from input port for the “Release time (s)” on page 5-0
parameter.

 Noise Gate

5-99

Data Types: single | double

HT — Hold time (s)
scalar

Dependencies

To enable this port, select Specify from input port for the “Hold time (s)” on page 5-0 parameter.
Data Types: single | double

Output

Y — Output signal
matrix

The Noise Gate block outputs a signal with the same data type as the input signal. The size of the
output depends on the size of the input:

• Matrix input –– The block outputs a matrix the same size and data type as the input signal.
• 1-D vector input –– The block outputs an N-by-1 matrix (column vector), where N is the number of

elements in the 1-D vector.

This port is unnamed until you select the Output gain (dB) parameter.
Data Types: single | double

G — Gain applied to each input sample
matrix

Dependencies

To enable this port, select the Output gain (dB) parameter.
Data Types: single | double

Parameters
If a parameter is listed as tunable, then you can change its value during simulation.

Main Tab

Threshold (dB) — Operation threshold
–10 (default) | scalar in the range –140 to 0 inclusive

Operation threshold is the level below which gain is applied to the input signal.

To specify Threshold (dB) from an input port, select Specify from input port for the parameter.

Tunable: Yes

View static characteristic — Open static characteristic plot of dynamic range gate
button

The plot is updated automatically when parameters of the Noise Gate block change.

5 Blocks

5-100

Tunable: Yes

Attack time (s) — Time for applied gain to ramp up
0.05 (default) | scalar in the range 0 to 4 inclusive

Attack time is the time the applied gain takes to rise from 10% to 90% of its final value when the
input goes below the threshold. The Attack time (s) parameter smooths the applied gain curve.

To specify Attack time (s) from an input port, select Specify from input port for the parameter.

Tunable: Yes

Release time (s) — Time for applied gain to ramp down
0.2 (default) | scalar in the range 0 to 4 inclusive

Release time is the time the applied gain takes to drop from 90% to 10% of its final value when the
input goes above the threshold. The Release time (s) parameter smooths the applied gain curve.

To specify Release time (s) from an input port, select Specify from input port for the parameter.

Tunable: Yes

Hold time (s) — Time during which applied gain holds steady
0.05 (default) | scalar in the range 0 to 4

Hold time is the period for which the (negative) gain is held before starting to decrease towards its
steady state value when the input level drops below the threshold.

To specify Hold time (s) from an input port, select Specify from input port for the parameter.

Tunable: Yes

Inherit sample rate from input — Specify source of input sample rate
on (default) | off

When you select this parameter, the block inherits its sample rate from the input signal. When you
clear this parameter, you specify the sample rate in Input sample rate (Hz).

Tunable: No

Input sample rate (Hz) — Specify input sample rate
44100 (default) | scalar

Tunable: Yes

Dependencies

To enable this parameter, clear the Inherit sample rate from input parameter.

 Noise Gate

5-101

Advanced Tab

Output gain (dB) — Gain applied on each input sample
off (default) | on

When you select this parameter, an additional output port, G, is added to the block. The G port
outputs the gain applied on each input channel in dB.

Tunable: No

Sidechain — Enable sidechain input
off (default) | on

When you select this parameter, an additional input port SC is added to the block. The SC port
enables dynamic range gating of the input signal x using a separate sidechain signal.

The datatype and (frame) length input to the SC port must be the same as the input to the x port.

The number of channels of the sidechain input must be equal to the number of channels of x or be
equal to one.

• Sidechain channel count is equal to one –– The computed gain, G, based on this
channel is applied to all channels of x.

• Sidechain channel count is equal to channel count of x –– The computed gain, G,
for each sidechain channel is applied to the corresponding channel of x.

Tunable: No

Simulate using — Specify type of simulation to run
Interpreted execution (default) | Code generation

• Interpreted execution –– Simulate model using the MATLAB interpreter. This option shortens
startup time and has a simulation speed comparable to Code generation. In this mode, you can
debug the source code of the block.

• Code generation –– Simulate model using generated C code. The first time you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations, as long as the model does not change. This option requires additional startup time,
but the speed of the subsequent simulations is comparable to Interpreted execution.

Tunable: No

Block Characteristics
Data Types double | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals yes

5 Blocks

5-102

Zero-Crossing
Detection

no

Algorithms
The Noise Gate block processes a signal frame by frame and element by element.

1 The N-point signal, x[n], is converted to magnitude:

xa[n] = x[n]
2 xa[n] passes through the gain computer. The gain computer uses the static characteristic

properties of the dynamic range gate to apply a brickwall gain for signal below the threshold:

gc(xa) =
0 xa < Tlin
1 xa ≥ Tlin

Tlin is the threshold property converted to a linear domain:

Tlin = 10
TdB 20 .

3 The computed gain, gc[n], is smoothed using specified attack, release, and hold time parameters:

gs[n] =
αAgs[n− 1] + (1− αA)gc[n] CA > TH & gc[n] ≤ gs[n− 1]

gs[n− 1] CA ≤ TH
αRgs[n− 1] + (1− αR)gc[n] gc[n] > gs[n− 1]

CA is the hold counter for attack. The limit, TH, is determined by the Hold time (s) parameter.

The attack time coefficient, αA, is calculated as

αA = exp −log(9)
Fs × TA

.

The release time coefficient, αR, is calculated as

αR = exp −log(9)
Fs × TR

.

 Noise Gate

5-103

TA is the attack time period, specified by the Attack time (s) parameter. T R is the release time
period, specified by the Release time (s) parameter. Fs is the input sampling rate, specified by
the Inherit sample rate from input or Input sample rate (Hz) parameter.

4 The output of the dynamic range gate is given as

y[n] = x[n] × gs[n] .

Version History
Introduced in R2016a

References
[1] Giannoulis, Dimitrios, Michael Massberg, and Joshua D. Reiss. "Digital Dynamic Range

Compressor Design –– A Tutorial And Analysis." Journal of Audio Engineering Society. Vol. 60,
Issue 6, 2012, pp. 399–408.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
noiseGate | Compressor | Expander | Limiter

Topics
“Dynamic Range Control”

5 Blocks

5-104

Octave Filter
Octave-band and fractional octave-band filter
Library: Audio Toolbox / Filters

Description
The Octave Filter block performs octave-band or fractional octave-band filtering independently across
each input channel. An octave-band is a frequency band where the highest frequency is twice the
lowest frequency. Octave-band and fractional octave-band filters are commonly used to mimic how
humans perceive loudness. Octave filters are best understood when viewed on a logarithmic scale,
which models how the human ear weights the spectrum.

Ports
Input

x — Input signal
matrix | 1-D vector

• Matrix input –– Each column of the input is treated as an independent channel.
• 1-D vector input –– The input is treated as a single channel.

This port is unnamed unless you specify additional input ports.
Data Types: single | double

CF — Center frequency (Hz)
scalar in the range 3 to 22,000 inclusive
Dependencies

To enable this port, select Specify from input port for the “Center frequency (Hz)” on page 5-0
parameter.
Data Types: single | double

Output

Port_1 — Output signal
matrix

The Octave Filter block outputs a signal with the same data type as the input signal. The size of the
output depends on the size of the input:

• Matrix input –– The block outputs a matrix the same size and data type as the input signal.
• 1-D vector input –– The block outputs an N-by-1 matrix (column vector), where N is the number of

elements in the 1-D vector.

Data Types: single | double

 Octave Filter

5-105

Parameters
If a parameter is listed as tunable, then you can change its value during simulation.

Filter order — Order of octave filter
6 (default) | even integer

Tunable: No

Center frequency (Hz) — Center frequency of octave filter
1000 (default) | scalar in the range 3 to 22,000 inclusive

• The maximum center frequency is the value that causes the upper band edge to be equal to the
Nyquist frequency, Fs/2. Frequencies above this value are saturated.

• The minimum center frequency is the value that causes the lower band edge to be equal to 1 Hz.
Frequencies below this value are quantized to 1 Hz.

To specify Center frequency (Hz) from an input port, select Specify from input port for the
parameter.

Tunable: Yes

Bandwidth — Filter bandwidth in octaves
1 octave (default) | 2/3 octave | 1/2 octave | 1/3 octave | 1/6 octave | 1/12 octave |
1/24 octave | 1/48 octave

Tunable: Yes

Oversample the input by 2 for this filter — Oversample toggle
off (default) | on

• off –– The Octave Filter block runs at the input sample rate.
• on –– The Octave Filter block runs at two times the input sample rate. Oversampling minimizes the

frequency warping effects introduced by the bilinear transformation. An FIR halfband interpolator
implements oversampling before octave filtering. A halfband decimator reduces the sample rate
back the input sampling rate after octave filtering.

Tunable: No

Inherit sample rate from input — Specify source of input sample rate
off (default) | on

When you select this parameter, the block inherits its sample rate from the input signal. When you
clear this parameter, you specify the sample rate in Input sample rate (Hz).

Tunable: No

Input sample rate (Hz) — Sample rate of input
44100 (default) | scalar

5 Blocks

5-106

Tunable: Yes

Dependencies

To enable this parameter, clear the Inherit sample rate from input parameter.

Simulate using — Specify type of simulation to run
Code generation (default) | Interpreted execution

• Code generation –– Simulate the model using generated C code. The first time you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations as long as the model does not change. This option requires additional startup time,
but the speed of the subsequent simulations is comparable to Interpreted execution.

• Interpreted execution –– Simulate the model using the MATLAB interpreter. This option
shortens startup time but has a slower simulation speed than Code generation. In this mode,
you can debug the source code of the block.

Tunable: No

Mask for attenuation limits — Create a mask for filter response visualization
No mask (default) | Class 0 | Class 1 | Class 2

The mask attenuation limits are defined in the ANSI S1.11-2004 standard.

• If the mask is green, the design is compliant.
• If the mask is red, the design breaks compliance.

Tunable: Yes

Visualize filter response — Open plot to visualize magnitude response and compliance
mask
button

A 2048-point FFT is used to calculate the magnitude response.

Tunable: Yes

Variable name — Variable name of exported filter
myFilt (default) | valid variable name

Name of the variable in the base workspace to contain the filter when it is exported. The name must
be a valid MATLAB variable name.

Overwrite variable if it already exists — Overwrite variable if it already exists
on (default) | off

When you select this parameter, exporting the filter overwrites the variable specified by the Variable
name parameter if it already exists in the base workspace. If you do not select this parameter and

 Octave Filter

5-107

the specified variable already exists in the workspace, exporting the filter creates a new variable with
an underscore and a number appended to the variable name. For example, if the variable name is var
and it already exists, the exported variable will be named var_1.

Export filter to workspace — Export filter to workspace
button

Export the filter to the base workspace in the variable specified by the Variable name parameter.

Tips

• You cannot export the filter if you have enabled the Inherit sample rate from input parameter
and the model is not running.

• You cannot export the filter if you are specifying filter characteristics from input ports.

Block Characteristics
Data Types double | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals yes
Zero-Crossing
Detection

no

More About
Band Edge

A band edge frequency refers to the lower or upper edge of the passband of a bandpass filter.

Center Frequency of Octave Filter

The center frequency of an octave filter is the geometric mean of the lower- and upper-band edge
frequencies.

Algorithms
Octave Bandwidth to Band Edge Conversion

The Octave Filter block uses the specified center frequency and filter bandwidth in octaves to
determine the normalized band edges [2].

First the block computes the upper and lower band edge frequencies:

fpa = fc × G−1 2b

fpb = fc × G1 2b

5 Blocks

5-108

• fc is the normalized center frequency specified by the Center frequency (Hz) parameter.
• b is the octave bandwidth specified by the Bandwidth parameter. For example, if Bandwidth is
specified as 1/3 octave, the value of b is 3.

• G is a conversion constant:

G = 103 10 .

Digital Filter Design

The Octave Filter block implements a higher-order digital bandpass filter design method as specified
in [1].

In this design method, a desired digital bandpass filter maps to a Butterworth lowpass analog
prototype, which is then mapped back to a digital bandpass filter:

1 The analog Butterworth filter is expressed as a cascade of second-order sections:

H(s) = H1(s)H2(s)⋯H2N(s) , where:

• Hi(s) = 1

1− 2 s
Ω0

cosθi + s2

Ω0
2

, i = 1, 2, ..., 2N

• θi = π
2N N − 1 + 2i , i = 1, 2, ..., N, ..., 2N

N is the filter order specified by the Filter order parameter.
2 The analog Butterworth filter is mapped to a digital filter using a bandpass version of the bilinear

transformation:

s = 1− cz−1 + z−2

1− z−2 ,

where

c =
sin ωpa + ωpb

sinωpa + sinωpb
.

This mapping results in the following substitution:

Ω0 =
c− cosωpb

sinωpb

 Octave Filter

5-109

3 The analog prototype is evaluated:

Hi(z) = 1

1− 2 s
Ω0

cosθi + s2

Ω0
2 s = 1− 2cz−1 + z−2

1− z−2

Because s is second-order in z, the bandpass version of the bilinear transformation is fourth-
order in z.

Version History
Introduced in R2016b

References
[1] Orfanidis, Sophocles J. Introduction to Signal Processing. Englewood Cliffs, NJ: Prentice Hall,

2010.

[2] Acoustical Society of America. American National Standard Specification for Octave-Band and
Fractional-Octave-Band Analog and Digital Filters: ANSI S1.11-2004. Melville, NY: Acoustical
Society of America, 2009.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
octaveFilter | weightingFilter | Weighting Filter | Octave Filter Bank

5 Blocks

5-110

Octave Filter Bank
Octave-band and fractional octave-band filter bank
Library: Audio Toolbox / Filters

Description
The Octave Filter Bank block decomposes a signal into octave or fractional-octave subbands. An
octave-band is a frequency band where the highest frequency is twice the lowest frequency. Octave-
band and fractional octave-band filters are commonly used to mimic how humans perceive loudness.

Ports
Input

Port_1 — Input signal
vector | matrix

• Vector input –– The block treats the input as a single channel.
• Matrix input –– The block treats each column of the input as an independent channel.

Data Types: single | double

Output

Port_1 — Output signal
matrix | 3-D array

The Octave Filter Bank block outputs a signal with the same data type as the input signal. The shape
of the output depends on the shape of the input, the number of filters in the bank, and whether or not
you enable the Bands as separate output ports parameter.

If F is the number of filters in the bank, and the input signal is an L-by-C matrix, then the block
returns an L-by-F-by-C array. If C is 1, then the block outputs a matrix.

• Vector input –– When you provide a vector input, the block outputs an L-by-F matrix, where L is
the number of elements in the vector and F is the number of filters in the bank.

• Matrix input –– When you provide a matrix input, the block outputs a 3-D array with size L-by-F-
by-C, where C is the number of channels in the matrix input.

Note When you enable the Bands as separate output ports parameter, each output is the same
size as the input.

Data Types: single | double

 Octave Filter Bank

5-111

Parameters
Bandwidth (octaves) — Bandwidth of filters specified in octaves
1 octave (default) | 2/3 octave | 1/2 octave | 1/3 octave | 1/6 octave | 1/12 octave |
1/24 octave | 1/48 octave

Filter bandwidth in octaves, specified as 1 octave, 2/3 octave, 1/2 octave, 1/3 octave, 1/6
octave, 1/12 octave, 1/24 octave, 1/48 octave.

Frequency range (Hz) — Frequency range of filter bank (Hz)
[22 22050] (default) | two-element row vector of positive monotonically increasing values

Frequency range of the filter bank in Hz, specified as a two-element row vector of positive
monotonically increasing values. The block places filter bank center frequencies according to the
Bandwidth (octaves), Reference frequency (Hz), and Octave ratio base parameters. Filters that
have a center frequency outside of Frequency range (Hz) are ignored.

Reference frequency (Hz) — Reference frequency of filter bank (Hz)
1000 (default) | positive integer scalar

Reference frequency of the filter bank in Hz, specified as a positive integer scalar. The reference
frequency defines one of the center frequencies. All other center frequencies are set relative to the
reference frequency.

Filter order — Order of octave filters
12 (default) | positive even integer

Order of the octave filters, specified as a positive even integer. The filter order applies to each
individual filter in the bank.

Note The default filter order for the octaveFilterBank object is 2.

Octave ratio — Distance between filters
Base ten (ANSI S1.11 preferred) (default) | Base two (musical scale)

Octave ratio base, specified as Base ten (ANSI S1.11 preferred) or Base two (musical
scale). The octave ratio base determines the distribution of the center frequencies of the octave
filters. The ANSI S1.11 standard recommends base 10. Base 2 is popular for music applications. Base
two (musical scale) defines an octave as a factor of 2, and Base ten (ANSI S1.11 preferred)
defines an octave as a factor of 10 0.3.

Inherit sample rate from input — Allow sample rate to be set by input signal
off (default) | on

When you select this parameter, the block inherits its sample rate from the input signal. When you
clear this parameter, you specify the sample rate in the Input sample rate (Hz) parameter.

Input sample rate (Hz) — Sample rate of input
44100 (default) | positive scalar

When you select this parameter, the block accepts the sample rate from the user.

5 Blocks

5-112

Dependencies

To enable this parameter, clear the Inherit sample rate from input parameter.

Bands as separate output ports — One output port per filter band
off (default) | on

When you select this parameter, the block provides an output port for each filter in the bank. Each
output port is labeled with the center frequency of the filter and has a size identical to the input
signal.

Simulate using — Specify type of simulation to run
Interpreted execution (default) | Code generation

• Code generation –– Simulate the model using generated C code. The first time you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations as long as the model does not change. This option requires additional startup time.

• Interpreted execution –– Simulate the model using the MATLAB interpreter. In this mode,
you can debug the source code of the block.

View filter response — Open plot to visualize magnitude response
button

Octave filters are best understood when viewed on a logarithmic scale, which models how the human
ear weights the spectrum. The block uses a 2048-point FFT to calculate the magnitude response. The
filter bank's response is displayed on a log-frequency scale with a legend to indicate the center
frequency of each filter.

Variable name — Variable name of exported filter bank
myFilt (default) | valid variable name

Name of the variable in the base workspace to contain the filter bank when it is exported. The name
must be a valid MATLAB variable name.

Overwrite variable if it already exists — Overwrite variable if it already exists
on (default) | off

When you select this parameter, exporting the filter bank overwrites the variable specified by the
Variable name parameter if it already exists in the base workspace. If you do not select this
parameter and the specified variable already exists in the workspace, exporting the filter bank
creates a new variable with an underscore and a number appended to the variable name. For
example, if the variable name is var and it already exists, the exported variable will be named var_1.

Export filter to workspace — Export filter bank to workspace
button

Export the filter bank to the base workspace in the variable specified by the Variable name
parameter.

Tips

You cannot export the filter bank if you have enabled the Inherit sample rate from input
parameter and the model is not running.

 Octave Filter Bank

5-113

Block Characteristics
Data Types double | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals yes
Zero-Crossing
Detection

no

More About
Band Edge

A band edge frequency refers to the lower or upper edge of the passband of a bandpass filter.

Center Frequency of Octave Filter

The center frequency of an octave filter is the geometric mean of the lower- and upper-band edge
frequencies.

Algorithms
The Octave Filter Bank block is implemented as a parallel structure of octave filters. Individual
octave filters are designed as described by octaveFilter. By default, the octave filter bank center
frequencies are placed as specified by the ANSI S1.11-2004 standard. You can modify the filter
placements using the Bandwidth (octaves), Frequency range (Hz), Reference frequency (Hz),
and Octave ratio parameters.

Octave Bandwidth to Band Edge Conversion

The Octave Filter Bank block uses the specified Frequency range (Hz) and Bandwidth (octaves)
to determine the normalized band edges [2].

First the block computes the upper and lower band edge frequencies:

fpa = fc × G−1 2b

fpb = fc × G1 2b

• fc is the normalized center frequency specified by the Bandwidth (octaves) and Frequency
range (Hz) parameters.

• b is the octave bandwidth specified by the Bandwidth (octaves) parameter. For example, if
Bandwidth (octaves) is specified as 1/3 octave, the value of b is 3.

• G is a conversion constant:

G = 103 10 .

5 Blocks

5-114

Digital Filter Design

The Octave Filter Bank block implements a higher-order digital bandpass filter design method as
specified in [1].

In this design method, a desired digital bandpass filter maps to a Butterworth lowpass analog
prototype, which is then mapped back to a digital bandpass filter:

1 The analog Butterworth filter is expressed as a cascade of second-order sections:

H(s) = H1(s)H2(s)⋯H2N(s) , where:

• Hi(s) = 1

1− 2 s
Ω0

cosθi + s2

Ω0
2

, i = 1, 2, ..., 2N

• θi = π
2N N − 1 + 2i , i = 1, 2, ..., N, ..., 2N

N is the filter order specified by the Filter order parameter.
2 The analog Butterworth filter is mapped to a digital filter using a bandpass version of the bilinear

transformation:

s = 1− cz−1 + z−2

1− z−2 ,

where

c =
sin ωpa + ωpb

sinωpa + sinωpb
.

This mapping results in the following substitution:

Ω0 =
c− cosωpb

sinωpb

3 The analog prototype is evaluated:

Hi(z) = 1

1− 2 s
Ω0

cosθi + s2

Ω0
2 s = 1− 2cz−1 + z−2

1− z−2

 Octave Filter Bank

5-115

Because s is second-order in z, the bandpass version of the bilinear transformation is fourth-
order in z.

Version History
Introduced in R2021a

References
[1] Orfanidis, Sophocles J. Introduction to Signal Processing. Englewood Cliffs, NJ: Prentice Hall,

2010.

[2] Acoustical Society of America. American National Standard Specification for Octave-Band and
Fractional-Octave-Band Analog and Digital Filters: ANSI S1.11-2004. Melville, NY: Acoustical
Society of America, 2009.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
octaveFilterBank | octaveFilter | weightingFilter | Weighting Filter | Octave Filter

5 Blocks

5-116

OpenL3
OpenL3 embeddings extraction network
Library: Audio Toolbox / Deep Learning

Description
The OpenL3 block leverages a pretrained convolutional neural network that extracts feature
embeddings from audio signals. These embeddings are powerful audio representations that can be
used for tasks such as classification. This block requires Deep Learning Toolbox.

Ports
Input

Port_1 — Spectrograms
matrix | 4-D array

Spectrograms generated from audio, specified as an N-by-M matrix or an N-by-M-by-1-by-K array. K
represents the number of spectrograms, and N-by-M is the size of the spectrograms and depends on
the value of the Spectrum type parameter.

• Mel (128 bands) –– The network accepts mel spectrograms of size 128-by-199, where 128 is
the number of mel bands, and 199 is the number of time hops.

• Mel (256 bands) –– The network accepts mel spectrograms of size 256-by-199, where 256 is
the number of mel bands, and 199 is the number of time hops.

• Linear –– The network accepts positive one-sided spectrograms of size 257-by-197, where 257 is
the FFT length and 197 is the number of time hops.

Data Types: single | double

Output

Port_1 — Embeddings
matrix

Output embeddings, returned as a K-by-L matrix, where K is the number of input spectrograms, and L
is specified by the Embedding length parameter.
Data Types: single

Parameters
Spectrum type — Type of spectrum

Mel (128 bands) (default) | Mel (256 bands) | Linear

 OpenL3

5-117

Type of spectrum generated from audio and used as input to the neural network, specified as Mel
(128 bands), Mel (256 bands), or Linear. This parameter specifies the size of the network
input “Port_1” on page 5-0 .

Content type — Type of audio content

Environmental sounds (default) | Musical sounds

Type of audio content the neural network was trained on, specified as Environmental sounds or
Musical sounds. Set this parameter to Environmental sounds to use a neural network
pretrained on environmental audio data, and set it to Musical sounds to use a network pretrained
on musical data.

Embedding length — Output embedding length

512 (default) | 6144

Length of output embedding, specified as 512 or 6144.

Mini-batch size — Size of mini-batches

128 (default) | positive integer

Size of mini-batches to use for prediction, specified as a positive integer. Larger mini-batch sizes
require more memory but can lead to faster predictions.

Block Characteristics
Data Types double | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced in R2022b

References
[1] Cramer, Jason, et al. "Look, Listen, and Learn More: Design Choices for Deep Audio Embeddings."

In ICASSP 2019 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), IEEE, 2019, pp. 3852-56. DOI.org (Crossref), doi:/10.1109/ICASSP.2019.8682475.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

5 Blocks

5-118

Usage notes and limitations:

• To generate generic C code that does not depend on third-party libraries, in the Configuration
Parameters > Code Generation general category, set the Language parameter to C.

• To generate C++ code, in the Configuration Parameters > Code Generation general category,
set the Language parameter to C++. To specify the target library for code generation, in the Code
Generation > Interface category, set the Target Library parameter. Setting this parameter to
None generates generic C++ code that does not depend on third-party libraries.

• For ERT-based targets, the Support: variable-size signals parameter in the Code Generation>
Interface pane must be enabled.

• For a list of networks and layers supported for code generation, see “Networks and Layers
Supported for Code Generation” (MATLAB Coder).

See Also
Blocks
OpenL3 Embeddings | OpenL3 Preprocess | YAMNet | VGGish

Functions
openl3 | openl3Embeddings | openl3Preprocess | yamnet | vggish

 OpenL3

5-119

OpenL3 Embeddings
Extract OpenL3 embeddings
Library: Audio Toolbox / Deep Learning

Description
The OpenL3 Embeddings block uses OpenL3 to extract feature embeddings from audio signals. The
OpenL3 Embeddings block combines necessary audio preprocessing and OpenL3 network inference
and returns feature embeddings that are a compact representation of audio data. This block requires
Deep Learning Toolbox.

Ports
Input

Port_1 — Sound data
column vector

Sound data, specified as a one-channel signal (column vector). If Sample rate of input signal (Hz)
is 48e3, there are no restrictions on the input frame length. If Sample rate of input signal (Hz) is
different from 48e3, then the input frame length must be a multiple of the decimation factor of the
resampling operation that the block performs. If the input frame length does not satisfy this
condition, the block throws an error message with information on the decimation factor.
Data Types: single | double

Output

Port_1 — Embedding
row vector

Output embedding, returned as a row vector whose length is specified by the Embedding length
parameter.
Data Types: single

Parameters
Sample rate of input signal (Hz) — Sample rate of input signal in Hz

48e3 (default) | positive scalar

Sample rate of the input signal in Hz, specified as a positive scalar.

Overlap percentage (%) — Overlap percentage between consecutive spectrograms

5 Blocks

5-120

90 (default) | [0 100)

Specify the overlap percentage between consecutive spectrograms as a scalar in the range [0 100).

Spectrum type — Type of spectrum

Mel (128 bands) (default) | Mel (256 bands) | Linear

Type of spectrum generated from audio and used as input to the neural network, specified as Mel
(128 bands), Mel (256 bands), or Linear.

• Mel (128 bands) –– The neural network accepts mel spectrograms generated from the input
audio with 128 mel bands.

• Mel (256 bands) –– The neural network accepts mel spectrograms generated from the input
audio with 256 mel bands.

• Linear –– The neural network accepts positive one-sided spectrograms generated from the input
audio with an FFT length of 257.

Content type — Type of audio content

Environmental sounds (default) | Musical sounds

Type of audio content the neural network was trained on, specified as Environmental sounds or
Musical sounds. Set this parameter to Environmental sounds to use a neural network
pretrained on environmental audio data, and set it to Musical sounds to use a network pretrained
on musical data.

Embedding length — Output embedding length

512 (default) | 6144

Length of output embedding, specified as 512 or 6144.

Block Characteristics
Data Types double | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced in R2022b

 OpenL3 Embeddings

5-121

References
[1] Cramer, Jason, et al. "Look, Listen, and Learn More: Design Choices for Deep Audio Embeddings."

In ICASSP 2019 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), IEEE, 2019, pp. 3852-56. DOI.org (Crossref), doi:/10.1109/ICASSP.2019.8682475.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Usage notes and limitations:

• To generate generic C code that does not depend on third-party libraries, in the Configuration
Parameters > Code Generation general category, set the Language parameter to C.

• To generate C++ code, in the Configuration Parameters > Code Generation general category,
set the Language parameter to C++. To specify the target library for code generation, in the Code
Generation > Interface category, set the Target Library parameter. Setting this parameter to
None generates generic C++ code that does not depend on third-party libraries.

• For ERT-based targets, the Support: variable-size signals parameter in the Code Generation>
Interface pane must be enabled.

• For a list of networks and layers supported for code generation, see “Networks and Layers
Supported for Code Generation” (MATLAB Coder).

See Also
Blocks
OpenL3 | OpenL3 Preprocess | VGGish Embeddings | Sound Classifier

Functions
openl3 | openl3Embeddings | openl3Preprocess | vggishEmbeddings | classifySound

5 Blocks

5-122

OpenL3 Preprocess
Preprocess audio for OpenL3 embeddings extraction
Library: Audio Toolbox / Deep Learning

Description
The OpenL3 Preprocess block generates spectrograms from an audio input. You can then feed these
spectrograms to an OpenL3 pretrained network or to a network that accepts the same inputs as
OpenL3.

Ports
Input

Port_1 — Sound data
column vector

Sound data, specified as a one-channel signal (column vector). If Sample rate of input signal (Hz)
is 48e3, there are no restrictions on the input frame length. If Sample rate of input signal (Hz) is
different from 48e3, then the input frame length must be a multiple of the decimation factor of the
resampling operation that the block performs. If the input frame length does not satisfy this
condition, the block throws an error message with information on the decimation factor.
Data Types: single | double

Output

Port_1 — Spectrogram
matrix

Spectrogram generated from input audio, returned as a matrix whose size depends on the value of
the Spectrum type parameter.

• Mel (128 bands) –– The block returns a mel spectrogram of size 128-by-199, where 128 is the
number of mel bands, and 199 is the number of time hops.

• Mel (256 bands) –– The block returns a mel spectrogram of size 256-by-199, where 256 is the
number of mel bands, and 199 is the number of time hops.

• Linear –– The block returns a positive one-sided spectrogram of size 257-by-197, where 257 is
the FFT length and 197 is the number of time hops.

You can use this spectrogram as input to an OpenL3 block that has the same Spectrum type.
Data Types: single

 OpenL3 Preprocess

5-123

Parameters
Sample rate of input signal (Hz) — Sample rate of input signal in Hz

48e3 (default) | positive scalar

Sample rate of the input signal in Hz, specified as a positive scalar.

Overlap percentage (%) — Overlap percentage between consecutive spectrograms

90 (default) | [0 100)

Specify the overlap percentage between consecutive spectrograms as a scalar in the range [0 100).

Spectrum type — Type of spectrum

Mel (128 bands) (default) | Mel (256 bands) | Linear

Type of spectrum generated from input audio, specified as Mel (128 bands), Mel (256 bands),
or Linear.

Block Characteristics
Data Types double | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced in R2022b

References
[1] Cramer, Jason, et al. "Look, Listen, and Learn More: Design Choices for Deep Audio Embeddings."

In ICASSP 2019 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), IEEE, 2019, pp. 3852-56. DOI.org (Crossref), doi:/10.1109/ICASSP.2019.8682475.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

5 Blocks

5-124

See Also
Blocks
OpenL3 | OpenL3 Embeddings | YAMNet | VGGish

Functions
openl3 | openl3Embeddings | openl3Preprocess | vggish | yamnet

 OpenL3 Preprocess

5-125

Single-Band Parametric EQ
Second-order parametric equalizer filter
Library: Audio Toolbox / Filters

Description
The Single-Band Parametric EQ block filters each channel of the input signal over time using a
specified center frequency, bandwidth, and peak (dip) gain. This block offers tunable filter design
parameters, which enable you to tune the filter characteristics while the simulation is running. The
filter is designed using designParamEQ and implemented using dsp.BiquadFilter.

This block supports variable-size input, enabling you to change the channel length during simulation.
To enable variable-size input, clear the Inherit sample rate from input parameter. The number of
channels must remain constant.

Ports
Input

x — Input signal
matrix | 1-D vector

• Matrix input –– Each column of the input is treated as an independent channel.
• 1-D vector input –– The input is treated as a signal channel.

This port is unnamed unless you specify additional input ports.
Data Types: single | double

Fc — Center frequency (Hz)
scalar

Specify the center frequency as a positive scalar that is less than half the sample rate of the input
signal.

Dependencies

To enable this port, select Specify from input port for the Center Frequency (Hz) parameter.
Data Types: single | double

BW — Bandwidth (Hz)
scalar

Specify the filter bandwidth as a positive scalar that is less than or equal to half the sample rate of
the input signal and 20 kHz.

5 Blocks

5-126

Dependencies

To enable this port, select Bandwidth and Center Frequency for the Filter specification and
Specify from input port for the Filter Bandwidth (Hz) parameter.
Data Types: single | double

GdB — Peak or dip gain (dB)
scalar

Specify the peak or dip gain in dB as a scalar.
Dependencies

To enable this port, select Specify from input port for the Peak Gain (dB) parameter.
Data Types: single | double

Q — Quality factor
scalar

Specify the quality factor as a positive scalar.
Dependencies

To enable this port, select Quality factor and center frequency for the Filter Specification
and Specify from input port for the Quality Factor parameter.
Data Types: single | double

Output

Port_1 — Output signal
matrix

The Single-Band Parametric EQ block outputs a signal with the same data type as the input signal.
The size of the output depends on the size of the input:

• Matrix input –– The block outputs a matrix the same size and data type as the input signal.
• 1-D vector input –– The block outputs an N-by-1 matrix (column vector), where N is the number of

elements in the 1-D vector.

Data Types: single | double

Parameters
If a parameter is listed as tunable, then you can change its value during simulation.

Filter order — Order of filter
2 (default) | positive even scalar

Tunable: No

Filter specification — Specify parameters used to design filter
Bandwidth and center frequency (default) | Quality factor and center frequency

 Single-Band Parametric EQ

5-127

• Bandwidth and center frequency –– Design the filter using Filter Bandwidth (Hz), Center
Frequency (Hz), and Peak Gain (dB).

• Quality factor and center frequency –– Design the filter using Center Frequency (Hz),
Peak Gain (dB), and Quality Factor.

Tunable: No

Center Frequency (Hz) — Center frequency of filter
11025 (default) | positive scalar

Specify the center frequency as a positive scalar that is less than half the sample rate of the input
signal.

To specify Center Frequency (Hz) from an input port, select Specify from input port for the
parameter.

Tunable: Yes

Filter Bandwidth (Hz) — Bandwidth of filter
2205 (default) | positive scalar in the range [0, max(fs/2, 20,000)]

Specify the filter bandwidth as a positive scalar that is less than or equal to half the sample rate of
the input signal or 20 kHz, whichever is larger.

To specify Filter Bandwidth (Hz) from an input port, select Specify from input port for the
parameter.

Tunable: Yes

Dependencies

To enable this parameter, set Filter specification to Bandwidth and center frequency.

Quality Factor — Quality factor
5 (default) | scalar in the range [0.1, 20]

Specify the quality factor as a scalar in the range [0.1, 20].

To specify Quality Factor from an input port, select Specify from input port for the parameter.

Tunable: Yes

Dependencies

To enable this parameter, set Filter specification to Quality factor and center frequency.

Peak Gain (dB) — Peak or dip gain of filter
6.0206 (default) | scalar in the range [−30, 30]

Specify the peak gain in dB as a scalar in the range [−30, 30].

Tunable: Yes

5 Blocks

5-128

Inherit sample rate from input — Specify source of input sample rate
on (default) | off

When you select this parameter, the block inherits its sample rate from the input signal. When you
clear this parameter, you specify the sample rate in Input sample rate (Hz).

Tunable: No

Input sample rate (Hz) — Sample rate of input
44100 (default) | scalar

Tunable: Yes

Dependencies

To enable this parameter, clear the Inherit sample rate from input parameter.

Simulate using — Specify type of simulation to run
Code generation (default) | Interpreted execution

• Interpreted execution –– Simulate model using the MATLAB interpreter. This option shortens
startup time and has simulation speed comparable to Code generation. In this mode, you can
debug the source code of the block.

• Code generation –– Simulate model using generated C code. The first time you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations, as long as the model does not change. This option requires additional startup time,
but the speed of the subsequent simulations is faster compared to Interpreted execution.

Tunable: No

Block Characteristics
Data Types double | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals yes
Zero-Crossing
Detection

no

Version History
Introduced in R2019a

Input sample rate (Hz) parameter is tunable
Behavior changed in R2022b

You can change the value of the Input sample rate (Hz) parameter during simulation.

 Single-Band Parametric EQ

5-129

References
[1] Orfanidis, Sophocles J. "High-Order Digital Parametric Equalizer Design." Journal of the Audio

Engineering Society. Vol. 53, November 2005, pp. 1026–1046.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
multibandParametricEQ | designParamEQ | designVarSlopeFilter | designShelvingEQ

Topics
“Parametric Equalizer Design”
“Equalization”

5 Blocks

5-130

Reverberator
Add reverberation to audio signal
Library: Audio Toolbox / Effects

Description
The Reverberator block adds reverberation to mono or stereo audio signals. You can tune parameters
of the Reverberator block to mimic different acoustic environments.

Ports
Input

x — Input signal
matrix | 1-D vector

• Matrix input –– Each column of the input is treated as an independent channel.
• 1-D vector input –– The input is treated as a single channel.

This port is unnamed unless you specify additional input ports.
Data Types: single | double

Delay — Pre-delay for reverberation (s)
scalar in the range [0,1]

Dependencies

To enable this port, select Specify from input port for the “Pre-delay (s)” on page 5-0 parameter.
Data Types: single | double

HighCut — Lowpass filter cutoff
positive scalar in the range [0, (Sample Rate)/2]

Dependencies

To enable this port, select Specify from input port for the “Highcut frequency (Hz)” on page 5-0
parameter.
Data Types: single | double

Diffusion — Density of reverb tail
scalar in the range [0,1]

Dependencies

To enable this port, select Specify from input port for the “Diffusion” on page 5-0 parameter.
Data Types: single | double

 Reverberator

5-131

Decay — Decay factor of reverb tail
scalar in the range [0,1]

Dependencies

To enable this port, select Specify from input port for the “Decay factor” on page 5-0 parameter.
Data Types: single | double

Damping — High-frequency damping
scalar in the range [0,1]

Dependencies

To enable this port, select Specify from input port for the “High frequency damping” on page 5-0
parameter.
Data Types: single | double

WetDry — Ratio of wet (reverberated) signal to dry (original) signal
scalar in the range [0,1]

Dependencies

To enable this port, select Specify from input port for the “Wet/dry mix” on page 5-0 parameter.
Data Types: single | double

Output

Port_1 — Output signal
matrix

The Reverberator block outputs a signal with the same data type as the input signal. The size of the
output depends on the size of the input:

• Matrix input –– The block outputs a matrix of the same size and data type as the input signal.
• 1-D vector input –– The block outputs an N-by-1 matrix (column vector), where N is the number of

elements in the 1-D vector.

Data Types: single | double

Parameters
If a parameter is listed as tunable, then you can change its value during simulation.

Pre-delay (s) — Pre-delay for reverberation
0 (default) | scalar in the range [0, 1]

Pre-delay for reverberation is the time between hearing direct sound and the first early reflection.
The value of Pre-delay (s) is proportional to the size of the room being modeled.

To specify Pre-delay (s) from an input port, select Specify from input port for the parameter.

Tunable: Yes

5 Blocks

5-132

Highcut frequency (Hz) — Lowpass filter cutoff
20000 (default) | scalar in the range [0, (Sample Rate)/2]

Lowpass filter cutoff is the –3 dB cutoff frequency for the single-pole lowpass filter at the front of the
reverberator structure. It prevents the application of reverberation to high-frequency components of
the input.

To specify Highcut frequency (Hz) from an input port, select Specify from input port for the
parameter.

Tunable: Yes

Diffusion — Density of reverb tail
0.50 (default) | scalar in the range [0, 1]

Diffusion is proportional to the rate at which the reverb tail builds in density. Increasing Diffusion
pushes the reflections closer together, thickening the sound. Reducing Diffusion creates more
discrete echoes.

To specify Diffusion from an input port, select Specify from input port for the parameter.

Tunable: Yes

Decay factor — Decay factor of reverb tail
0.50 (default) | scalar in the range [0, 1]

Decay factor is inversely proportional to the time it takes for reflections to run out of energy. To
model a large room, use a long reverb tail (low decay factor). To model a small room, use a short
reverb tail (high decay factor).

To specify Decay factor from an input port, select Specify from input port for the parameter.

Tunable: Yes

High frequency damping — High-frequency damping
0.0005 (default) | scalar in the range [0, 1]

High frequency damping is proportional to the attenuation of high frequencies in the reverberation
output. Setting High frequency damping to a large value makes high-frequency reflections decay
faster than low-frequency reflections.

To specify High frequency damping from an input port, select Specify from input port for the
parameter.

Tunable: Yes

Wet/dry mix — Ratio of wet (reverberated) signal to dry (original) signal
0.3 (default) | scalar in the range [0, 1]

Wet/dry mix is the ratio of wet (reverberated) signal to dry (original) signal that your Reverberator
block outputs.

 Reverberator

5-133

To specify Wet/dry mix from an input port, select Specify from input port for the parameter.

Tunable: Yes

Inherit sample rate from input — Specify source of input sample rate
on (default) | off

When you select this parameter, the block inherits its sample rate from the input signal. When you
clear this parameter, you specify the sample rate in Input sample rate (Hz).

Input sample rate (Hz) — Sample rate of input
44100 (default) | positive scalar

Tunable: Yes

Dependencies

To enable this parameter, clear the Inherit sample rate from input parameter.

Simulate using — Specify type of simulation to run
Interpreted execution (default) | Code generation

• Interpreted execution – Simulate the model using the MATLAB interpreter. This option
reduces startup time and the simulation speed is comparable to Code generation. In this mode,
you can debug the source code of the block.

• Code generation – Simulate the model using generated C code. The first time you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations, as long as the model does not change. This option requires additional startup time,
but the speed of the subsequent simulations is comparable to Interpreted execution.

Block Characteristics
Data Types double | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals yes
Zero-Crossing
Detection

no

Algorithms
The algorithm to add reverberation follows the plate-class reverberation topology described in [1]
and is based on a 29,761 Hz sample rate.

The algorithm has five stages.

5 Blocks

5-134

The description for the algorithm that follows is for a stereo input. A mono input is a simplified case.

Stereo-to-Mono

A stereo signal is converted to a mono signal: x[n] = 0.5 × xR[n] + xL[n] .

Preconditioning

A delay followed by a lowpass filter preconditions the mono signal.

• The pre-delay output is determined as xp[n] = x[n− k], where the Pre-delay (s) parameter
determines the value of k.

• The signal is fed through a single-pole lowpass filter with transfer function

LP(z) = 1− α
1− αz−1 ,

where

α = exp −2π ×
fc
fs

.

• fc is the cutoff frequency specified by the Pre-delay (s) parameter.
• fs is the sampling frequency specified by the Inherit sample rate from input parameter or

the Input sample rate (Hz) parameter.

Decorrelation

The signal is decorrelated by passing through a series of four allpass filters.

The allpass filters are of the form

AP(z) = β + z−k

1 + βz−k ,

 Reverberator

5-135

where β is the coefficient specified by the Diffusion property and k is the delay as follows:

• For AP1, k = 142.
• For AP2, k = 107.
• For AP3, k = 379.
• For AP4, k = 277.

Tank

The signal is fed into the tank, where it circulates to simulate the decay of a reverberation tail.

The following description tracks the signal as it progresses through the top of the tank. The signal
progression through the bottom of the tank follows the same pattern, with different delay
specifications.

1 The new signal enters the top of the tank and is added to the circulated signal from the bottom of
the tank.

2 The signal passes through a modulated allpass filter:

Modulated AP1(z) = −β + z−k

1− βz−k

• β is the coefficient specified by the Diffusion parameter.

5 Blocks

5-136

• k is the variable delay specified by a 1 Hz sinusoid with amplitude = (8/29761) × (sample
rate). To account for fractional delay resulting from the modulating k, allpass interpolation is
used [2].

3 The signal is delayed again, and then passes through a lowpass filter:

LP2(z) = 1− φ
1− φz−1

• φ is the coefficient specified by the High frequency damping parameter.
4 The signal is multiplied by a gain specified by the Decay factor parameter. The signal then

passes through an allpass filter:

AP5(z) = β + z−k

1 + βz−k .

• β is the coefficient specified by the Diffusion parameter.
• k is set to 1800 for the top of the tank and 2656 for the bottom of the tank.

5 The signal is delayed again and then circulated to the bottom half of the tank for the next
iteration.

A similar pattern is executed in parallel for the bottom half of the tank. The output of the tank is
calculated as the signed sum of delay lines picked off at various points from the tank. The summed
output is multiplied by 0.6.

Wet/Dry Mix

The wet (processed) signal is then added to the dry (original) signal:

yR[n] = 1− κ xR[n] + κx3R[n] ,

yL[n] = 1− κ xL[n] + κx3L[n] ,

where the Wet/dry mix parameter determines κ.

Version History
Introduced in R2016a

References
[1] Dattorro, Jon. "Effect Design, Part 1: Reverberator and Other Filters." Journal of the Audio

Engineering Society. Vol. 45, Issue 9, 1997, pp. 660–684.

[2] Dattorro, Jon. "Effect Design, Part 2: Delay-Line Modulation and Chorus." Journal of the Audio
Engineering Society. Vol. 45, Issue 10, 1997, pp. 764–788.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

 Reverberator

5-137

See Also
reverberator

5 Blocks

5-138

Sound Classifier
Classify sounds in audio signal
Library: Audio Toolbox / Deep Learning

Description
The Sound Classifier block uses YAMNet to classify audio segments into sound classes described by
the AudioSet ontology. The Sound Classifier block combines necessary audio preprocessing and
YAMNet network inference. The block returns predicted sound labels, predicted scores from the
sounds, and class labels for predicted scores.

Ports
Input

audioIn — Sound data
column vector

Sound data to classify, specified as a one-channel signal (column vector). If Sample rate of input
signal (Hz) is 16e3, there are no restrictions on the input frame length. If Sample rate of input
signal (Hz) is different from 16e3, then the input frame length must be a multiple of the decimation
factor of the resampling operation that the block performs. If the input frame length does not satisfy
this condition, the block throws an error message with information on the decimation factor.
Data Types: single | double

Output

sound — Predicted sound label
enumerated scalar

Predicted sound label, returned as an enumerated scalar.
Data Types: enumerated

scores — Predicted activations or scores
vector

Predicted activation or score values for each supported sound label, returned as a 1-by-521 vector,
where 521 is the number of classes in YAMNet.
Data Types: single

labels — Class labels for predicted scores
vector

Class labels for predicted scores, returned as a 1-by-521 vector.

 Sound Classifier

5-139

Data Types: enumerated

Parameters
Sample rate of input signal (Hz) — Sample rate of input signal in Hz

16e3 (default) | positive scalar

Specify the sample rate of the input signal as a positive scalar in Hz. If the sample rate is different
from 16e3, then the block resamples the signal to 16e3, which is the sample rate that YAMNet
supports.
Data Types: single | double

Overlap percentage (%) — Overlap percentage between consecutive mel spectrograms

50 (default) | [0 100)

Specify the overlap percentage between consecutive mel spectrograms as a scalar in the range [0
100).
Data Types: single | double

Classification — Select to output sound classification

on (default) | off

Enable the output port sound, which outputs the classified sound.

Predictions — Output all scores and associated labels

off (default) | on

Enable the output ports scores and labels, which output all predicted scores and associated class
labels.

Block Characteristics
Data Types double | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Algorithms
The Sound Classifier block algorithm consists of two steps:

1 Preprocessing –– YAMNet specific preprocessing. Generates mel spectrograms.

5 Blocks

5-140

2 Prediction –– Predicting the sounds, scores, and labels of the input signal using the YAMNet
sound classification network.

Preprocessing

1 Cast audioIn to single and resample to 16 kHz.
2 Compute the one-sided short-time Fourier transform (STFT) using a 25 ms periodic Hann window

(400 samples) with a 10 ms hop (160 samples) and a 512-point DFT.
3 Convert the complex spectral values to magnitude and discard phase information.
4 Pass the one-sided magnitude STFTs through a 64-band mel-spaced filter bank. Doing so converts

the 257-length STFT vectors to 64-length vectors in the mel scale.
5 Convert the 64-length vectors to a log scale.
6 Buffer the vectors into outputs of size 96-by-64, where 96 is the number of 10 ms frames in each

mel spectrogram and 64 is the number of mel bands. The overlap between consecutive 96-by-64
mel spectrograms is determined by the value of the Overlap percentage (%) parameter.

Prediction

These 96-by-64 spectrograms are passed to the YAMNet block. The YAMNet block has a maximum of
three outputs:

• sound: The label of the most likely sound. You get one "sound" for each 96-by-64 spectrogram
input.

• scores: 1-by-512 vectors, with a score value for each supported sound label.
• labels: 1-by-521 vectors containing the sound labels.

Version History
Introduced in R2021b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Usage notes and limitations:

• To generate generic C code that does not depend on third-party libraries, in the Configuration
Parameters > Code Generation general category, set the Language parameter to C.

• To generate C++ code, in the Configuration Parameters > Code Generation general category,
set the Language parameter to C++. To specify the target library for code generation, in the Code
Generation > Interface category, set the Target Library parameter. Setting this parameter to
None generates generic C++ code that does not depend on third-party libraries.

• For ERT-based targets, the Support: variable-size signals parameter in the Code Generation>
Interface pane must be enabled.

• For a list of networks and layers supported for code generation, see “Networks and Layers
Supported for Code Generation” (MATLAB Coder).

 Sound Classifier

5-141

See Also
Apps
Signal Labeler

Blocks
YAMNet | YAMNet Preprocess

Functions
classifySound | vggish | vggishFeatures | vggishPreprocess | yamnet |
yamnetPreprocess | yamnetGraph

5 Blocks

5-142

Weighting Filter
Weighted frequency response filter
Library: Audio Toolbox / Filters

Description
The Weighting Filter block performs frequency-weighted filtering independently across each input
channel.

Ports
Input

Port_1 — Input signal
matrix | 1-D vector

• Matrix input –– Each column of the input is treated as an independent channel.
• 1-D vector input –– The input is treated as a single channel.

Data Types: single | double

Output

Port_1 — Output signal
matrix

The Weighting Filter block outputs a signal with the same data type as the input signal. The size of
the output depends on the size of the input:

• Matrix input –– The block outputs a matrix the same size and data type as the input signal.
• 1-D vector input –– The block outputs an N-by-1 matrix (column vector), where N is the number of

elements in the 1-D vector.

Data Types: single | double

Parameters
If a parameter is listed as tunable, then you can change its value during simulation.

Weighting method — Type of frequency weighting
A-weighting (default) | C-weighting | K-weighting

See “A-Weighting” on page 5-145, “C-Weighting” on page 5-146, and “K-Weighting” on page 5-146 for
the definition of the weighting curves.

Tunable: No

 Weighting Filter

5-143

Inherit sample rate from input — Specify source of input sample rate
off (default) | on

When you select this parameter, the block inherits its sample rate from the input signal. When you
clear this parameter, you specify the sample rate in Input sample rate (Hz).

Tunable: No

Input sample rate (Hz) — Sample rate of input
44100 (default) | positive scalar

Tunable: Yes
Dependencies

To enable this parameter, clear the Inherit sample rate from input parameter.

Simulate using — Specify type of simulation to run
Code generation (default) | Interpreted execution

• Code generation –– Simulate model using generated C code. The first time you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations, as long as the model does not change. This option requires additional startup time
but the speed of the subsequent simulations is faster than Interpreted execution.

• Interpreted execution –– Simulate model using the MATLAB interpreter. This option shortens
startup time but has a slower simulation speed compared to Code generation. In this mode, you
can debug the source code of the block.

Tunable: No

Mask for attenuation limits — Creates a mask for filter response visualization
No mask (default) | Class 1 | Class 2

The mask attenuation limits are defined in the IEC 61672-1:2002 standard.

• If the mask is green, the design is compliant.
• If the mask is red, the design breaks compliance.

Tunable: Yes
Dependencies

To enable this parameter, set Weighting method to A-weighting or C-weighting.

Visualize filter response — Open plot to visualize magnitude response and compliance
mask
button

A 2048-point FFT is used to calculate the magnitude response.

Tunable: Yes

5 Blocks

5-144

Variable name — Variable name of exported filter
myFilt (default) | valid variable name

Name of the variable in the base workspace to contain the filter when it is exported. The name must
be a valid MATLAB variable name.

Overwrite variable if it already exists — Overwrite variable if it already exists
on (default) | off

When you select this parameter, exporting the filter overwrites the variable specified by the Variable
name parameter if it already exists in the base workspace. If you do not select this parameter and
the specified variable already exists in the workspace, exporting the filter creates a new variable with
an underscore and a number appended to the variable name. For example, if the variable name is var
and it already exists, the exported variable will be named var_1.

Export filter to workspace — Export filter to workspace
button

Export the filter to the base workspace in the variable specified by the Variable name parameter.

Tips

You cannot export the filter if you have enabled the Inherit sample rate from input parameter and
the model is not running.

Block Characteristics
Data Types double | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals yes
Zero-Crossing
Detection

no

More About
A-Weighting

The A-curve is a wide bandpass filter centered at 2.5 kHz, with approximately 20 dB attenuation at
100 Hz and 10 dB attenuation at 20 kHz. A-weighted SPL measurements of noise level are
increasingly found in sales literature for domestic appliances. In most countries, the use of A-
weighting is mandated for the protection of workers against noise-induced deafness. The ISO and
ICOA standards mandate A-weighting for all civil aircraft noise measurements.

The ANSI S1.42.2001 [1] defines this weighting curve. The IEC 61672-1:2002 [2] standard defines the
minimum and maximum attenuation limits for an A-weighting filter.

 Weighting Filter

5-145

ANSI S1.42.2001 defines the weighting curve by specifying analog poles and zeros. Audio Toolbox
converts the specified poles and zeros to the digital domain using a bilinear transform:

C-Weighting

The C-curve is "flat," but with limited bandwidth: It has –3 dB corners at 31.5 Hz and 8 kHz. C-curves
are used in sound level meters for sounds that are louder than sounds intended for A-weighting
filters.

The ANSI S1.42-2001 [1] defines the C-weighting curve. The IEC 61672-1:2002 [2] standard defines
the minimum and maximum attenuation limits for C-weighting filters.

ANSI S1.42.2001 defines the weighting curve by specifying analog poles and zeros. Audio Toolbox
converts the specified poles and zeros to the digital domain using a bilinear transform:

K-Weighting

The K-weighting filter is used for loudness normalization in broadcast. It is composed of two stages of
filtering: a first stage shelving filter and a second stage highpass filter.

The ITU-R BS.1770-4 [3] standard defines this curve.

5 Blocks

5-146

Assume a second-order filter.

The table shows the coefficients for the filters.

First Stage Shelving Coefficients Second Stage Highpass Coefficients
a1 = − 1.69065929318241 a1 = − 1.99004745483398
a2 = 0.73248077421585 a2 = 0.99007225036621
b0 = 1.53512485958697 b0 = 1.0
b1 = − 2.6916918940638 b1 = − 2.0
b2 = 1.19839281085285 b2 = 1.0

The coefficients presented by ITU-R BS.1770-4 are defined for 48 kHz. These coefficients are
recomputed for nonstandard sample rates using the algorithm described in [4].

Version History
Introduced in R2016b

References
[1] Acoustical Society of America. Design Response of Weighting Networks for Acoustical

Measurements. ANSI S1.42-2001. New York, NY: American National Standards Institute,
2001.

[2] International Electrotechnical Commission. Electroacoustics Sound Level Meters Part 1:
Specifications. First Edition. IEC 61672-1. 2002-2005.

[3] International Telecommunication Union. Algorithms to measure audio programme loudness and
true-peak audio level. ITU-R BS.1770-4. 2015.

[4] Mansbridge, Stuart, Saoirse Finn, and Joshua D. Reiss. "Implementation and Evaluation of
Autonomous Multi-track Fader Control." Paper presented at the 132nd Audio Engineering
Society Convention, Budapest, Hungary, 2012.

 Weighting Filter

5-147

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
weightingFilter | octaveFilter | loudnessMeter | Octave Filter | Loudness Meter

5 Blocks

5-148

Shelving Filter
Second-order IIR shelving filter
Library: Audio Toolbox / Filters

Description
The Shelving Filter block applies a shelving filter to the input signal. A shelving filter boosts or cuts
the frequency spectrum of the input signal above or below a given cutoff frequency.

Ports
Input

x — Input signal
column vector | matrix

Input signal to be filtered, specified as a column vector or a matrix. If the input is a matrix, each
column is treated as an independent channel.
Data Types: single | double

G — Peak gain (dB)
real scalar

This port specifies the value of the Gain (dB) parameter.
Dependencies

To enable this port, select the Specify gain from input port parameter.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

S — Slope
positive scalar

This port specifies the value of the Slope parameter.
Dependencies

To enable this port, select the Specify slope from input port parameter.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

F — Cutoff frequency
nonnegative scalar

This port specifies the value of the Cutoff frequency (Hz) parameter.
Dependencies

To enable this port, select the Specify cutoff frequency from input port parameter.

 Shelving Filter

5-149

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output

Port_1 — Output signal
column vector | matrix

Filtered output signal, returned as a column vector or matrix that is the same size and data type as
the input signal.
Data Types: single | double

Parameters
Specify gain from input port — Use additional input port to specify gain

off (default) | on

When you select this parameter, an additional input port, G, is added to the block. This port specifies
the gain of the filter.

Gain (dB) — Peak gain (dB)

0 (default) | real scalar

Peak gain of the filter in dB, specified as a real scalar. The gain specifies how much the filter will
boost (if the gain is positive) or cut (if the gain is negative) the frequency spectrum of the input
signal.

Tunable: Yes

Dependencies

To enable this parameter, clear the Specify gain from input port parameter.

Specify slope from input port — Use additional input port to specify slope

off (default) | on

When you select this parameter, an additional input port, S, is added to the block. This port specifies
the slope of the filter.

Slope — Filter slope

1.5 (default) | positive scalar

Slope of the filter specified as a positive scalar. The slope controls the width of the transition band in
the filter response.

Tunable: Yes

Dependencies

To enable this parameter, clear the Specify slope from input port parameter.

5 Blocks

5-150

Specify cutoff frequency from input port — Use additional input port to specify
cutoff frequency

off (default) | on

When you select this parameter, an additional input port, F, is added to the block. This port specifies
the cutoff frequency of the filter.

Cutoff frequency (Hz) — Filter cutoff frequency

200 (default) | nonnegative scalar

Cutoff frequency of the filter in Hz, specified as a nonnegative scalar in the range [0,Fs/2], where Fs
is the sample rate specified by the Input sample rate (Hz) and Inherit sample rate from input
parameters. The cutoff frequency specifies the frequency at half of the peak gain of the filter, G/2 dB,
where G is the peak gain.

Tunable: Yes

Dependencies

To enable this parameter, clear the Specify cutoff frequency from input port parameter.

Type — Type of filter

lowpass (default) | highpass

Type of shelving filter, specified as lowpass or highpass.

• lowpass –– Boost or cut the frequency spectrum below the cutoff frequency.
• highpass –– Boost or cut the frequency spectrum above the cutoff frequency.

Inherit sample rate from input — Specify source of input sample rate

off (default) | on

When you select this parameter, the block inherits its sample rate from the input signal. When you
clear this parameter, you specify the sample rate in Input sample rate (Hz).

Input sample rate (Hz) — Sample rate of input

44100 (default) | positive scalar

Sample rate of the input, specified as a positive scalar.

Dependencies

To enable this parameter, clear the Inherit sample rate from input parameter.

Visualize filter response — Open plot to visualize filter response

button

Open plot to visualize the magnitude response of the filter.

 Shelving Filter

5-151

Variable name — Variable name of exported filter

myFilt (default) | valid variable name

Name of the variable in the base workspace to contain the filter when it is exported. The name must
be a valid MATLAB variable name.

Overwrite variable if it already exists — Overwrite variable if it already exists

on (default) | off

When you select this parameter, exporting the filter overwrites the variable specified by the Variable
name parameter if it already exists in the base workspace. If you do not select this parameter and
the specified variable already exists in the workspace, exporting the filter creates a new variable with
an underscore and a number appended to the variable name. For example, if the variable name is var
and it already exists, the exported variable will be named var_1.

Export filter to workspace — Export filter to workspace

button

Export the filter to the base workspace in the variable specified by the Variable name parameter.

Tips

• You cannot export the filter if you have enabled the Inherit sample rate from input parameter
and the model is not running.

• You cannot export the filter if you are specifying filter characteristics from input ports.

Simulate using — Specify type of simulation to run

Interpreted execution (default) | Code generation

• Interpreted execution –– Simulate model using the MATLAB interpreter. This option shortens
startup time but has a slower simulation speed than Code generation. In this mode, you can
debug the source code of the block.

• Code generation –– Simulate model using generated C code. The first time you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations, as long as the model does not change. This option requires additional startup time,
but the speed of the subsequent simulations is comparable to Interpreted execution.

Block Characteristics
Data Types double | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals yes
Zero-Crossing
Detection

no

5 Blocks

5-152

Version History
Introduced in R2022a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Graphic EQ | Multiband Parametric EQ

Functions
designParamEQ | designShelvingEQ | designVarSlopeFilter

Objects
shelvingFilter | dsp.SOSFilter | graphicEQ | multibandParametricEQ

 Shelving Filter

5-153

Wavetable Synthesizer
Generate periodic signal from single-cycle waveforms
Library: Audio Toolbox / Sources

Description
The Wavetable Synthesizer block generates a periodic signal with tunable parameters. The periodic
signal is defined by a single-cycle waveform cached as the Single-cycle waveform parameter of your
Wavetable Synthesizer block.

Ports
Input

WT — Single-cycle waveform
vector of real values
Dependencies

To enable this port, select Specify wavetable from input port for the “Single-cycle waveform” on
page 5-0 parameter.
Data Types: single | double

F — Output wave frequency (Hz)
nonnegative scalar | vector of nonnegative values
Dependencies

To enable this port, select Specify frequency from input port for the “Output wave frequency (Hz)”
on page 5-0 parameter.
Data Types: single | double

A — Output wave amplitude
nonnegative scalar

5 Blocks

5-154

Dependencies

To enable this port, select Specify amplitude from input port for the “Output wave amplitude” on
page 5-0 parameter.
Data Types: single | double

DC — Output wave DC offset
scalar

Dependencies

To enable this port, select Specify DC offset from input port for the “Output wave DC offset” on
page 5-0 parameter.
Data Types: single | double

Output

Port_1 — Output signal
vector | matrix

The Wavetable Synthesizer block outputs a periodic signal defined by the parameters of the block.
Data Types: single | double

Parameters
If a parameter is listed as tunable, then you can change its value during simulation.

Single-cycle waveform — Wavetable
sin(2*pi*(0:511)/512) (default) | vector of real values

The Wavetable Synthesizer block indexes into the single-cycle waveform to synthesize a periodic
wave.

To specify Single-cycle waveform from an input port, select Specify wavetable from input port
for the parameter.

Tunable: Yes

Output wave frequency (Hz) — Frequency of generated signal
100 (default) | nonnegative scalar

The number of times the single-cycle waveform is repeated in one second.

To specify Output wave frequency (Hz) from an input port, select Specify frequency from input
port for the parameter.

Tunable: Yes

Output wave amplitude — Amplitude of generated signal
1 (default) | nonnegative scalar

Amplitude scaling is applied before DC offset.

 Wavetable Synthesizer

5-155

To specify Output wave amplitude from an input port, select Specify amplitude from input port
for the parameter.

Tunable: Yes

Output wave phase offset — Normalized phase offset of generated signal
0 (default) | scalar in the range [0,1]

The phase offset range, [0,1], corresponds to a normalized 2π radians interval.

Output wave DC offset — Value added to each element of generated signal
0 (default) | scalar

To specify Output wave DC offset from an input port, select Specify DC offset from input port for
the parameter.

Tunable: Yes

Samples per frame — Number of samples per frame output from block
512 (default) | positive integer scalar

Number of samples per frame output from block, specified as a positive integer scalar.

Tunable: No

Sample rate (Hz) — Sample rate of generated signal
44100 (default) | positive scalar

Sample rate of generated signal, specified as a positive scalar.

Tunable: No

Output data type — Data type of generated signal
double (default) | single

Data type of generated signal, specified as double or single.

Tunable: No

Simulate using — Specify type of simulation to run
Code generation (default) | Interpreted execution

• Code generation – Simulate the model using generated C code. The first time you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations, as long as the model does not change. This option requires additional startup time,
but the speed of the subsequent simulations is comparable to Interpreted execution.

• Interpreted execution – Simulate the model using the MATLAB interpreter. This option
reduces startup time and the simulation speed is comparable to Code generation. In this mode,
you can debug the source code of the block.

Block Characteristics
Data Types double | single

5 Blocks

5-156

Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced in R2020a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Audio Device Writer | Audio Oscillator | wavetableSynthesizer

 Wavetable Synthesizer

5-157

YAMNet Preprocess
Preprocess audio for YAMNet classification
Library: Audio Toolbox / Deep Learning

Description
The YAMNet Preprocess block generates mel spectrograms from audio input that can be fed to the
YAMNet pretrained network or to a network that accepts the same inputs as YAMNet.

Ports
Input

audioIn — Sound data
column vector

Sound data to classify, specified as a one-channel signal (column vector). If Sample rate of input
signal (Hz) is 16e3, there are no restrictions on the input frame length. If Sample rate of input
signal (Hz) is different from 16e3, then the input frame length must be a multiple of the decimation
factor of the resampling operation that the block performs. If the input frame length does not satisfy
this condition, the block throws an error message with information on the decimation factor.
Data Types: single | double

Output

features — Mel spectrograms that can be fed to YAMNet pretrained network
96-by-64 matrix

Mel spectrograms generated from audioIn, returned as a 96-by-64 matrix, where:

• 96 –– Represents the number of 25 ms frames in each mel spectrogram
• 64 –– Represents the number of mel bands spanning 125 Hz to 7.5 kHz

The overlap between consecutive 96-by-64 mel spectrograms is determined by the value of the
Overlap percentage (%) parameter.

Each 96-by-64 matrix represents a single mel spectrogram. For more details on how this block
generates mel spectrograms, see “Algorithms” on page 5-159.
Data Types: single

Parameters
Sample rate of input signal (Hz) — Sample rate of input signal in Hz

5 Blocks

5-158

16e3 (default) | positive scalar

Sample rate of the input signal in Hz, specified as a positive scalar.
Data Types: single | double

Overlap percentage (%) — Overlap percentage between consecutive mel spectrograms

50 (default) | [0 100)

Specify the overlap percentage between consecutive mel spectrograms as a scalar in the range [0
100).
Data Types: single | double

Block Characteristics
Data Types double | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Algorithms
The YAMNet Preprocess block generates mel spectrograms from audio input. These mel
spectrograms can be fed to a YAMNet pretrained network or to a network that accepts the same
inputs as YAMNet.

Preprocessing steps

1 Cast audioIn to single and resample to 16 kHz.
2 Compute one-sided short-time Fourier transform using a 25 ms periodic Hann window (400

samples) with a 10 ms hop (160 samples) and a 512-point DFT.
3 Convert the complex spectral values to magnitude and discard phase information.
4 Pass the one-sided magnitude STFTs through a 64-band mel-spaced filter bank. Doing so converts

the 257-length STFT vectors to 64-length vectors in the mel scale.
5 Convert the 64-length vectors to a log scale.
6 Buffer the vectors into outputs of size 96-by-64, where 96 is the number of spectra in the mel

spectrogram and 64 is the number of mel bands. The overlap between consecutive 96-by-64 mel
spectrograms is determined by the value of the Overlap percentage (%) parameter.

Version History
Introduced in R2021b

 YAMNet Preprocess

5-159

References
[1] Gemmeke, Jort F., Daniel P. W. Ellis, Dylan Freedman, Aren Jansen, Wade Lawrence, R. Channing

Moore, Manoj Plakal, and Marvin Ritter. “Audio Set: An Ontology and Human-Labeled Dataset
for Audio Events.” 2017 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), IEEE, 2017, pp. 776–80. DOI.org (Crossref), doi:10.1109/
ICASSP.2017.7952261.

[2] Hershey, Shawn, Sourish Chaudhuri, Daniel P. W. Ellis, Jort F. Gemmeke, Aren Jansen, R. Channing
Moore, Manoj Plakal, et al. “CNN Architectures for Large-Scale Audio Classification.” 2017
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE,
2017, pp. 131–35. DOI.org (Crossref), doi:10.1109/ICASSP.2017.7952132.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Apps
Signal Labeler

Blocks
Sound Classifier | VGGish Embeddings | VGGish Preprocess | VGGish | YAMNet

Functions
classifySound | vggish | vggishEmbeddings | vggishPreprocess | yamnet |
yamnetPreprocess | yamnetGraph

5 Blocks

5-160

YAMNet
YAMNet sound classification network
Library: Audio Toolbox / Deep Learning

Description
The YAMNet block leverages a pretrained sound classification network that is trained on the AudioSet
dataset to predict audio events from the AudioSet ontology.

Ports
Input

features — Mel spectrograms
96-by-64 matrix | 96-by-64-by-1-by-N array

Mel spectrograms, specified as a 96-by-64 matrix or a 96-by-64-by-1-by-N array, where:

• 96 –– Represents the number of 25 ms frames in each mel spectrogram
• 64 –– Represents the number of mel bands spanning 125 Hz to 7.5 kHz
• N –– Number of channels.

You can use the YAMNet Preprocess block to generate mel spectrograms. The dimensions of these
spectrograms are 96-by-64.
Data Types: single | double

Output

sound — Predicted sound label
enumerated scalar

Predicted sound label, returned as an enumerated scalar.
Data Types: enumerated

scores — Predicted activations or scores
vector

Predicted activation or score values for each supported sound label, returned as a 1-by-521 vector,
where 521 is the number of classes in YAMNet.
Data Types: single

labels — Class labels for predicted scores
vector

 YAMNet

5-161

Class labels for predicted scores, returned as a 1-by-521 vector.
Data Types: enumerated

Parameters
Mini-batch size — Size of mini-batches

128 (default) | positive integer

Size of mini-batches to use for prediction, specified as a positive integer. Larger mini-batch sizes
require more memory, but can lead to faster predictions.
Data Types: int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Classification — Select to output sound classification

on (default) | off

Enable the output port sound, which outputs the classified sound.

Predictions — Output all scores and associated labels

off (default) | on

Enable the output ports scores and labels, which output all predicted scores and associated class
labels.

Block Characteristics
Data Types double | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Algorithms
Prediction

The block accepts mel spectrograms of size 96-by-64 or 96-by-64-by-1-by-N, and computes a
maximum of three outputs using these spectrograms:

• sound: The label of the most likely sound. You get one "sound" for each 96-by-64 spectrogram
input.

• scores: 1-by-512 vectors. Each element in the vector is a score value for each supported sound
label.

• labels: 1-by-521 vectors. Each element in the vector is a sound label.

5 Blocks

5-162

Version History
Introduced in R2021b

References
[1] Gemmeke, Jort F., Daniel P. W. Ellis, Dylan Freedman, Aren Jansen, Wade Lawrence, R. Channing

Moore, Manoj Plakal, and Marvin Ritter. “Audio Set: An Ontology and Human-Labeled Dataset
for Audio Events.” 2017 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), IEEE, 2017, pp. 776–80. DOI.org (Crossref), doi:10.1109/
ICASSP.2017.7952261.

[2] Hershey, Shawn, Sourish Chaudhuri, Daniel P. W. Ellis, Jort F. Gemmeke, Aren Jansen, R. Channing
Moore, Manoj Plakal, et al. “CNN Architectures for Large-Scale Audio Classification.” 2017
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE,
2017, pp. 131–35. DOI.org (Crossref), doi:10.1109/ICASSP.2017.7952132.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Usage notes and limitations:

• To generate generic C code that does not depend on third-party libraries, in the Configuration
Parameters > Code Generation general category, set the Language parameter to C.

• To generate C++ code, in the Configuration Parameters > Code Generation general category,
set the Language parameter to C++. To specify the target library for code generation, in the Code
Generation > Interface category, set the Target Library parameter. Setting this parameter to
None generates generic C++ code that does not depend on third-party libraries.

• For ERT-based targets, the Support: variable-size signals parameter in the Code Generation>
Interface pane must be enabled.

• For a list of networks and layers supported for code generation, see “Networks and Layers
Supported for Code Generation” (MATLAB Coder).

See Also
Apps
Signal Labeler

Blocks
Sound Classifier | VGGish Embeddings | VGGish Preprocess | VGGish | YAMNet Preprocess

Functions
classifySound | vggish | vggishEmbeddings | vggishPreprocess | yamnet |
yamnetPreprocess | yamnetGraph

 YAMNet

5-163

VGGish Embeddings
Extract VGGish embeddings
Library: Audio Toolbox / Deep Learning

Description
The VGGish Embeddings block uses VGGish to extract feature embeddings from audio segments. The
VGGish Embeddings block combines necessary audio preprocessing and VGGish network inference
and returns feature embeddings that are a compact representation of audio data.

Ports
Input

Port_1 — Sound data
column vector

Sound data, specified as a one-channel signal (column vector). If Sample rate of input signal (Hz)
is 16e3, there are no restrictions on the input frame length. If Sample rate of input signal (Hz) is
different from 16e3, then the input frame length must be a multiple of the decimation factor of the
resampling operation that the block performs. If the input frame length does not satisfy this
condition, the block throws an error message with information on the decimation factor.
Data Types: single | double

Output

Port_1 — Embeddings
row vector of length 128

VGGish feature embeddings, returned as a row vector of length 128. The feature embeddings are a
compact representation of audio data.
Data Types: single

Parameters
Sample rate of input signal (Hz) — Sample rate of input signal in Hz
16e3 (default) | positive scalar

Sample rate of the input signal in Hz, specified as a positive scalar.

Overlap percentage (%) — Overlap percentage between consecutive mel spectrograms
50 (default) | [0 100)

5 Blocks

5-164

Specify the overlap percentage between consecutive mel spectrograms as a scalar in the range [0
100).

Block Characteristics
Data Types double | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Algorithms
Preprocessing Steps

The VGGish Embeddings block preprocesses the audio data using the following steps to be in the
format required by the VGGish network.

1 Cast the audio data to single precision and resample to 16 kHz.
2 Compute one-sided short-time Fourier transform using a 25 ms periodic Hann window (400

samples) with a 10 ms hop (160 samples) and a 512-point DFT.
3 Convert the complex spectral values to magnitude and discard phase information.
4 Pass the one-sided magnitude STFTs through a 64-band mel-spaced filter bank. Doing so converts

the 257-length STFT vectors to 64-length vectors in the mel scale.
5 Convert the 64-length vectors to a log scale.
6 Buffer the vectors into outputs of size 96-by-64, where 96 is the number of spectra in the mel

spectrogram and 64 is the number of mel bands. The overlap between consecutive 96-by-64 mel
spectrograms is determined by the value of the Overlap percentage (%) parameter.

Version History
Introduced in R2022a

References
[1] Gemmeke, Jort F., Daniel P. W. Ellis, Dylan Freedman, Aren Jansen, Wade Lawrence, R. Channing

Moore, Manoj Plakal, and Marvin Ritter. “Audio Set: An Ontology and Human-Labeled Dataset
for Audio Events.” In 2017 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 776–80. New Orleans, LA: IEEE, 2017. https://doi.org/10.1109/
ICASSP.2017.7952261.

[2] Hershey, Shawn, Sourish Chaudhuri, Daniel P. W. Ellis, Jort F. Gemmeke, Aren Jansen, R. Channing
Moore, Manoj Plakal, et al. “CNN Architectures for Large-Scale Audio Classification.” In 2017
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 131–35.
New Orleans, LA: IEEE, 2017. https://doi.org/10.1109/ICASSP.2017.7952132.

 VGGish Embeddings

5-165

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Usage notes and limitations:

• To generate generic C code that does not depend on third-party libraries, in the Configuration
Parameters > Code Generation general category, set the Language parameter to C.

• To generate C++ code, in the Configuration Parameters > Code Generation general category,
set the Language parameter to C++. To specify the target library for code generation, in the Code
Generation > Interface category, set the Target Library parameter. Setting this parameter to
None generates generic C++ code that does not depend on third-party libraries.

• For ERT-based targets, the Support: variable-size signals parameter in the Code Generation>
Interface pane must be enabled.

• For a list of networks and layers supported for code generation, see “Networks and Layers
Supported for Code Generation” (MATLAB Coder).

See Also
Apps
Signal Labeler

Blocks
Sound Classifier | VGGish | VGGish Preprocess | YAMNet | YAMNet Preprocess

Functions
classifySound | vggish | vggishFeatures | vggishPreprocess | yamnet |
yamnetPreprocess | yamnetGraph

5 Blocks

5-166

VGGish Preprocess
Preprocess audio for VGGish feature extraction
Library: Audio Toolbox / Deep Learning

Description
The VGGish Preprocess block generates mel spectrograms from an audio input that you can then feed
to the VGGish pretrained network or to a network that accepts the same inputs as VGGish.

Ports
Input

Port_1 — Sound data
column vector

Sound data, specified as a one-channel signal (column vector). If Sample rate of input signal (Hz)
is 16e3, there are no restrictions on the input frame length. If Sample rate of input signal (Hz) is
different from 16e3, then the input frame length must be a multiple of the decimation factor of the
resampling operation that the block performs. If the input frame length does not satisfy this
condition, the block throws an error message with information on the decimation factor.
Data Types: single | double

Output

Port_1 — Mel spectrogram
96-by-64 matrix

Mel spectrogram generated from the input audio signal, returned as a 96-by-64 matrix, where:

• 96 –– Represents the number of 25 ms frames in each mel spectrogram
• 64 –– Represents the number of mel bands spanning 125 Hz to 7.5 kHz

The overlap between consecutive 96-by-64 mel spectrograms is determined by the value of the
Overlap percentage (%) parameter. You can provide the mel spectrogram as an input to the VGGish
pretrained network or to a network that accepts the same inputs as VGGish.
Data Types: single

Parameters
Sample rate of input signal (Hz) — Sample rate of input signal in Hz
16e3 (default) | positive scalar

Sample rate of the input signal in Hz, specified as a positive scalar.

 VGGish Preprocess

5-167

Overlap percentage (%) — Overlap percentage between consecutive mel spectrograms
50 (default) | [0 100)

Specify the overlap percentage between consecutive mel spectrograms as a scalar in the range [0
100).

Block Characteristics
Data Types double | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Algorithms
Preprocessing Steps

The VGGish Embeddings block preprocesses the audio data using the following steps to be in the
format required by the VGGish network.

1 Cast the audio data to single precision and resample to 16 kHz.
2 Compute one-sided short-time Fourier transform using a 25 ms periodic Hann window (400

samples) with a 10 ms hop (160 samples) and a 512-point DFT.
3 Convert the complex spectral values to magnitude and discard phase information.
4 Pass the one-sided magnitude STFTs through a 64-band mel-spaced filter bank. Doing so converts

the 257-length STFT vectors to 64-length vectors in the mel scale.
5 Convert the 64-length vectors to a log scale.
6 Buffer the vectors into outputs of size 96-by-64, where 96 is the number of spectra in the mel

spectrogram and 64 is the number of mel bands. The overlap between consecutive 96-by-64 mel
spectrograms is determined by the value of the Overlap percentage (%) parameter.

Version History
Introduced in R2022a

References
[1] Gemmeke, Jort F., Daniel P. W. Ellis, Dylan Freedman, Aren Jansen, Wade Lawrence, R. Channing

Moore, Manoj Plakal, and Marvin Ritter. “Audio Set: An Ontology and Human-Labeled Dataset
for Audio Events.” In 2017 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 776–80. New Orleans, LA: IEEE, 2017. https://doi.org/10.1109/
ICASSP.2017.7952261.

[2] Hershey, Shawn, Sourish Chaudhuri, Daniel P. W. Ellis, Jort F. Gemmeke, Aren Jansen, R. Channing
Moore, Manoj Plakal, et al. “CNN Architectures for Large-Scale Audio Classification.” In 2017

5 Blocks

5-168

IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 131–35.
New Orleans, LA: IEEE, 2017. https://doi.org/10.1109/ICASSP.2017.7952132.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Apps
Signal Labeler

Blocks
Sound Classifier | VGGish | VGGish Embeddings | YAMNet | YAMNet Preprocess

Functions
classifySound | vggish | vggishFeatures | vggishPreprocess | yamnet |
yamnetPreprocess | yamnetGraph

 VGGish Preprocess

5-169

VGGish
VGGish embeddings extraction network
Library: Audio Toolbox / Deep Learning

Description
The VGGish block leverages a pretrained convolutional neural network that is trained on the
AudioSet data set to extract feature embeddings from audio signals.

Ports
Input

Port_1 — Mel spectrograms
96-by-64 matrix | 96-by-64-by-1-by-N array

Mel spectrograms, specified as a 96-by-64 matrix or a 96-by-64-by-1-by-N array, where:

• 96 –– Represents the number of 25 ms frames in each mel spectrogram
• 64 –– Represents the number of mel bands spanning 125 Hz to 7.5 kHz
• N –– Represents the number of mel spectrograms.

You can use the VGGish Preprocess block to generate mel spectrograms. All spectrograms are of the
dimension 96-by-64.
Data Types: single | double

Output

Port_1 — Embeddings
N-by-128 matrix

VGGish feature embeddings, returned as an N-by-128 matrix, where N is the number of mel
spectrograms in the input. The feature embeddings are a compact representation of audio data.
Data Types: single

Parameters
Mini-batch size — Size of mini-batches
128 (default) | positive integer

Size of mini-batches to use for prediction specified as a positive integer. Larger mini-batch sizes
require more memory but can lead to faster predictions.

5 Blocks

5-170

Block Characteristics
Data Types double | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced in R2022a

References
[1] Gemmeke, Jort F., Daniel P. W. Ellis, Dylan Freedman, Aren Jansen, Wade Lawrence, R. Channing

Moore, Manoj Plakal, and Marvin Ritter. “Audio Set: An Ontology and Human-Labeled Dataset
for Audio Events.” In 2017 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 776–80. New Orleans, LA: IEEE, 2017. https://doi.org/10.1109/
ICASSP.2017.7952261.

[2] Hershey, Shawn, Sourish Chaudhuri, Daniel P. W. Ellis, Jort F. Gemmeke, Aren Jansen, R. Channing
Moore, Manoj Plakal, et al. “CNN Architectures for Large-Scale Audio Classification.” In 2017
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 131–35.
New Orleans, LA: IEEE, 2017. https://doi.org/10.1109/ICASSP.2017.7952132.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Usage notes and limitations:

• To generate generic C code that does not depend on third-party libraries, in the Configuration
Parameters > Code Generation general category, set the Language parameter to C.

• To generate C++ code, in the Configuration Parameters > Code Generation general category,
set the Language parameter to C++. To specify the target library for code generation, in the Code
Generation > Interface category, set the Target Library parameter. Setting this parameter to
None generates generic C++ code that does not depend on third-party libraries.

• For ERT-based targets, the Support: variable-size signals parameter in the Code Generation>
Interface pane must be enabled.

• For a list of networks and layers supported for code generation, see “Networks and Layers
Supported for Code Generation” (MATLAB Coder).

See Also
Apps
Signal Labeler

 VGGish

5-171

Blocks
Sound Classifier | VGGish Preprocess | VGGish Embeddings | YAMNet | YAMNet Preprocess

Functions
classifySound | vggish | vggishEmbeddings | vggishPreprocess | yamnet |
yamnetPreprocess | yamnetGraph

5 Blocks

5-172

Audio Oscillator
Generate sine, square, and sawtooth waveforms
Library: Audio Toolbox / Sources

Description
The Audio Oscillator block generates tunable waveforms. Typical uses include the generation of test
signals for test benches, and the generation of control signals for audio effects. Parameters of the
Audio Oscillator block specify the type of waveform generated.

Ports
Input

F — Frequency (Hz)
nonnegative scalar | vector of nonnegative values

Dependencies

To enable this port, select Specify frequency from input port for the “Frequency (Hz)” on page 5-
0 parameter.
Data Types: single | double

A — Amplitude
nonnegative scalar | vector of nonnegative values

Dependencies

To enable this port, select Specify amplitude from input port for the “Amplitude” on page 5-0
parameter.
Data Types: single | double

DC — DC offset
scalar | vector

 Audio Oscillator

5-173

Dependencies

To enable this port, select Specify DC offset from input port for the “DC offset” on page 5-0
parameter.
Data Types: single | double

Output

Port_1 — Output signal
vector

The Audio Oscillator block outputs a periodic signal defined by the parameters of the block.
Data Types: single | double

Parameters
If a parameter is listed as tunable, then you can change its value during simulation.

Signal type — Type of generated waveform
sine (default) | square | sawtooth

The waveforms are generated using the algorithms specified by the sin, square, and sawtooth
functions.

Frequency (Hz) — Frequency of generated waveform
100 (default) | nonnegative scalar | vector of nonnegative values

• If “Signal type” on page 5-0 is set to sine, specify Frequency (Hz) as a scalar or as a vector. If
Frequency (Hz) is set to an N-element vector, then the output from the block is the single-
channel sum of N sinusoids. If Frequency (Hz) is set to an N-element vector, then “Amplitude” on
page 5-0 , “Phase offset” on page 5-0 , and “DC offset” on page 5-0 must be scalars or N-
element vectors.

• For square waveforms, specify Frequency (Hz) as a scalar.
• For sawtooth waveforms, specify Frequency (Hz) as a scalar.

To specify Frequency (Hz) from an input port, select Specify frequency from input port.

Tunable: Yes

Amplitude — Amplitude of generated waveform
1 (default) | nonnegative scalar | vector of nonnegative values

• If “Signal type” on page 5-0 is set to sine, specify Amplitude as a scalar or as a vector. If
Amplitude is set to an N-element vector, then the output from the block is the single-channel sum
of N sinusoids. If Amplitude is set to an N-element vector, then “Frequency (Hz)” on page 5-0 ,
“Phase offset” on page 5-0 , and “DC offset” on page 5-0 must be scalars or N-element
vectors.

• For square waveforms, specify Amplitude as a scalar.
• For sawtooth waveforms, specify Amplitude as a scalar.

To specify Amplitude from an input port, select Specify amplitude from input port.

5 Blocks

5-174

Tunable: Yes

Phase offset — Normalized phase offset of generated waveform
0 (default) | scalar in the range [0, 1] | vector with values in the range [0, 1]

The phase offset range, [0,1], corresponds to a normalized 2π radians interval.

• If “Signal type” on page 5-0 is set to sine, specify Phase offset as a scalar or as a vector. If
Phase offset is set to an N-element vector, then the output from the block is the single-channel
sum of N sinusoids. If Phase offset is set to an N-element vector, then “Frequency (Hz)” on page
5-0 , “Amplitude” on page 5-0 , and “DC offset” on page 5-0 must be scalars or N-element
vectors.

• For square waveforms, specify Amplitude as a scalar.
• For sawtooth waveforms, specify Amplitude as a scalar.

DC offset — Value added to each element of generated waveform
0 (default) | scalar | vector

• If “Signal type” on page 5-0 is set to sine, specify DC offset as a scalar or as a vector. If DC
offset is set to an N-element vector, then the output from the block is the single-channel sum of N
sinusoids. If DC offset is set to an N-element vector, then “Frequency (Hz)” on page 5-0 ,
“Amplitude” on page 5-0 , and “Phase offset” on page 5-0 must be scalars or N-element
vectors.

• For square waveforms, specify Amplitude as a scalar.
• For sawtooth waveforms, specify Amplitude as a scalar.

To specify DC offset from an input port, select Specify DC offset from input port.

Tunable: Yes

Duty cycle — Square waveform duty cycle
0.5 (default) | scalar in the range [0, 1]

Square waveform duty cycle is the percentage of one period in which the waveform is above the
median amplitude. A duty cycle value of 1 or 0 is equivalent to a DC signal.

Dependencies

To enable this parameter, set Signal type to square.

Width — Sawtooth width
1 (default) | scalar in the range [0, 1]

Sawtooth width determines the point in a sawtooth waveform period at which the maximum occurs.

Dependencies

To enable this property, set Signal type to sawtooth.

Samples per frame — Number of samples per frame
512 (default) | positive integer

Number of samples per frame, specified as a positive integer.

 Audio Oscillator

5-175

Sample rate (Hz) — Sample rate of generated waveform
44100 (default) | positive scalar

The sample rate must be greater than twice the value specified in “Frequency (Hz)” on page 5-0 .

Output data type — Data type of generated waveform
double (default) | single

Data type of generated waveform, specified as double or single.

Tunable: No

Simulate using — Specify type of simulation to run
Code generation (default) | Interpreted execution

• Code generation – Simulate the model using generated C code. The first time you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations, as long as the model does not change. This option requires additional startup time,
but the speed of the subsequent simulations is comparable to Interpreted execution.

• Interpreted execution – Simulate model using the MATLAB interpreter. This option reduces
startup time and the simulation has speed comparable to Code generation. In this mode, you
can debug the source code of the block.

Block Characteristics
Data Types double | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced in R2020a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Wavetable Synthesizer | audioOscillator | Audio Device Writer

5 Blocks

5-176

Multiband Parametric EQ
Multiband parametric equalizer
Library: Audio Toolbox / Filters

Description
The Multiband Parametric EQ block performs multiband parametric equalization independently
across each channel of input using specified center frequencies, gains, and quality factors. You can
configure this block with up to 10 bands. You can add low-shelf and high-shelf filters as well as
highpass (low-cut) and lowpass (high-cut) filters.

Ports
Input

Port_1 — Audio input to equalizer
matrix | vector

Audio input to the equalizer, specified as one of the following:

• Matrix input –– The block treats each column of the input as an independent channel.
• Vector input –– The block treats the input as having a single channel.

Data Types: single | double

Output

Port_1 — Audio output from equalizer
matrix

Audio output from the equalizer, returned as a matrix. If you specify the input as a matrix, the block
returns the output with the same size as matrix input. If you specify the input as a vector then the
output is N-by-1 matrix.
Data Types: single | double

Parameters
Main

EQ order — Order of individual equalizer bands
2 (default) | even positive integer

Order of individual equalizer bands, specified as an even positive integer. All equalizer bands have
the same order.

 Multiband Parametric EQ

5-177

Number of bands — Number of equalizer bands
3 (default) | integer in the range [1,10]

Number of equalizer bands, specified as an integer in the range [1,10]. The number of equalizer
bands does not include shelving filters, highpass filters, or lowpass filters.

Specify frequencies from input port — Specify frequencies from input port
off (default) | on

Select this parameter to specify frequencies from the input port.

Frequencies (Hz) — Center frequencies of equalizer bands
[100,181,325] (default) | row vector of length equal to Number of bands

Center frequencies of equalizer bands in Hz, specified as a row vector of length equal to Number of
bands. The vector consists of real scalars in the range 0 to Input sample rate (Hz)/2.

Tunable: Yes

Dependencies

To enable this parameter, set Specify input frequencies from input port to off.

Specify peak gains from input port — Specify peak gains from input port
off (default) | on

Select this parameter to specify peak gains from input port.

Peak Gains (dB) — Peak or dip filter gains
[0,0,0] (default) | row vector of length equal to Number of bands

Peak or dip filter gains, specified as a row vector of length equal to Number of bands in dB. The
vector consists of real scalars in the range [–inf,20].

Tunable: Yes

Dependencies

To enable this parameter, set Specify peak gains from input port to off.

Specify quality factors from input port — Specify quality factors from input port
off (default) | on

Select this parameter to specify quality factors from the input port.

Quality factors — Quality factors of equalizer bands
[1.6,1.6,1.6] (default) | row vector

Quality factors of equalizer bands, specified as a row vector of length equal to Number of bands.

5 Blocks

5-178

Tunable: Yes

Dependencies

To enable this parameter, set Specify quality factor from input port to off.

Inherit sample rate from input — Specify sample rate from input port
off (default) | on

Select this parameter to specify sample rate from the input port.

Input sample rate (Hz) — Input sample rate
44100 (default) | positive scalar

Input sample rate, specified as a positive scalar in Hz.

Tunable: Yes

Dependencies

To enable this parameter, set Inherit sample rate from input port to off.

Visualize filter response — Visualize magnitude response of equalizer
button

This button plots the filter responses of low-shelf, high-shelf, highpass (low-cut), and lowpass (high-
cut) filters in a magnitude (dB) vs. frequencies (Hz) plot.

Note The block does not support filter visualization if any parameters are specified from input ports
or the sample rate is inherited.

Variable name — Variable name of exported filter
myFilt (default) | valid variable name

Name of the variable in the base workspace to contain the filter when it is exported. The name must
be a valid MATLAB variable name.

Overwrite variable if it already exists — Overwrite variable if it already exists
on (default) | off

When you select this parameter, exporting the filter overwrites the variable specified by the Variable
name parameter if it already exists in the base workspace. If you do not select this parameter and
the specified variable already exists in the workspace, exporting the filter creates a new variable with
an underscore and a number appended to the variable name. For example, if the variable name is var
and it already exists, the exported variable will be named var_1.

Export filter to workspace — Export filter to workspace
button

 Multiband Parametric EQ

5-179

Export the filter to the base workspace in the variable specified by the Variable name parameter.

Tips

• You cannot export the filter if you have enabled the Inherit sample rate from input parameter
and the model is not running.

• You cannot export the filter if you are specifying filter characteristics from input ports.

Advanced

Add low-shelf filter — Add low-shelf filter to equalizer
off (default) | on

Select this parameter to add a low-shelf filter to your equalizer.

Specify low-shelf cutoff from input port — Specify low-shelf cutoff frequency from
input port
off (default) | on

Select this parameter to specify the cutoff frequency of the low-shelf filter from the input port.

Dependencies

To enable this parameter, set Add low-shelf filter to on.

Low-shelf cutoff frequency (Hz) — Low-shelf cutoff frequency
200 (default) | scalar

The cutoff frequency of the low-shelf filter, specified as a scalar greater than or equal to 0 in Hz.

Tunable: Yes

Dependencies

To enable this parameter, set Add low-shelf filter to on and Specify low-shelf cutoff from input
port to off.

Specify low-shelf slope from input port — Specify low-shelf slope
off (default) | on

Select this parameter to specify low-shelf slope from the input port.

Dependencies

To enable this parameter, set Add low-shelf filter to on.

Low-shelf filter slope — Low-shelf slope
1.5 (default) | positive scalar

The slope of the low-shelf filter, specified as a positive scalar.

Tunable: Yes

5 Blocks

5-180

Dependencies

To enable this parameter, set Add low-shelf filter to on and Specify low-shelf slope from input
port to off.

Specify low-shelf gain from input port — Specify low-shelf gain from input port
off (default) | on

Select this parameter to specify the gain of the low-shelf filter from the input port.

Dependencies

To enable this parameter, set Add low-shelf filter to on.

Low-shelf filter gain (dB) — Low-shelf gain
0 (default) | real scalar

The gain of the low-shelf filter, specified as a real scalar.

Tunable: Yes

Dependencies

To enable this parameter, set Add low-shelf filter to on and Specify low-shelf gain from input
port to off.

Add high-shelf filter — Add high-shelf filter to equalizer
off (default) | on

Select this parameter to add a high-shelf filter to your equalizer.

Specify high-shelf cutoff from input port — Specify high-shelf cutoff frequency from
input port
off (default) | on

Select this parameter to specify the cutoff frequency of the high-shelf filter from the input port.

Dependencies

To enable this parameter, set Add high-shelf filter to on.

High-shelf cutoff frequency (Hz) — High-shelf cutoff frequency
15e3 (default) | scalar

The cutoff frequency of the high-shelf filter, specified as a scalar greater than or equal to 0 in Hz.

Tunable: Yes

Dependencies

To enable this parameter, set Add high-shelf filter to on and Specify high-shelf cutoff from input
port to off.

 Multiband Parametric EQ

5-181

Specify high-shelf slope from input port — Specify high-shelf slope from input port
off (default) | on

Select this parameter to specify the slope of the high-shelf filter from the input port.

Dependencies

To enable this parameter, set Add high-shelf filter to on.

High-shelf filter slope — High-shelf slope
1.5 (default) | positive scalar

The slope of the high-shelf filter, specified as a positive scalar.

Tunable: Yes

Dependencies

To enable this parameter, set Add high-shelf filter to on and Specify high-shelf slope from input
port to off.

Specify high-shelf gain from input port — Specify high-shelf gain from input port
off (default) | on

Select this parameter to specify the gain of the high-shelf filter from the input port.

Dependencies

To enable this parameter, set Add high-shelf filter to on.

High-shelf filter gain (dB) — High-shelf gain
0 (default) | real scalar

The gain of the high-shelf filter, specified as a real scalar.

Tunable: Yes

Dependencies

To enable this parameter, set Add high-shelf filter to on and Specify high-shelf gain from input
port to off.

Add lowpass filter — Add lowpass filter to equalizer
off (default) | on

Select this parameter to add a lowpass filter to your equalizer.

Specify lowpass cutoff from input port — Specify lowpass cutoff frequency from
input port
off (default) | on

5 Blocks

5-182

Select this parameter to specify the cutoff frequency of the lowpass filter from the input port.

Dependencies

To enable this parameter, set Add lowpass filter to on.

Lowpass cutoff frequency (Hz) — Lowpass cutoff frequency
18e3 (default) | scalar

The cutoff frequency of the lowpass filter, specified as a scalar greater than or equal to 0 in Hz.

Tunable: Yes

Dependencies

To enable this parameter, set Add lowpass filter to on and Specify lowpass cutoff from input
port to off.

Specify lowpass slope from input port — Specify lowpass slope from input port
off (default) | on

Select this parameter to specify the slope of the lowpass filter from the input port.

Dependencies

To enable this parameter, set Add lowpass filter to on.

Lowpass filter slope — Lowpass slope
12 (default) | real scalar in the range [0:6:48]

The slope of the lowpass filter, specified as a real scalar in the range [0:6:48] in dB/octave. Values
that are not multiples of 6 are rounded to the nearest multiple of 6.

Tunable: Yes

Dependencies

To enable this parameter, set Add lowpass filter to on and Specify lowpass slope from input port
to off.

Add highpass filter — Add highpass filter to equalizer
off (default) | on

Select this parameter to add a highpass filter to your equalizer.

Specify highpass cutoff from input port — Specify highpass cutoff frequency from
input port
off (default) | on

Select this parameter to specify the cutoff frequency of the highpass filter cutoff from the input port.

 Multiband Parametric EQ

5-183

Dependencies

To enable this parameter, set Add highpass filter to on.

Highpass cutoff frequency (Hz) — Highpass cutoff frequency
20 (default) | nonnegative real scalar

The cutoff frequency of the highpass filter, specified as a real scalar greater than or equal to 0 in Hz.

Tunable: Yes

Dependencies

To enable this parameter, set Add highpass filter to on and Specify highpass cutoff from input
port to off.

Specify highpass slope from input port — Specify highpass slope from input port
off (default) | on

Select this parameter to specify the slope of the highpass filter from the input port.

Dependencies

To enable this parameter, set Add highpass filter to on.

Highpass filter slope — Highpass slope
30 (default) | real scalar in the range [0:6:48]

The slope of the highpass filter, specified as a real scalar in the range [0:6:48] in dB/octave. Values
that are not multiples of 6 are rounded to the nearest multiple of 6.

Tunable: Yes

Dependencies

To enable this parameter, set Add highpass filter to on and Specify highpass slope from input
port to off.

Oversample — Oversample toggle
off (default) | on

Oversample toggle, specified as one of the following:

• off –– Run the multiband parametric equalizer at the input sample rate.
• on –– Run the multiband parametric equalizer at two times the input sample rate. Oversampling

minimizes the frequency-warping effects introduced by the bilinear transformation.

A halfband interpolator implements oversampling before equalization. A halfband decimator reduces
the sample rate back to the input sampling rate after equalization.

Simulate using — Specify type of simulation to run
Code generation (default) | Interpreted execution

5 Blocks

5-184

Type of simulation to run, specified as one of the following:

• Interpreted execution –– Simulate model using the MATLAB interpreter. This option shortens
startup time and has simulation speed comparable to Code generation. In this mode, you can
debug the source code of the block.

• Code generation –– Simulate model using generated C code. The first time you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations as long as the model does not change. This option requires additional startup time but
the speed of the subsequent simulations is faster than Interpreted execution.

Tunable: No

Block Characteristics
Data Types double | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals yes
Zero-Crossing
Detection

no

Version History
Introduced in R2021b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
multibandParametricEQ | Gammatone Filter Bank | Single-Band Parametric EQ

 Multiband Parametric EQ

5-185

Gammatone Filter Bank
Gammatone filter bank
Library: Audio Toolbox / Filters

Description
The Gammatone Filter Bank block decomposes a signal by passing it through a bank of gammatone
filters equally spaced on the equivalent rectangular bandwidth (ERB) scale. Gammatone filter banks
are designed to model the human auditory system.

Ports
Input

Port_1 — Audio input to filter bank
scalar | vector | matrix

Audio input to the filter bank, specified as a scalar, vector, or matrix. If you specify the input as a
matrix, the block treats the columns as independent audio channels. If you specify the input as a
vector, the block treats the input as containing a single channel.
Data Types: single | double

Output

Port_1 — Audio output from filter bank
scalar | vector | matrix | 3-D array

Audio output from the filter bank, returned as a scalar, vector, matrix, or 3-D array. The shape of
output signal depends on the shape of input signal and Number of filters. If input is an M-by-N
matrix, then output is an M-by-Number of filters-by-N array. If N is 1, then output is a matrix.
Data Types: single | double

Parameters
Frequency range (Hz) — Frequency range of filter bank
[50 8000] (default) | two-element row vector of monotonically increasing values

Frequency range of the filter bank, specified as a two-element row vector of monotonically increasing
values in Hz.

Tunable: No

Number of filters — Number of filters
32 (default) | positive integer

5 Blocks

5-186

Number of filters in the filter bank, specified as a positive integer.

Tunable: No

Inherit sample rate from input — Specify sample rate from input port
off (default) | on

Select this parameter to specify the sample rate from the input port.

Input sample rate (Hz) — Input sample rate
16000 (default) | positive integer

Input sample rate, specified as a positive integer in Hz.

Tunable: No
Dependencies

To enable this parameter, set Inherit sample rate from input port to off.

Bands as separate output port — Separate ports for each filter output
off (default) | on

Select this parameter to separate ports for each filter output.

Tunable: No

View Filter Response — Visualize filter bank responses
button

This button uses the fvtool function to visualize gammatone filter bank responses.

Variable name — Variable name of exported filter bank
myFilt (default) | valid variable name

Name of the variable in the base workspace to contain the filter bank when it is exported. The name
must be a valid MATLAB variable name.

Overwrite variable if it already exists — Overwrite variable if it already exists
on (default) | off

When you select this parameter, exporting the filter bank overwrites the variable specified by the
Variable name parameter if it already exists in the base workspace. If you do not select this
parameter and the specified variable already exists in the workspace, exporting the filter bank
creates a new variable with an underscore and a number appended to the variable name. For
example, if the variable name is var and it already exists, the exported variable will be named var_1.

Export filter to workspace — Export filter bank to workspace
button

 Gammatone Filter Bank

5-187

Export the filter bank to the base workspace in the variable specified by the Variable name
parameter.

Tips

You cannot export the filter if you have enabled the Inherit sample rate from input parameter and
the model is not running.

Simulate using — Specify type of simulation to run
Interpreted execution (default) | Code generation

Type of simulation to run, specified as one of the following:

• Interpreted execution –– Simulate model using the MATLAB interpreter. This option shortens
startup time and has simulation speed comparable to Code generation. In this mode, you can
debug the source code of the block.

• Code generation –– Simulate model using generated C code. The first time you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations as long as the model does not change. This option requires additional startup time but
the speed of the subsequent simulations is faster than Interpreted execution.

Tunable: No

Block Characteristics
Data Types double | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals yes
Zero-Crossing
Detection

no

Algorithms
Applications

A gammatone filter bank is often used as the front end of a cochlea simulation. A cochlea simulation
transforms complex sounds into a multichannel activity pattern like the one observed in the auditory
nerve [2] .The Gammatone Filter Bank block follows the algorithm described in [1]. The algorithm is
an implementation of an idea proposed in [2]. The design of the gammatone filter bank can be
described in two parts: the filter shape (gammatone) and the frequency scale. The equivalent
rectangular bandwidth (ERB) scale defines the relative spacing and bandwidth of the gammatone
filters. The derivation of the ERB scale also provides an estimate of the auditory filter response that
closely resembles the gammatone filter.

5 Blocks

5-188

Frequency Scale

The block determines the ERB scale using the notched-noise masking method. This method involves a
listening test wherein notched noise is centered on a tone. The power of the tone is tuned, and the
audible threshold (the power required for the tone to be heard) is recorded. The experiment is
repeated for different notch widths and center frequencies.

The notched-noise method assumes that the audible threshold corresponds to a constant signal-to-
masker ratio at the output of the theoretical auditory filter. That is, the ratio of the power of the fc
tone and the shaded area is constant. Therefore, the relationship between the audible threshold and
2Δf (the notch bandwidth) is linearly related to the relationship between the noise passed through the
filter and 2Δf.

 Gammatone Filter Bank

5-189

The derivative of the function relating Δf to the noise passed through the filter estimates the shape of
the auditory filter. Because Δf has an inverse relationship with the noise power passed through the
filter, the derivative of the function must be multiplied by –1. The resulting shape of the auditory filter
is usually approximated as a roex filter.

The equivalent rectangular bandwidth of the auditory filter is defined as the width of a rectangular
filter required to pass the same noise power as the auditory filter.

5 Blocks

5-190

[4] defines ERB as a function of center frequency for young listeners with normal hearing and a
moderate noise level:

ERB = 24.7(0.00437fc + 1)

The ERB scale (ERBs) is an extension of the relationship between ERB and the center frequency,
derived by integrating the reciprocal of the ERB function:

ERBs = 21.4log10(0.00437f + 1)

To design a gammatone filter bank, [2] suggests distributing the center frequencies of the filters in
proportion to their bandwidth. To accomplish this, Gammatone Filter Bank block defines the center
frequencies as linearly spaced on the ERB scale, covering the specified frequency range with the
desired number of filters. You can specify the frequency range and desired number of filters using the
Frequency range (Hz) and Number of filters parameters.

Gammatone Filter

The gammatone filter was introduced in [3]. The continuous impulse response is:

g(t) = atn− 1e−2πbtcos(2πfct + ϕ)

where

• a –– amplitude factor
• t –– time in seconds
• n –– filter order (set to four to model human hearing)
• fc–– center frequency
• b –– bandwidth, set to 1.019*hz2erb(fc).
• ϕ –– phase factor

 Gammatone Filter Bank

5-191

The gammatone filter is similar to the roex filter derived from the notched-noise experiment. The
Gammatone Filter Bank block implements the digital filter as a cascade of four second-order sections,
as described in [1].

Version History
Introduced in R2021b

References
[1] Slaney, Malcolm. "An Efficient Implementation of the Patterson-Holdsworth Auditory Filter Bank."

Apple Computer Technical Report 35, 1993.

[2] Patterson, R.D., K. Robinson, J. Holdsworth, D. McKeown, C. Zhang, and M. Allerhand. "Complex
Sounds and Auditory Images." Auditory Physiology and Perception. 1992, pp. 429–446.

[3] Aertsen, A. M. H. J., and P. I. M. Johannesma. "Spectro-Temporal Receptive Fields of Auditory
Neurons in the Grassfrog." Biological Cybernetics. Vol. 38, Issue 4, 1980, pp. 223–234.

[4] Glasberg, Brian R., and Brian C. J. Moore. "Derivation of Auditory Filter Shapes from Notched-
Noise Data." Hearing Research. Vol. 47. Issue 1-2, 1990, pp. 103–138.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
gammatoneFilterBank | Multiband Parametric EQ | Octave Filter Bank

5 Blocks

5-192

Audio Plugin
Include audio plugin in model
Library: Audio Toolbox / User-Defined Functions

Description
The Audio Plugin block allows you to use an audio plugin as a block in your Simulink model. The
Audio Plugin block generates a new block that has the same functionality as the desired plugin, and
you can use the generated block to process audio signals in Simulink. For more information about
audio plugins in MATLAB, see “Audio Plugins in MATLAB”.

Using the Block

To use the Audio Plugin block, place the block in your model and double-click it to open the dialog
box.

Specify the desired audio plugin in the Audio plugin field. You can specify the audio plugin as:

• The name or file path of an audio plugin class. The class must derive from audioPlugin or
audioPluginSource.

• An audio plugin binary file that is supported by loadAudioPlugin.
• An instance of an audio plugin class. This can either be a plugin authored in MATLAB or an

externally authored plugin that is returned by loadAudioPlugin.

The Audio Plugin block generates a System object class file from the plugin and uses that System
object to create the new block. You can optionally specify the file name and location of the generated
System object with the Generated file name field. For more information about how the Audio Plugin
block works and the System object it generates, see “Algorithms” on page 5-196.

Note The generated System object file must be on the MATLAB path for the plugin block to work. If
the plugin is a hosted external plugin, the block generates additional files required by the generated
System object. For more information, see “Code Generation” on page 5-197.

After you specify an audio plugin and click OK, you have a block with the same functionality as the
audio plugin.

 Audio Plugin

5-193

For an example with a model that uses the Audio Plugin block, see “Include an Audio Plugin in
Simulink”.

Generated Block Parameters

The generated block has the same parameters as the specified audio plugin. These parameters are
tunable, unless the parameter is an enumeration class that uses strings or characters as the
underlying type. Each tunable parameter can be specified from an input port if you select the
associated Specify parameter from input port parameter, where parameter is the name of the
tunable parameter.

Note For audio plugins authored in MATLAB, a parameter must be specified as an
audioPluginParameter in the plugin's audioPluginInterface for it to show in the block.

In addition to the parameters of the original plugin, the generated block has other, nontunable
parameters that depend on whether the plugin is a source plugin or not. See “Parameters” on page 5-
195 for more information.

Limitations
Some Simulink functionality, such as Step Back, requires saving and restoring the simulation state.
Blocks that use hosted external plugins do not support simulation save and restore and therefore do
not support associated functionality. For tips on using simulation save and restore functionality with
blocks that use plugins authored in MATLAB, see “Tips” on page 5-196.

Ports
Input

x — Plugin input
column vector | matrix

The block input is the same as the original audio plugin input and accepts the same data types. If the
original plugin takes multiple inputs, the block has multiple input ports. The block has additional
input ports if you select any of the Specify parameter from input port parameters, where
parameter is the name of a tunable parameter.

The block does not have an input port if the original plugin is a source plugin. Source plugins derive
from audioPluginSource or externalAudioPluginSource.

Note For audio plugins authored in MATLAB, the number of inputs and the number of channels per
input are defined by the InputChannels property in the plugin's audioPluginInterface.

Output

y — Plugin output
scalar | column vector | matrix

The block output is the same as the original audio plugin and returns the same data types. If the
original plugin returns multiple outputs, the block has multiple output ports.

5 Blocks

5-194

Note For audio plugins authored in MATLAB, the number of outputs and the number of channels per
output are defined by the OutputChannels property in the plugin's audioPluginInterface.

Parameters

Note These parameters are not part of the block until after you specify an audio plugin in the dialog
box.

Inherit sample rate from input — Specify source of input sample rate
off (default) | on

When you select this parameter, the block inherits its sample rate from the input signal. When you
clear this parameter, you specify the sample rate in Input sample rate (Hz).

The block does not have this parameter if the audio plugin is a source plugin.

Input sample rate (Hz) — Sample rate of input
positive scalar

Sample rate of the input, specified as a positive scalar. The default is what the getSampleRate
method returns for the original audio plugin.

The block does not have this parameter if the audio plugin is a source plugin.

Dependencies

To enable this parameter, clear the Inherit sample rate from input parameter.

Samples per frame — Number of samples per frame
positive integer

Number of samples per frame output by the block, specified as a positive scalar. The default is what
the getSamplesPerFrame method returns for the original audio plugin.

The block has this parameter only if the audio plugin is a source plugin.

Output data type — Data type of output signal
double (default) | single

Data type of the output signal, specified as double or single.

The block has this parameter only if the audio plugin is a source plugin.

Sample rate (Hz) — Sample rate of output signal
positive scalar

Sample rate of the output signal, specified as a positive scalar. The default value of this parameter is
the sample rate that the getSampleRate method returns for the original audio plugin.

The block has this parameter only if the audio plugin is a source plugin.

Simulate using — Specify type of simulation to run
Code generation (default) | Interpreted execution

 Audio Plugin

5-195

• Interpreted execution –– Simulate model using the MATLAB interpreter. This option shortens
startup time but has a slower simulation speed than Code generation. In this mode, you can
debug the source code of the block.

• Code generation –– Simulate model using generated C code. The first time you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations as long as the model does not change. This option requires additional startup time,
but the speed of the subsequent simulations is comparable to Interpreted execution.

Block Characteristics
Data Types Booleana | busba | doublea | enumerateda | fixed pointa | halfa |

integera | singlea | stringa

Direct Feedthrough no
Multidimensional
Signals

yesa

Variable-Size Signals yesca

Zero-Crossing
Detection

no

a Actual data type or capability support depends on block implementation.
b See Nonvirtual Buses and MATLAB System Block for more information.
c See Variable-Size Signals for more information.

Tips
To use Simulink functionality that requires saving and restoring the simulation state, such as Step
Back, with a block that uses a plugin authored in MATLAB, the original plugin implementation must
correctly save and load its state.

• If the original plugin is a System object, it must correctly save and load its state using the
saveObjectImpl and loadObjectImpl methods.

• If the original plugin is an audioPlugin and not a System object plugin, it must correctly save
and load its state using the saveobj and loadobj methods.

Note If the original plugin does not maintain any state, no additional considerations are necessary
for the save and restore functionality.

Algorithms
The Audio Plugin block generates the code for a System object class from the specified audio plugin
using the generateSimulinkAudioPlugin function. generateSimulinkAudioPlugin designs
the System object to be compatible with Simulink through the MATLAB System block. The Audio
Plugin block then uses the MATLAB System block to create a new block from the generated System
object with the same parameters and functionality as the original audio plugin.

Version History
Introduced in R2022b

5 Blocks

5-196

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generating code from blocks that use external audio plugins has additional requirements. External
audio plugins include plugins loaded into MATLAB with loadAudioPlugin and plugin binaries such
as VST plugins.

• The Audio Plugin block generates files in addition to the System object file to aid in code
generation. These files include sysObjNamePluginLoader.m and sysObjNameInterface.m
where sysObjName is the name of the generated System object. The block also generates
sysObjNameTables.mat if the plugin has any parameters. These additional files are required for
code generation and running the block in simulation.

• You must select the Support long long parameter in the Hardware Implementation pane of
the Model Settings.

• If you are using an ERT target, you must set the Language parameter to C++ under the Target
selection section of the Code Generation pane in the Model Settings. You must also select the
Dynamic memory allocation in MATLAB functions parameter in the Advanced parameters
section of the Simulation Target pane.

• To use a standalone executable generated from a block with an external plugin, you must generate
the jucehost.dll file on Windows or the libjucehost.dylib file on macOS by selecting the
Package code and artifacts parameter under the Build process section of the Code
Generation pane in the Model Settings.

• On Windows platforms, you must make the jucehost.dll file visible to the standalone
executable. To do this, add the path to the jucehost.dll file to the PATH environment
variable or copy the jucehost.dll file to the same folder as the standalone executable .

• On macOS platforms, you must make the libjucehost.dylib file visible to the standalone
executable. To do this, place the libjucehost.dylib file in the /usr/lib directory.

See Also
Functions
generateSimulinkAudioPlugin | loadAudioPlugin

Classes
audioPlugin | audioPluginSource

Topics
“Audio Plugins in MATLAB”

 Audio Plugin

5-197

	Apps
	Audio Labeler
	Impulse Response Measurer
	Audio Test Bench
	Extract Audio Features

	Functions
	speech2text
	yamnetPreprocess
	vggishPreprocess
	pitchnn
	crepePostprocess
	crepePreprocess
	crepe
	openl3Embeddings
	openl3Features
	openl3Preprocess
	openl3
	speakerRecognition
	acousticRoughness
	vggish
	yamnet
	vggishEmbeddings
	vggishFeatures
	yamnetGraph
	classifySound
	acousticFluctuation
	cepstralCoefficients
	audioDelta
	showaudioblockdatatypetable
	audioPluginGridLayout
	pinknoise
	stretchAudio
	shiftPitch
	designAuditoryFilterBank
	melSpectrogram
	kbdwin
	mdct
	imdct
	harmonicRatio
	gtcc
	spectralSpread
	spectralSlope
	spectralSkewness
	spectralRolloffPoint
	spectralKurtosis
	spectralFlux
	spectralFlatness
	spectralEntropy
	spectralDecrease
	spectralCrest
	spectralCentroid
	hz2mel
	hz2bark
	hz2erb
	mel2hz
	bark2hz
	erb2hz
	mls
	sweeptone
	interpolateHRTF
	impzest
	mididevinfo
	pitch
	mfcc
	asiosettings
	getAudioDevices
	audioPluginInterface
	audioPluginParameter
	configureMIDI
	designParamEQ
	designShelvingEQ
	designVarSlopeFilter
	disconnectMIDI
	fdesign.parameq
	generateAudioPlugin
	integratedLoudness
	getMIDIConnections
	loadAudioPlugin
	midicallback
	midicontrols
	midiid
	midiread
	midisync
	validateAudioPlugin
	acousticLoudness
	acousticSharpness
	detectSpeech
	calibrateMicrophone
	sone2phon
	phon2sone
	generateSimulinkAudioPlugin
	speechClient
	text2speech

	System Objects
	audioTimeScaler
	parameterTuner
	gammatoneFilterBank
	coeffs
	freqz
	fvtool
	getBandedgeFrequencies
	getCenterFrequencies
	getBandwidths
	getGroupDelays
	octaveFilterBank
	isStandardCompliant
	splMeter
	calibrate
	voiceActivityDetector
	cepstralFeatureExtractor
	getFilters
	staticCharacteristic
	visualize
	createAudioPluginClass
	getFilter
	info
	cost
	audioPlayerRecorder
	audioDeviceReader
	audioDeviceWriter
	audioOscillator
	crossoverFilter
	visualize
	graphicEQ
	info
	visualize
	loudnessMeter
	visualize
	multibandParametricEQ
	visualize
	compressor
	expander
	limiter
	noiseGate
	octaveFilter
	getANSICenterFrequencies
	isStandardCompliant
	visualize
	reverberator
	shelvingFilter
	visualize
	wavetableSynthesizer
	weightingFilter
	isStandardCompliant
	visualize

	Classes
	plotFeatures
	generateMATLABFunction
	setExtractorParameters
	setExtractorParams
	info
	extract
	audioFeatureExtractor
	removeAugmentationMethod
	augment
	addAugmentationMethod
	setAugmenterParams
	getAugmenterParams
	audioDataAugmenter
	writeall
	transform
	combine
	progress
	numpartitions
	partition
	countEachLabel
	splitEachLabel
	preview
	subset
	shuffle
	hasdata
	reset
	readall
	read
	audioDatastore
	midimsg
	mididevice
	hasdata
	midireceive
	midisend
	audioPlugin
	audioPlugin.setLatencyInSamples
	audioPlugin.getSampleRate
	audioPlugin.setSampleRate
	audioPluginConfig
	audioPluginSource
	audioPluginSource.getSamplesPerFrame
	audioPluginSource.setSamplesPerFrame
	externalAudioPlugin
	externalAudioPlugin.dispParameter
	externalAudioPlugin.getParameter
	externalAudioPlugin.info
	externalAudioPlugin.process
	externalAudioPlugin.setParameter
	externalAudioPluginSource
	ivectorSystem
	trainExtractor
	trainClassifier
	calibrate
	enroll
	unenroll
	detectionErrorTradeoff
	verify
	identify
	ivector
	info
	addInfoHeader
	release

	Blocks
	Voice Activity Detector
	Cepstral Feature Extractor
	Audio Delta
	Audio Device Reader
	Audio Device Writer
	Auditory Spectrogram
	Cepstral Coefficients
	Compressor
	Crossover Filter
	Design Auditory Filter Bank
	Design Mel Filter Bank
	Expander
	Graphic EQ
	Limiter
	Loudness Meter
	Mel Spectrogram
	MFCC
	MIDI Controls
	Noise Gate
	Octave Filter
	Octave Filter Bank
	OpenL3
	OpenL3 Embeddings
	OpenL3 Preprocess
	Single-Band Parametric EQ
	Reverberator
	Sound Classifier
	Weighting Filter
	Shelving Filter
	Wavetable Synthesizer
	YAMNet Preprocess
	YAMNet
	VGGish Embeddings
	VGGish Preprocess
	VGGish
	Audio Oscillator
	Multiband Parametric EQ
	Gammatone Filter Bank
	Audio Plugin

